

On-Road Emission Results

The largest on-road emission results will occur during the second year and are summarized in Table 5.1.3 in Section 1.5.3. The methodology and calculation result are not affected by the change in marine engine type.

Comparison to De Minimis Levels

The table below compares the total emissions for each criteria pollutant to the de minimis threshold for New Castle County. The total emissions consist of the sum of marine, nonroad and on-road emissions. The calculations performed were based on the assumption that a Tier II engine was used therefore the results are less conservative and the emissions for each year is less than the de minimis threshold.

Table 5.2.2 - Scenario 2 Total Estimated Project Construction Emissions Comparedto De Minimis Levels

Summary of Annual Emissions for Criteria Pollutant (tons/year)									
	NOx	СО	PM						
De minimis level	100	100	100						
Year 1 Emissions	97	54	5.1						
Year 2 Emissions	85	47	4.4						
Year 3 Emissions	66	38	3.5						

6. General Conformity Assessment

In the case where the Tier 0 marine engines are used, general conformity can be demonstrated by comparison of the estimated emissions to the allowance for such emissions in budget established by the State of Delaware and accepted by EPA. The current budget established by DNREC was provided in the 2014 National Emissions Inventory (NEI) should be utilized in conducting the general conformity analysis. DNREC indicated that the emissions data from the NEI would be a more appropriate comparison than the 2009 EPA approved State Implementation Plan for Delaware.

Due to estimated NO_x emissions being the only group of substances in excess of the *de minimis* threshold, the percentage of the 2014 NEI that would be affected by the total project emissions for NO_x was assessed to demonstrate general conformity. The 2014 NEI budgets for each respective category: commercial marine, nonroad and on-road emissions are provide in Table 6.1 below. The estimated percentages of the categorical budgets that would be used are 3.4% for marine activities, 0.003% for off-road activities, and 0.003% for on-road mobile sources. These numbers indicate that even though the *de minimis* threshold would be breached the first year of construction, the estimated NO_x emissions comprise small parts of the categorical budgets and the total annual NO_x transportation budget for the State.

	Terrortom	DNREC 2014 NEI NO _x	Project NO _x Emissions							
Project	Categorie	Budget	First	Year	Secon	d Year	Third Year			
Categories	S	(tpy)	(tpy)	Portio n of Budget	(tpy)	Portio n of Budget	(tpy)	Portion of Budget		
Commercial Marine Activities	Marine Emission Sources	3,189	110	3.4%	92	2.9%	75	2.4%		
Land-side Activities	Nonroad Emission Sources	2,756	0.09	0.003%	0.09	0.003%	0.09	0.003%		
On-Road	On-Road Mobile Sources	8,044	0.23	0.003%	0.23	0.003%	0.23	0.003%		
Vehicles	Heavy Duty On Road	113.16	-	-	3.0	2.65%	-	-		
Totals		14,102	110.32	0.78%	95.32	0.67%	75.32	0.53%		

Table 6.1 - Comparison of Scenario 1 Project Emissions to 2014 NEI

7. Best Practices

The general conformity assessment in Section 6 indicates that the estimated project emissions would be within the State of Delaware budget set aside for such emissions and would not lead to a deterioration of air quality. However, the emissions estimated as Scenario 2 suggests that some emissions could be avoided or minimized by using Tier II marine diesel engine equipped vessels on the project. The project marine work (e.g., dredging and pile driving) is expected to be mostly performed outside of the regional ozone season, which extends from May through September, due to restrictions on in water work during the anadromous fish migration period. Additionally, work practices that could be included in contract specifications and bid documents. These measures are expected to be included:

- 1. Solicitation of commercial marine vessels and equipment to be used in the project that are equipped with controls to meet Tier II emission exhaust standards, by offering a preference in selection of such equipment over older Tier 0 powered equipment.
- 2. Solicitation of nonroad construction equipment that utilizes Tier III compliant engines and on-road Tier II compliant trucks by offering a preference in selection of such equipment over older Tier 0 powered equipment.
- 3. Include anti-idling provisions in the contract specifications.

8. Conclusion

On the basis of the analyses described in this report, the construction of the proposed access channel, berth and wharf should not cause a deterioration of air quality or significantly contribute to the continuation of marginal nonattainment of the ozone NAAQS. The general conformity assessment indicates that the estimated construction emissions would be within the State of Delaware NEI budget allowance for transportation related emissions and be minor components of the specific categories for transportation related emissions within the overall NEI budget.

Implementation of the best practices identified in Section 7 have the potential to reduce the project construction emissions to levels below the de minimis thresholds. Project specifications and bid documents will be crafted to encourage or mandate the use of these practices to avoid unnecessary emissions and minimize those that are necessary.

9. References

EPA 2000. Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data, United States Environmental Protection Agency, EPA420-R-00-002, February 2000

EPA 2002. Code of Federal Regulations Title 40, Part 94, Subpart A §94.8 – *Exhaust Emission Standards*. United States Environmental Protection Agency

EPA 2008. Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks. United States Environmental Protection Agency, EPA420-F-08-024, October 2008

EPA 2008. Nonroad Emissions Model, Emission Factors by Horsepower, SCC, and Pollutant - Texas Brazoria County 2019. Date of Model Run: Jul 11 12:18:46: 2016. Core Model ver 2008a, July 6, 2009. NONROAD Reporting Utility, Version 2005c. United States Environmental Protection Agency

EPA 2008. Average In-Use Emissions from Heavy-Duty Trucks - United States Environmental Protection Agency, EPA420-F-08-027, October 2008

EPA 2010. "*Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling: Compression-Ignition.*" NR-009d. EPA-420-R-1-018, July 2010. EPA. 2010b. "*Revisions to the General Conformity Regulations*". EPA-HQ-OAR-2006-0669. Available at: www.epa.gov/airquality/genconform/documents/20100324rule.pdf

EPA 2014. National Emission Inventory (NEI) Data. Search Query for Mobile-On-Road, non-Diesel Light Duty Vehicles, Marine – Commercial Marine Vessels, Mobile-Nonroad Equipment Diesel

EPA 2017. "De Minimis Tables." (2017). EPA, United States Environmental Protection Agency, https://www.epa.gov/general-conformity/de-minimis-tables (Jan. 2, 2020).

HDR, Inc. 2017. General Conformity Determination Freeport Harbor Channel Improvement Project, General Reevaluation Report and Environmental Assessment, Freeport, Texas.

Kneebone, E., and Holmes, N. 2015. *The growing distance between people and jobs in metropolitan America*. The growing distance between people and jobs in metropolitan America, 21.

US Army Corps of Engineers. 2009. *Clean Air Act-Final Statement of Conformity-Delaware River Main Channel Deepening*, 3–4.

US Army Corps of Engineers. 2016, *Final General Conformity Determination for Houston Ship Channel Project Deficiency Report, 11-12*

11139LH.0320-Air Emissions Report-Appendix 24.RPT

APPENDIX A

PROJECT EMISSIONS, FACTORS, AND CALCULATIONS

Appendix 24-22 | Wilmington Harbor - Edgemoor Expansion Environmental Assessment Technical Document

Table 1. Scenario 1 - Summary of Project Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

Summary of Year 1 Emissions for Criteria Pollutant (tons)												
De minimis level (tons/year)	Quantity	100	100	100	-	50	100	100				
		NOx	СО	SOx	CO2	VOCs	PM2.5	PM10				
Dredge Vessel	1	95	10	0.071	6300	1.1	2.3	2.4				
Tugboats	2	6.4	1.2	0.0050	450	0.15	0.16	0.16				
Crew boat	1	2.6	0.49	0.0020	180	0.062	0.06	0.065				
Crew/Survey Boat (Dredge phase)	1	0.64	0.12	0.00050	45	0.015	0.016	0.016				
Bulldozers	3	0.049	0.46	0.0052	1300	0.0050	0.013	-				
Excavators	3	0.038	0.36	0.0052	990	0.0050	0.010	-				
Crane	1	2.6	0.30	0.0019	170	0.033	0.063	0.065				
Diesel Hammer	2	0.51	0.10	0.0004	36	0.012	0.013	0.013				
PowerPack	1	2.1	0.39	0.0016	140	0.050	0.051	0.052				
Light Duty On-Road	55	0.22	2.8	-	120	0.29	0.0011	0.0012				
Total Project (Tons/yr)		110	17	0.093	9700	1.7	2.7	2.7				

Summary of Year 2 Emissions for Criteria Pollutant (tons)											
De minimis level (tons/year)	Quantity	100	100	100	-	50	100	100			
		NOx	CO	SOx	CO2	VOCs	PM2.5	PM10			
Dredge Vessel	1	79	8.7	0.059	5300	0.88	1.9	2.0			
Tugboats	2	5.6	1.1	0.0044	390	0.13	0.14	0.14			
Crew boat	1	2.2	0.43	0.0018	160	0.054	0.055	0.057			
Crew/Survey Boat (Dredge phase)	1	0.56	0.11	0.00044	39	0.013	0.014	0.014			
Bulldozers	5	0.081	0.76	0.019	2100	0.018	0.022	-			
Excavators	3	0.038	0.36	0.0091	990	0.087	0.010	-			
Crane	1	2.3	0.26	0.0017	150	0.029	0.055	0.056			
Diesel Hammer	2	0.43	0.082	0.00034	30	0.010	0.011	0.011			
PowerPack	1	1.7	0.33	0.0013	120	0.041	0.042	0.044			
Heavy Duty On-Road	18	3.0	0.80	-	-	0.15	0.070	0.075			
Light Duty On-Road	55	0.23	2.8	-	120	0.29	0.0011	0.0012			
Total Project (Tons/yr)		95	16	0.097	9400	1.7	2.3	2.4			

Duffield Associates, Inc. Project No. 11139.LH

1 o f 2

Table 1. Scenario 1 - Summary of Project Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

Summary of Year 3 Emissions for Criteria Pollutant (tons)												
De minimis level (tons/year)	Quantity	100	100	100	-	50	100	100				
		NOx	CO	SOx	CO2	VOCs	PM2.5	PM10				
Dredge Vessel	1	63	6.9	0.047	4200	0.71	1.5	1.6				
Tugboats	2	4.8	0.92	0.0038	330	0.12	0.12	0.12				
Crew boat	1	1.9	0.37	0.0015	130	0.046	0.047	0.049				
Crew/Survey Boat (Dredge phase)	1	0.48	0.092	0.00038	33	0.012	0.012	0.012				
Bulldozers	3	0.049	0.46	0.011	1300	0.011	0.013	-				
Excavators	3	0.038	0.36	0.0090	990	0.087	0.010	-				
Crane	1	1.9	0.23	0.0015	130	0.024	0.047	0.048				
Diesel Hammer	2	0.43	0.082	0.00034	30	0.010	0.011	0.011				
PowerPack	1	1.7	0.33	0.0013	120	0.041	0.042	0.044				
Light Duty On-Road	55	0.23	2.8		120	0.29	0.001	0.0012				
Total Project (Tons/yr)		75	13	0.077	7400	1.3	1.8	1.9				

Notes :

1. Scenario 1 analyzed the use of Tier 0 Commercial Marine Engines, Tier III Non-Road Construction Engines, Heavy Duty and Light Duty On-Road Engines

2. Refer to Table 2. for details of load factors and hours of operation for all equipment used

3. Two additional D10 bulldozers required for bulkhead construction in year 2

4. Heavy Duty On Road emissions required for bulkhead construction in year 2

2 o f 2

Table 2. Scenario 1 - Summary of Emission Factors, Load Factors and Hours of Operation Air Conformity Analysis

DSCP Edgemoore Facility, DE

	Estimated Emission Factors											
	Emissions (g/hp-hr)											
	Dre	edge	Cra	ne	Tugboat	boat Crew boat Crew/Survey Boat Diesel Hammer Power Pack Excavato				Excavators	Buldozer	
Horsepower	9000	3000	365	100	500	400	100	105	420	472	600	
CAP	Active	Idle	Active	Idle								
NOx	7.9	8.8	7.9	8.8	8.2	8.2	8.2	8.2	8.2	0.021	0.021	
CO	0.78	3.1	0.78	3.1	1.6	1.6	1.6	1.6	1.6	0.19	0.19	
SOx	0.0059	0.0073	0.0059	0.0073	0.0064	0.0064	0.0064	0.0064	0.0064	0.0049	0.0049	
CO2	520	650	520	650	570	570	570	570	570	540	540	
VOCs	0.070	0.56	0.070	0.56	0.20	0.20	0.20	0.20	0.20	0.047	0.0047	
PM2.5	0.19	0.23	0.19	0.23	0.20	0.20	0.20	0.20	0.20	-	-	
PM10	0.20	0.24	0.20	0.24	0.21	0.21	0.21	0.21	0.21	0.0055	0.0055	

Load factors and emission factors for Tier 0 marine engines were determined based on the February, 2000 EPA report "Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data" Excavators and Bulldozers (Tier III)engines are engines based on the 2010 EPA report "Exhaust and Crankcase Emission Factors for Non-road Engine Modeling – Compression-Ignition"

Emission Standards for Non-Diesel Vehicles												
Petroleum	Light Truck	Light Truck Car Heavy Duty Tru										
CAP		Emissions (g/mi)										
NOx	0.95	0.69	8.6									
CO	12	9.4	2.3									
SOx	-	-	-									
CO2	510	370	-									
VOCs	1.2	1.0	0.45									
PM2.5	0.0045	0.0041	0.20									
PM10	0.0049	0.0044	0.22									

Non Diesel Emission Factors are obtained from 2008 EPA Report ' Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks' Diesel Emission Factors are obtained from 2008 EPA Report ' Average In-Use Emissions from Heavy Duty Trucks'

	Load Factors and Operation Time (g/hp-hr)										
	Dredge Crane			Tugboat	Crew boat	Crew/Survey Boat	Diesel Hammer	Power Pack	Excavators	Bulldozer	
Horsepower	9000	3000	365	100	500	400	100	105	420	472	600
Load Factors	0.8	0.2	0.8	0.2	0.4	0.4	0.4	0.4	0.4	0.59	0.59
Hours/ Day	16	8	8	8	15	15	15	15	15	8	8
Days /Year 1	g	90	11	8	118	118	118	90	90	250	250
Days /Year 2	7	75	10	3	103	103	103	75	75	251	251
Days /Year 3	6	50	88		88	88	88	60	60	250	250

1 of 1

Table 3. Scenario 1 - Summary of Commercial Marine Emissions for Tier 0 Engines Air Conformity Analysis DSCP Edgemoore Facility, DE

Dredge Vessel Emission Summary																
		Yea	ar 1			Year 2					Year 3					
Days/Year		9	0				7	'5		1				60		
	Drec	lging	Idl	ing	Annual Total	Dred	lging	Idl	ing	Annual Total	Dredging		Idling		Annual Total	
	Daily	Annual	Daily	Annual	Annuar rotar	Daily	Annual	Daily	Annual	Annual Total	Daily	Annual	Daily	Annual	Annual Total	
Pollutants	Emissions	Emissions	Emissions	Emissions		Emissions	Emissions	Emissions	Emissions		Emissions	Emissions	Emissions	Emissions		
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)		(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)		(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)		
NOx	1.0	91	0.047	4.2	95	1.0	75	0.047	3.5	79	1.0	60	0.047	2.8	63	
CO	0.10	8.9	0.017	1.49	10	0.10	7.4	0.017	1.24	8.7	0.10	5.9	0.017	0.99	6.9	
SOx	0.00075	0.067	0.000039	0.0035	0.071	0.001	0.056	0.000039	0.0029	0.06	0.00075	0.045	0.000039	0.0023	0.047	
CO ₂	67	6,000	3.4	310	6,300	67	5,000	3.5	260	5,300	67	4,000	3.5	210	4,200	
VOC	0.0088	0.79	0.0029	0.26	1.1	0.009	0.66	0.0029	0.22	0.88	0.009	0.53	0.0029	0.18	0.71	
PM2.5	0.024	2.2	0.0012	0.11	2.3	0.024	1.8	0.0012	0.09	1.9	0.024	1.5	0.0012	0.074	1.5	
PM10	0.025	2.2	0.0013	0.11	2.4	0.025	1.9	0.0013	0.10	2.0	0.025	1.5	0.0013	0.076	1.6	

Crane Emission Emission Summary															
		Yea	ar 1			Year 2					Year 3				
Days/Year		11	18				10	03				8	8		
	Crane in o	operation	Idl	ing	Annual Total	Crane in o	operation	Idl	ing	Annual Total	Dree	lging	Idling		Annual Total
	Daily	Annual	Daily	Annual	Annual Total	Daily	Annual	Daily	Annual	Annual Total	Daily	Annual	Daily	Annual	Annual Total
Pollutants	Emissions	Emissions	Emissions	Emissions		Emissions	Emissions	Emissions	Emissions		Emissions	Emissions	Emissions	Emissions	
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)		(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)		(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	
NOx	0.020	2.41	0.0016	0.18	2.6	0.020	2.10	0.0016	0.16	2.3	0.020	1.8	0.0016	0.14	1.9
CO	0.0020	0.24	0.00055	0.065	0.30	0.0020	0.21	0.00055	0.057	0.26	0.0020	0.18	0.00055	0.048	0.23
SOx	0.000015	0.0018	0.0000013	0.00015	0.0019	0.000015	0.0016	0.0000013	0.00013	0.0017	0.000015	0.0013	0.0000013	0.00011	0.0015
CO2	1.4	159	0.11	13	170	1.4	139	0.11	12	150	1.4	119	0.11	10	130
VOC	0.00018	0.021	0.00010	0.012	0.033	0.00018	0.018	0.00010	0.010	0.029	0.00018	0.016	0.00010	0.0086	0.024
PM2.5	0.00049	0.058	0.000041	0.0048	0.063	0.00049	0.051	0.000041	0.0042	0.055	0.00049	0.043	0.000041	0.0036	0.047
PM10	0.00051	0.060	0.000042	0.0050	0.065	0.00051	0.052	0.000042	0.0043	0.056	0.00051	0.045	0.000042	0.0037	0.048

	Diesel Hammer Emission Summary											
	Yea	ır 1	Yea	r 2	Year 3							
Days/Year	9	0	7	5	(50						
	Daily Annual		Daily	Daily Annual		Annual						
Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions						
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Day)	(Tons/Year)							
NOx	0.0057	0.51	0.0057	0.43	0.0057	0.34						
CO	0.0011	0.10	0.0011	0.082	0.0011	0.066						
SOx	0.0000045	0.00040	0.0000045	0.00034	0.0000045	0.00027						
CO2	0.40	35.65	0.40	30	0.40	24						
VOC	0.00014	0.012	0.00014	0.010	0.00014	0.0083						
PM2.5	0.00014	0.013	0.00014	0.011	0.00014	0.0085						
PM10	0.00015	0.013	0.00015	0.011	0.00015	0.0087						

1 of 3

Table 3. Scenario 1 - Summary of Commercial Marine Emissions for Tier 0 Engines Air Conformity Analysis DSCP Edgemoore Facility, DE

2 x Tugboat Emission Summary											
Year 1 Year 2 Year	r 3										
Days/Year 90 75 60	60										
Daily Annual Daily Annual Daily	Annual										
Pollutants Emissions Emissions Emissions Emissions	Emissions										
(Tons/Day) (Tons/Year) (Tons/Day) (Tons/Year) (Tons/Day) ((Tons/Year)										
NOx 0.054 6.4 0.054 5.6 0.054	4.8										
CO 0.010 1.2 0.010 1.1 0.010	0.92										
SOx 0.000043 0.0050 0.000043 0.004 0.000043	0.0038										
CO ₂ 3.8 450 3.8 390 3.8	330										
VOC 0.0013 0.15 0.0013 0.135 0.0013	0.12										
PM2.5 0.0013 0.16 0.0013 0.138 0.0013	0.12										
PM10 0.0014 0.16 0.0014 0.142 0.0014	0.12										

	Crew Boat Emission Summary												
	Yea	ar 1	Yea	ar 2	Ye	ar 3							
Days/Year	1:	18	10	03	88								
	Daily	Annual	Daily	Annual	Daily	Annual							
Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions							
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)							
NOx	0.022	2.6	0.022	2.2	0.022	1.9							
CO	0.0042	0.49	0.0042	0.43	0.0042	0.37							
SOx	0.000017	0.0020	0.000017	0.002	0.000017	0.0015							
CO2	1.5	180	1.5	160	1.5	130							
VOC	0.00052	0.062	0.00052	0.054	0.00052	0.046							
PM2.5	0.00054	0.063	0.00054	0.055	0.000537	0.047							
PM10	0.00055	0.065	0.00055	0.057	0.00055	0.049							

		Crew-Surve	y Boat Emission	Summary								
	Yea	ar 1	Yea	ir 2	Year 3							
Days/Year	1:	18	10	03		88						
	Daily	Annual	Daily	Annual	Daily	Annual						
Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions						
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)						
NOx	0.0054	0.64	0.0054	0.56	0.0054	0.48						
CO	0.0010	0.12	0.0010	0.11	0.0010	0.092						
SOx	0.0000043	0.00	0.0000043	0.0000043 0.00044		0.00038						
CO2	0.38	45	0.38	39	0.38	33						
VOC	0.00013	0.015	0.00013	0.013	0.00013	0.012						
PM2.5	0.00013	0.016	0.00013	0.014	0.00013	0.012						
PM10	0.00014	0.016	0.00014	0.014	0.00014	0.012						

2 of 3

Table 3. Scenario 1 - Summary of Commercial Marine Emissions for Tier 0 Engines Air Conformity Analysis DSCP Edgemoore Facility, DE

Power Pack Emission Summary												
	Yea	ır 1	Yea	r 2	Year 3							
Days/Year	9	0	7	5	60							
	Daily Annual		Daily	Annual	Daily	Annual						
Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions						
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)						
NOx	0.023	2.06	0.023	1.714	0.023	1.4						
CO	0.0068	0.61	0.0044	0.328	0.0044	0.26						
SOx	0.000028	0.0025	0.000018	0.0013	0.000018	0.0011						
CO ₂	2.5	220	1.6	120	1.6	95						
VOC	0.00086	0.077	0.00055	0.041	0.00055	0.033						
PM2.5	0.00088	0.00088 0.079		0.042	0.000564	0.034						
PM10	0.00090	0.081	0.00058	0.044	0.00058	0.035						

Notes:

1. Load factors and emission factors were determined based on the February, 2000 EPA report "Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data" 2. Emissions factors conservatively reflect a fleet of Tier 0 marine engines. Jacking NOX emissions control technology

2. Emissions factors conservatively reflect a fleet of Tier 0 marine engines, lacking NOx emissions control technology 3. Assumes a 0.0015% sulfur concentration in fuel oil, which is the maximum allowable amount of sulfur in non-road diesel fuel according to the EPA Office of Transportation 4. The EPA NONROAD 2008a emission factor model assumes that all diesel particulate matter is PM10 and 97% of diesel PM10 is PM2.5. This ratio was used to estimate

5. 2 Tugboats are required for the project 6. Support Vessels (Crew Boat, Crew - Survey Boat, Tugboat and Crane) Operate for an additional 2 weeks before and after standard project schedule

3 of 3

Table 4. Scenario 2 - Summary of Project Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

Summary of Year 1 Emissions for Criteria Pollutant (tons/year)												
De minimis level (tons/year)	Quantity	100	100	100								
		NOx	CO	PM								
Dredge Vessel	1	87	44	4.4								
Tugboats	2	4.6	2.9	0.29								
Crew boat	1	1.8	1.2	0.12								
Crew/Survey Boat (Dredge phase)	1	0.46	0.29	0.029								
Bulldozers	3	0.049	0.46	0.013								
Excavators	3	0.038	0.36	0.010								
Crane	1	1.9	1.2	0.12								
Diesel Hammer	2	0.37	0.23	0.023								
PowerPack	1	1.5	0.93	0.093								
Light Duty On-Road	55	0.22	2.8	0.0012								
Total Project (Tons/yr)		97	54	5.1								

Summary of Year 2 Emissions for Criteria Pollutant (tons/year)												
De minimis level (tons/year)	Quantity	100	100	100								
		NOx	CO	PM								
Dredge Vessel	1	72	37	3.7								
Tugboats	2	4.0	2.5	0.25								
Crew boat	1	1.6	1.0	0.10								
Crew/Survey Boat (Dredge phase)	1	0.40	0.25	0.025								
Bulldozers	5	0.049	0.46	0.000								
Excavators	3	0.038	0.36	0.0091								
Crane	1	1.6	1.0	0.10								
Diesel Hammer	2	0.30	0.19	0.019								
PowerPack	1	1.2	0.78	0.078								
Heavy Duty -On-Road	18	3.0	0.80	0.075								
Light Duty On-Road	55	0.23	2.8	0.0012								
Total Project (Tons/yr)		85	47	4.3								

Duffield Associates, Inc. Project No. 11139.LH

1 o f 2

Table 4. Scenario 2 - Summary of Project Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

Summary of Year 3 Emissions for Criteria Pollutant (tons/year)												
De minimis level (tons/year)	Quantity	100	100	100								
		NOx	CO	PM								
Dredge Vessel	1	58	29	2.9								
Tugboats	2	3.4	2.2	0.22								
Crew boat	1	1.4	0.87	0.087								
Crew/Survey Boat (Dredge phase)	1	0.34	0.22	0.022								
Bulldozers	3	0.049	0.46	0.0058								
Excavators	3	0.04	0.36	0.0057								
Crane	1	1.4	0.90	0.090								
Diesel Hammer	2	0.30	0.19	0.019								
PowerPack	1	1.2	0.78	0.078								
Light Duty On-Road	55	0.23	2.8	0.0012								
Total Project (Tons/yr)		66	38	3.5								

Notes :

1. Scenario 1 analyzed the use of Tier II Commercial Marine Engines, Tier III Non-Road Construction

Engines, Heavy Duty and Light Duty On-Road Engines

2. Refer to Table 5. for details of load factors and hours of operation for all equipment used.

3. Two additional D10 bulldozers required for bulkhead construction in year 2

4. Heavy Duty On Road emissions required for bulkhead construction in year 2

2 o f 2

Table 5. Scenario 2 - Summary of Emission Factors, Load Factors and Hours of Operation Air Conformity Analysis DSCP Edgemoore Facility, DE

	Estimated Emission Factors													
	Emissions (g/hp-hr)													
	Dree	dge	Cra	ne	Tugboat	Crew boat	Crew/Survey Boat	Diesel Hammer	Power Pack	Excavators	Bulldozer			
Horsepower	9000	3000	365	100	500	400	100	105	420	472	600			
CAP	Active	Idle	Active	Idle										
NOx	7.3	6.5	5.8	5.8	5.8	5.8	5.8	5.8	5.8	0.021	0.021			
СО	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	0.19	0.19			
PM10	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.0055	0.0055			

Note

Tier II Marine emission factors are based on 40 CFR §94.8 Excavators and Bulldozers (Tier III)engines are based on the 2010 EPA report "Exhaust and Crankcase Emission Factors for Non-road Engine Modeling – Compression-Ignition"

Emission Standards for Non-Diesel Vehicles												
Light Truck	Car	Heavy Duty Truck										
	Emissions (g/mi)											
0.95	0.69	8.6										
12	9.4	2.3										
-	-	-										
510	370	-										
1.2	1.0	0.45										
0.0045	0.0041	0.20										
0.0049	0.0044	0.22										
	sion Standards f Light Truck 0.95 12 - 510 1.2 0.0045 0.0049	sion Standards for Non-Diesel V Light Truck Car 0.95 0.69 1.2 9.4 - - 510 370 1.2 1.0 0.0045 0.0041 0.0045 0.0044										

Non Diesel Emission Factors are obtained from 2008 EPA Report ' Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks'

Diesel Emission Factors are obtained from 2008 EPA Report ' Average In-Use Emissions from Heavy Duty Trucks'

				EPA	Tier II Engine Emi	ssion Standards a	and Dates				
Category	Power (kW)	Power (hp)	Displacement (liters/cylinder)	Displacement (in^3/cylinder)	Model year	Nox+HC (g/KW-hr)	Nox+HC (g/hp-hr)	CO (g/kW-hr)	CO (g/hp-hr)	PM (g/kW-hr)	PM (g/hp-hr)
			< 0.9	< 54.9	2005	7.5	5.6	5	3.7	0.40	0.30
1 >37	>50	0.9 - < 1.2	54.9 - < 73.2	2004	7.2	5.4	5	3.7	0.30	0.22	
	237	250	1.2 - < 2.5	73.2 - < 152.6	2004	7.2	5.4	5	3.7	0.20	0.15
			2.5 - < 5.0	152.6 - < 305	2007	7.2	5.4	5	3.7	0.20	0.15
	>37	>50	5.0 - < 15	305 - < 915	2007	7.8	5.8	5	3.7	0.27	0.20
	<3,300	<4,425	15 - < 20	915 - < 1,220	2007	8.7	6.5	5	3.7	0.50	0.37
2			15 - < 20	915 - < 1,220	2007	9.8	7.3	5	3.7	0.50	0.37
	>3,300) >4,425	20 - < 25	1,220 - < 1,525	2007	9.8	7.3	5	3.7	0.50	0.37
			25 - < 30	1,525 - < 1,830	2007	11	8.2	5	3.7	0.50	0.37

Tabled Referenced from Moffat & Nichol - Delaware River Main Channel Deepening Project, General Conformity Analysis and Mitigation Report, 2004

	Load Factors and Operation Time (g/hp-hr)													
	Dredge Crane			Tugboat	Crew boat	Crew/Survey Boat	Diesel Hammer	Power Pack	Excavators	Bulldozer				
Horsepower	9000	3000	365 100		500	400	100	105	420	472	600			
Load Factors	0.8	0.2	0.8 0.2		0.4	0.4	0.4	0.4	0.4	0.59	0.59			
Hours/ Day	16	8	8	8	15	15	15	15	15	8	8			
Days /Year 1	9	0	11	18	118	118	118	90	90	250	250			
Days /Year 2	7	5	10	103		103	103	75	75	251	251			
Days /Year 3	60 88		88	88	88	60	60	250	250					

1 of 1

Table 6. Scenario 2 - Summary of Commercial Marine Emissions for Tier II Engines Air Conformity Analysis DSCP Edgemoore Facility, DE

						D	redge Vessel En	nission Summary							
		Yea	r 1				Ye	ar 2				Ye	ar 3		
Days/Year	/Year 90						75					(60	1	
	Dred	lging	Idl	ling]	Dredging			ing	Annual	Drec	lging	Id	ling	Annual
	Daily	Annual	Daily	Annual	Annual Iotai	Daily	Annual		Annual	Total		Annual	Daily	Annual	Total
Pollutants	Emissions	Emissions	Emissions	Emissions		Emissions	Emissions	Daily Emissions	Emissions		Daily Emissions	Emissions	Emissions	Emissions	
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)		(Tons/Day)	(Tons/Day) (Tons/Year)		(Tons/Year)		(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	
NOx	0.93	83	0.034	3.1	87	0.93	70	0.034	2.58	72	0.93	56	0.034	2.1	58
CO	0.47	42	0.020	1.8	44	0.47	35	0.020	1.47	37	0.47	28	0.020	1.2	29
PM	0.047	4.2	0.0020	0.18	4.4	0.047	3.5	0.0020	0.15	3.67	0.047	2.8	0.0020	0.12	3

						Ci	rane Emission En	nission Summary							
		Yea	r 1				Ye	ar 2				Ye	ar 3		
Days/Year	Days/Year 118					103						ş	38	1	
	Crane in o	operation	Id	ing		Crane in	operation	Idli	ing	Annual	Dred	ging	Id	ling	Annual
	Daily	Annual	Daily	Annual	Annual Iotai	Daily	Annual	Daily Emissions	Annual	Total	Daily Emissions	Annual	Daily	Annual	Total
Pollutants	Emissions	Emissions	Emissions	Emissions		Emissions	Emissions	Jally Emissions	Emissions	Dally (Tr	Jally Emissions	Emissions	Emissions	Emissions	
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)		(Tons/Day) (Tons/Year)		(Tons/Day)	(Tons/Year)		(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	
NOx	0.025	2.2	0.0015	0.14	2.4	0.026	1.9	0.0016	0.12	2.1	0.028	1.7	0.0017	0.10	1.8
CO	0.012	1.1	0.00086	0.077	1.2	0.013	0.98	0.00090	0.067	1.0	0.014	0.84	0.0010	0.057	0.9
PM	0.0012	0.11	0.000086	0.0077	0.12	0.0013	0.10	0.000090	0.0067	0.10	0.0014	0.084	0.000096	0.0057	0.090

Diesel Hammer Emission Summary						
	Yea	ır 1	Yea	ar 2	Year 3	
Days/Year	9	0	7	75	60	
Pollutants	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)
NOx	0.0041	0.37	0.0041	0.30	0.0041	0.24
CO	0.0026	0.23	0.0026	0.19	0.0026	0.16
PM	0.00026	0.023	0.00026	0.019	0.00026	0.016

1 of 2

Table 6. Scenario 2 - Summary of Commercial Marine Emissions for Tier II Engines Air Conformity Analysis DSCP Edgemoore Facility, DE

2 x Tugboat Emission Summary							
	Year 1		Year 2		Year 3		
Days/Year	11	18	103		88		
	Tugbo	ats (2)	Tugboats (2)		Tugboats (2)		
	Daily	Annual	Daily	Annual	Daily	Annual	
Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	
NOx	0.039	4.6	0.039	4.0	0.039	3.4	
CO	0.025	2.9	0.025	2.5	0.025	2.2	
PM	0.0025	0.29	0.0025	0.25	0.0025	0.22	

		Crew Bo	at Emission Sur	nmary		
	Yea	r 1	Yea	ar 2	Year 3	
Days/Year	11	18	10	103		88
	Daily	Annual	Daily	Annual	Daily	Annual
Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)
NOx	0.015	1.8	0.015	1.6	0.015	1.4
CO	0.010	1.2	0.010	1.0	0.010	0.87
PM	0.0010	0.12	0.0010	0.10	0.0010	0.087

Crew-Survey Boat Emission Summary						
	Yea	r 1	Yea	ar 2	Year 3	
Days/Year	11	18	1	103		88
	Daily	Annual	Daily	Annual	Daily	Annual
Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)
NOx	0.0039	0.46	0.0039	0.40	0.0039	0.34
CO	0.0025	0.29	0.0025	0.25	0.0025	0.22
PM	0.00025	0.029	0.00025	0.025	0.00025	0.022

I	Power Pack Emission Summary							
I		Year 1		Year 2		Year 3		
I	Days/Year	9	0	75		60		
I		Daily	Annual	Daily	Annual	Daily	Annual	
I	Pollutants	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	
I		(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	(Tons/Day)	(Tons/Year)	
I	NOx	0.016	1.5	0.016	1.2	0.016	0.97	
I	CO	0.016	1.5	0.010	0.78	0.010	0.62	
I	PM	0.0016	0.15	0.0010	0.078	0.0010	0.062	

Notes

2 of 2

1. Emissions factors reflect a fleet of Tier II marine engines, referenced from 40 CFR § 94.8

2. Assumes a 0.0015% sulfur concentration in fuel oil, which is the maximum allowable amount of sulfur in non-road diesel fuel according to the EPA Office of Transportation and Air Quality

3. Support Vessels (Crew Boat, Crew - Survey Boat, Tugboat and Crane) Operate for an additional 2 weeks before and after standard project schedule

4. 2 Tugboats are required for the project

Duffield Associates, Inc.

Project No. 11139.LH

Table 7. Summary of Non Road Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

D10 Bulldozer Emission Summary						
	3 Bull	dozers	5 Bulldozers		3 Bulldozers	
	Yea	ar 1	Yea	ar 2	Yea	ar 3
Days/Year	2	50	2	51	2	50
Pollutants	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)
NOx	0.000065	0.049	0.000065	0.081	0.000065	0.049
CO	0.00061	0.46	0.00061	0.46	0.00061	0.46
SOx	0.000021	0.0052	0.000015	0.019	0.000015	0.011
CO ₂	1.7	1300	1.7	2,100	1.7	1300
VOC	0.000020	0.0050	0.000015	0.018	0.000015	0.011
PM2.5	0.000017	0.013	0.000017	0.022	0.000017	0.013

374 Excavator Emission Summary						
	3 Exca	ivators	3 Excavators		3 Excavators	
	Yea	ar 1	Yea	ar 2	Ye	ar 3
Days/Year	2	50	2	51	2	50
Pollutants	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)
NOx	0.00015	0.038	0.00015	0.038	0.00015	0.038
CO	0.0014	0.36	0.0014	0.36	0.0014	0.36
SOx	0.000036	0.0090	0.000036	0.0091	0.000036	0.0090
CO ₂	4.0	990	3.9	990	4.0	990
VOC	0.000020	0.0050	0.00035	0.087	0.00035	0.087
PM2.5	0.000041	0.010	0.000041	0.010	0.000041	0.010

Duffield Associates, Inc. Project No. 11139.LH

1 of 2

Table 7. Summary of Non Road Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

Notes:

1. Machines run for 8 hours per day for 250 days during years 1 and 3, and 251 days during year 2

2. 3 bulldozers and 3 excavators required throughout the project, plus 2 additoinal bulldozers required in year 2

3. Emission factors were referenced from the 2010 EPA report "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition" NR-009d, which summarizes the EPA NONROAD 2008a emission inventory model

4. Assuming Tier III diesel engine

5. Assumes a 0.0015% sulfur concentration in fuel oil, which is the maximum allowable amount of sulfur in non-road diesel fuel according to the EPA Office of Transportation and Air Quality. The modeled default fuel sulfur content is 2000 ppm for Tier III diesel engines 175 < hp 750
6. All PM emissions are assumed to be smaller than 10 microns (PM10) and 97% of the PM is assumed to be smaller than 2.5 microns (PM2.5)

7. Load Factor of 0.59 refernced from 2002 EPA Report 'Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling'

2 of 2

Table 8. Summary of On Road Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

55 Commuter On Road Emission Summary							
	Yea	r 1	Yea	r 2	Yea	Year 3	
Woring Days/Year	s/Year 250		25	251		250	
Pollutants	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	Daily Emissions (Tons/Day)	Annual Emissions (Tons/Year)	
NOx	0.00090	0.22	0.00090	0.23	0.00090	0.22	
CO	0.011	2.8	0.011	2.8	0.011	2.8	
SOx	-	-	-	-	-	-	
CO ₂	0.49	120	0.49	120	0.49	120	
VOC	0.0012	0.29	0.0012	0.29	0.0012	0.29	
PM2.5	0.0000043	0.0011	0.0000043	0.0011	0.0000043	0.0011	
PM10	0.0000046	0.0012	0.0012	0.0012	0.0012	0.0012	

Notes:

1. Non Diesel Emission Factors are obtained from 2008 EPA Report ' Average Annual Emissions

and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks'

2. Passengers are assumed to travel in 'Light Trucks'

3. The average commuting distance is 7.8 miles, one way

4. Commuting Distance is referenced from 2015 Brookings Report ' The growing distance between

people and jobs in metropolitan America'

5. Duration of work is assumed to be the entire working year

1 of 2

Table 8. Summary of On Road Emissions Air Conformity Analysis DSCP Edgemoore Facility, DE

Tier 0 - Heavy Duty Diesel On Road Emission Summary							
Year 2							
Working Days/Year	251						
Pollutants	Daily Emissions per Truck (Tons/Day)	Annual Emissions per Truck (Tons/Year)	Total Annual Emissions from a fleet of Trucks (Tons/Year)				
NOx	0.012	0.16	3.0				
CO	0.0032	0.044	0.80				
PM	0.00030	0.0042	0.075				

Notes:

1. Diesel Emission Factors are obtained from 2008 EPA Report ' Average In-Use Emissions from Heavy Duty Trucks'

2. Machines run for 8 hours per day for 251 days

3. Assumes a 0.0015% sulfur concentration in fuel oil, which is the maximum allowable amount of sulfur in non-road diesel fuel according to the EPA Office of Transportation and Air Quality. The modeled default fuel sulfur content is 2000 ppm for tier 3 diesel engines 175 < hp 750

4. All PM emissions are assumed to be smaller than 10 microns (PM10) and 97% of the PM is assumed to be smaller than 2.5 microns (PM2.5)

5. Load Factor of 0.59 referenced from 2002 EPA Report 'Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeliu 6. The average truck capacity is assumed to be 14 CY

7. The total volume of fill required is estimated to be 145,893 CY, therefore a fleet of 18 trucks provides a realistic representation of the project requirements, based on the assumptions made above

2 of 2