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The transition to electric vehicles is projected to have considerable public health co-benefits, butmost evidence regard-
ing air quality and health impacts comes from projections rather than real-world data. We evaluated whether
population-level respiratory health and air quality co-benefits were already detectable at the relatively low levels of
zero-emissions vehicles (ZEVs: battery electric, plug-in hybrid, hydrogen fuel cell vehicle) adoption in California,
and evaluated the ZEV adoption gap in underserved communities. We conducted a zip code-level ecologic study relat-
ing changes in annual number of ZEVs (nZEV) per 1000 population from 2013 to 2019 to: (i) annual average moni-
tored nitrogen dioxide (NO2) concentrations and (ii) annual age-adjusted asthma-related emergency department
(ED) visit rates, while considering educational attainment. The average nZEV increased from 1.4 per 1000 population
in 2013 (standard deviation [SD]: 2.1) to 14.7 per 1000 in 2019 (SD: 14.7). ZEV adoption was considerably slower in
zip codes with lower educational attainment (p < 0.0001). A within-zip code increase of 20 ZEVs per 1000 was asso-
ciated with a − 0.41 ppb change in annual average NO2 (95 % confidence interval [CI]:-1.12, 0.29) in an adjusted
model. A within-zip code increase of 20 ZEVs per 1000 population was associated with a 3.2 % decrease in annual
age-adjusted rate of asthma-related ED visits (95 % CI:-5.4,−0.9). Findings were supported by a variety of sensitivity
analyses. Observational data on the early phase ZEV transition in California provided a natural experiment, enabling us
to document the first real-world associations between increasing nZEV and changes in air quality and health. Results
suggest co-benefits of the early-phase transition to ZEVs but with an adoption gap among populations with lower so-
cioeconomic status which threatens the equitable distribution of possible co-benefits.
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1. Introduction

The transition to electric vehicles (EV) is not only an important climate
change mitigation strategy but is also projected to have considerable co-
benefits for public health (Peters et al., 2020; American Lung Association,
2022). On-road vehicles are major contributors to harmful ambient air pol-
lution through tailpipe-related emissions, including carbon monoxide, par-
ticulate matter <2.5 μm (PM2.5), and oxides of nitrogen (NOX) including
nitrogen dioxide (NO2). Exposure to traffic-related air pollution (TRAP) is
associated with a range of adverse health outcomes, including respiratory
symptoms, development of asthma, asthma exacerbations, reduced lung
function, cardiovascular disease, and premature death (U.S.
Environmental Protection Agency, 2021a; U.S. Environmental Protection
Agency, 2021b; Guarnieri and Balmes, 2014; Beelen et al., 2008; Jerrett
et al., 2009; Dastoorpoor et al., 2019).

Projected impacts of the EV transition on air quality and health (“co-
benefits”) have been calculated for hypothetical scenarios for several loca-
tions around the world, with results depending on local features such as the
electrical power generationmix used for EV charging. Air quality co-benefit
projections anticipate reductions in NOX, PM2.5, carbon monoxide, volatile
organic compounds, and ground-level ozone (O3)—although some predict
some occasional increases in O3 due to lower NOX emissions (American
Lung Association, 2022; Pan et al., 2019; Thompson et al., 2009;
Brinkman et al., 2010; Li et al., 2016; Nopmongcol et al., 2017; Rizza
et al., 2021; Tessum et al., 2014; Schnell et al., 2019; Gai et al., 2020).
Health co-benefits of EV adoption have been estimated for Turin, Italy,
(Rizza et al., 2021) Paris, France, (Maesano et al., 2020) Rotterdam,
Netherlands, (Tobollik et al., 2016) Toronto/Hamilton area, Canada, (Gai
et al., 2020) Houston, Texas, (Pan et al., 2019) Seattle, Washington,
(Filigrana et al., 2022) and for the entire US (Peters et al., 2020;
American Lung Association, 2022) with projections anticipating reductions
in premature mortality, asthma exacerbations, and respiratory and cardio-
vascular hospitalizations. Indeed, in the United States (U.S.), a complete
shift to EVs is projected to produce more than $1.2 trillion in cumulative
health benefits by 2050, including: over 2.7 million avoided pediatric
asthma exacerbations; 57,200 fewer asthma-related emergency department
(ED) visits; and 110,000 lives saved (American Lung Association, 2022).

The transition to EVs has already begun, but there is little real-world
data on observed co-benefits of the early transition. There is also serious
concern that EV adoption is not equitably distributed across the population.
Underserved communities potentially havemost to gain from the transition
because they are overburdened with TRAP (Miranda et al., 2011;
Loustaunau and Chakraborty, 2019; Gunier et al., 2003) and TRAP-
related diseases; (Guarnieri and Balmes, 2014; Jerrett et al., 2009;
Boogaard et al., 2022) however, these communities tend to lag in the EV
transition due tomultiple barriers, such as access to charging infrastructure,
concerns about charge time, range, and real/perceived expense related to
purchase, maintenance, and charging, as well as limited knowledge of fi-
nancial incentives (Oluwoye, 2020; Canepa et al., 2019).

Asthma is a leading chronic health conditions with documented in-
creased exacerbations (leading to emergency department [ED] visits) in re-
sponse to tailpipe emission pollutants, (Guarnieri and Balmes, 2014;
Burnett et al., 1997; Zanobetti et al., 2000; Szyszkowicz et al., 2018;
Halonen et al., 2008) thus a compelling outcome to examine as early
markers of respiratory health response to increased EV adoption. The an-
nual cost of asthma in the US is approximately $56 billion, including $50
billion in direct healthcare costs (Barnett and Nurmagambetov, 2011). Per-
sons of lower socioeconomic status and fromhistoricallymarginalized com-
munities and the uninsured comprise a disproportionate amount of asthma-
related ED visits, (Stingone and Claudio, 2006; Jones et al., 2008; Erickson
et al., 2007; Griswold et al., 2005) highlighting a health equity issue.

We conducted an ecologic study across California to evaluate the associ-
ations between adoption of zero-emissions vehicles (ZEVs: battery electric,
plug-in hybrid, hydrogen fuel cell vehicle) and air quality and asthma out-
comes. Specifically, in this study we relate within-zip code number of ZEVs
to: (a) annual averages of monitored NO2 concentrations and (b) asthma-
related ED visits, from 2013 through 2019 (prior to the COVID-19
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pandemic), while considering zip code-level educational attainment
which serves as a proxy for socioeconomic status. We aimed to evaluate
whether population-level air quality and respiratory health and co-
benefits were already detectable at the still relatively low levels of ZEV
adoption and evaluate the ZEV adoption gap in underserved communities.
California is a socio-economically diverse state heavily impacted by TRAP
and is a pioneer in the early adoption of ZEVs (California Energy
Commission, 2022) making it an ideal setting for this analysis. Observa-
tional data on the early phase ZEV transition in California provided a natu-
ral experiment, enabling us to quantify some of the first evidence of real-
world co-benefits of the transition to a zero-tailpipe-emissions transporta-
tion sector.
2. Methods

2.1. Data

2.1.1. Number of zero-emissions vehicles
Annual counts of light-duty vehicles registered in California, by fuel

type, have been publicly released by the California Energy Commission
through a partnership with the California Department of Motor Vehicles
(California Energy Commission, 2021). We tabulated the total number of
ZEVs (battery electric, plug-in hybrid, hydrogen fuel cell) for each zip
code and year starting in 2013, to coincide with the availability of asthma
ED visit data (described below in Section 2.1.3). Years with no records of
ZEVs occurred most frequently in the earliest years of the study period
and were assigned counts of 0. The number of ZEVs (nZEV) per 1000 pop-
ulation was calculated using the American Community Survey (ACS) esti-
mates of population size (described below in Section 2.1.4).
2.1.2. Ambient NO2 air pollution
We selected NO2 as the air pollutant of interest due to on-road vehicles

being its largest source of emissions (United States Environmental Protec-
tion Agency, 2016) and the greater availability of monitoring sites measur-
ing NO2 compared with other traffic-related air pollutants (e.g., PM2.5). We
obtained annual average NO2 measurements from the U.S. Environmental
Protection Agency's (EPA) AirData website as pre-generated data files,
dated 2022-11-14, from all available air monitoring stations operating in
California (U.S. Environmental Protection Agency, 2022a) from 2013 to
2019 to coincide with the availability of asthma ED visit data (described
below in Section 2.1.3.). Secondary analyses considered additional data
from 2020 to 2021. State and local monitoring plans guide placement of
air monitoring stations, which might include areas with larger populations
or thought to have higher pollution concentrations (U.S. Environmental
Protection Agency, 2022b). We used annual data calculated according to
the NO2 Annual 1971 pollutant standard, with all monitoring sites
reporting 1 h sample duration (U.S. Environmental Protection Agency,
2015). We processed these data to ensure only one NO2 annual average es-
timate per site per year. In the few cases where multiple records existed for
a given site-year (22 out of 843 [2.6 %] site-years), we selected a single re-
cord using the following criteria. First, if there were records from multiple
instruments, we selected the instrument with the longest duration of re-
cords at that site during the study period. Second, if there were records
from two versions of the annual average including or excluding exceptional
events as defined by the EPA (i.e., events that affect air quality but which
the local agency has no control over, such as wildfires), (U.S.
Environmental Protection Agency, 2015) we selected the record excluding
exceptional events since exceptional events are unlikely to be related to
local number of ZEVs. Finally, if multiple records remained, we selected
the record with the largest number of days contributing to the annual aver-
age. In primary analyses, we used annual average NO2 records based on at
least 50 % complete data and in secondary analyses we used records with
≥75 % complete (i.e., satisfying the regulatory completeness criteria by
the monitor for the year) (U.S. Environmental Protection Agency, 2015).
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2.1.3. Asthma emergency department visits
Data on zip code-level annual age-adjusted rate (per 10,000) of asthma-

related emergency department (ED) visits from 2013 to 2019 were ob-
tained from the California Health and Human Services (CHHS) Open Data
Portal. These data are produced by the California Department of Public
Health, California Breathing Asthma Program, based on a database of ED
visits from all licensed hospitals in California maintained by the California
Department of Health Care Access and Information (California Breathing
Asthma Program, 2022). These data reflect the number of ED visits related
to asthma during each calendar year for a given zip code, including ED
visits that results in hospitalization, normalized for zip code population
(California Breathing Asthma Program, 2022). Age-adjusted rates of
asthma ED visits were calculated by the California Breathing Asthma Pro-
gram using yearly population estimates from the California Department of
Finance which are then age-adjusted to the 2000 U.S. standard population
from the U.S. Census Bureau using weights for the 24 age groups from Cen-
ters for Disease Control and Prevention (Klein and Schoenborn, 2001) (L.
Avendaño, California Breathing, personal communication, December
19–20, 2022). The use of age-adjusted rates controls for possible confound-
ing by differences in population age distribution across zip codes. Asthma-
related ED visits were identified based on the International Classification of
Diseases (ICD) primary discharge codes: ICD-9 493.xx or ICD-10 J45
(California Breathing Asthma Program, 2022). Rates are approximate
since they are based on total number of visits rather than the number of
unique individuals and CHHS suppressed rates calculated from small counts
(e.g., <12) due to statistical instability and/or de-identification purposes.

2.1.4. Population characteristics
Zip code-level population size and educational attainment, defined as

percent of the population over age 25 years with at least a bachelor's de-
gree, were obtained from the 2015–2019 American Community Survey
(ACS) 5-Year Estimates (U.S. Census Bureau, 2021). Educational attain-
ment serves as a proxy for socioeconomic status, representing the structural
and financial barriers driving disparities rather than the lack of education
itself. In secondary analyses we considered alternative measures of socio-
economic status, including: percentage of the population over age 25
with at least a high school degree, median household income, and percent-
age poverty defined as the percentage of the population whose income in
past 12 months was below the poverty level.

2.1.5. Final analysis datasets
There were 629 records of annual average NO2 from 107 airmonitoring

stations in 95 zip codes available from 2013 to 2019, after excluding one
site located in a zip code with no asthma ED visit data (Miramar, ≤1 ZEV
during study period) and dropping 30 site-year records where the annual
averages had used <50 % complete data. There were 8170 observations
of non-missing annual age-adjusted rates of asthma ED visits in 1240 zip
codes from 2013 to 2019. In our analyses, we considered only zip codes
with non-missing population size >0, which reduced the final asthma ED
visit dataset to 8163 observations in 1238 zip codes. ZEV data were avail-
able for all years/zip codes in the NO2 and asthma ED visit datasets. All
datasets used in this study were not collected for the purpose of our study
and none of our study team had access to any subject identifiers (only pub-
licly available de-identified, aggregated data were used). According to the
Office for Human Research Protection of U.S. Department of Health and
Human Services, these analyses do not constitute human subjects research
requiring Institutional Review Board approval or consent.

2.2. Statistical methods

2.2.1. Descriptive statistics
Data distributions were summarized using means and standard devia-

tions (SD). Differences in characteristics between zip codes with and with-
out NO2 monitor data were compared using t-tests. Longitudinal trends in
the: nZEV per 1000 population, annual average NO2, and age-adjusted
rate of asthma-related ED visits were visualized using spaghetti plots
3

color coded by zip-code level educational attainment (%bachelor's degree).
Differences in the baseline level (in 2013) and annual rate of change of each
of these variables by educational attainment were assessed using linear
mixed effects models with a linear function of year (centered on 2013)
and educational attainment, along with their interaction, and a zip code
(or monitoring site) level random intercept and slope on year.

2.2.2. Analyses relating nZEV and NO2

The crude association between nZEV and NO2 was evaluated using pre-
dicted 7-year change from 2013 to 2019 estimated from separate simple
linear regression models. For example, to obtain predicted 7-year change
in nZEV a separate simple linear regression model was fit relating nZEV
per 1000 to calendar year for each zip code to predict the 7-year change
in nZEV per 1000 for that zip code. To obtain predicted 7-year change in
NO2, a separate simple linear regressionmodel wasfit relating annual aver-
age NO2 to calendar year for each monitoring site to predict the 7-year
change in NO2 for that site. For the 102 sites in 91 zip codes with >1 year
of NO2 data, we plotted the monitoring site predicted 7-year change in
NO2 versus the zip code (for that site) predicted 7-year change in nZEV,
and calculated Pearson's correlation coefficient.

The adjusted association between annual average NO2 (Yijk) at monitor-
ing site k in zip code i at year j and nZEVs per 1000 population (Xij) in zip
code i at year j was estimated using the linear mixed effects model:

Y ijk ¼ β0 þ U0i þ U0ikð Þ þ β1Xij þ β2Zi þ β3 þ U1ið Þ tij � 2013
� �

þ β4 tij � 2013
� �2 þ εijk

where β1 quantifies the association of within-zip code changes in nZEVwith
within-monitoring site changes in annual average NO2, adjusting for educa-
tional attainment (Zi) and calendar year (tij, centered at 2013; linear and
quadratic effects included) to account for secular trends. Random intercepts
for zip code (U0i) and site within zip code (U0ik) account for correlation in
the longitudinal, multilevel data and the zip code-level random slope on
the linear effect of year (U1i) allowed for variation in secular trends by zip
code. No random slope was specified for year squared due to convergence
issues, likely due to the smaller number of zip codes in this analysis (N =
95) and the complexity of random intercepts for monitoring sites nested
in zip codes. All random effects were assumed to be normally distributed
and zip-code level random effects (U0i, U1i) were allowed to be correlated.

2.2.3. Analyses relating nZEV and asthma ED visits
The adjusted association between log transformed annual age-adjusted

rate of asthma ED visits (Yij) in zip code i at year j and nZEVs per 1000 pop-
ulation (Xij) in zip code i at year j was estimated using the linear mixed
model:

Y ij ¼ β0 þ U0ið Þ þ β1Xij þ β2Zi þ β3i þ U1ið Þ tij � 2013
� �

þ β4i þ U2ið Þ tij � 2013
� �2 þ εij

where β1 quantifies the association of within-zip code changes in nZEVwith
within-zip code changes in log annual age-adjusted rate of asthma-related
ED visits, adjusting for educational attainment (Zi) and calendar year (tij,
centered at 2013; linear and quadratic effects included) to account for sec-
ular trends. Zip code level random intercepts (U0i) and random slopes on
both terms for year (U1i, U2i) allowed for variation across zip codes in base-
line age-adjusted rate of asthma ED visits and in secular trends. All random
effects were assumed to be normally distributed and zip-code level random
effects (U0i, U1i, U2i) were allowed to be correlated. Age-adjusted rate of
asthma ED visits was natural log transformed to better satisfy modeling as-
sumptions. Secondary analyses included investigating a nonlinear associa-
tion with nZEV, using a generalized additive mixed model (GAMM)
(Wood, 2017) analogous to the linear mixed model above but that replaces
the term β1Xij with the smooth function, s(Xij), estimated using a thin plate
regression spline basiswith automated selection of effective degrees of free-
dom.
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When developing the primary models presented above, a variety of
models were evaluated to identify keymodel features, and to assess the sen-
sitivity of the results to various model specification and data inclusion
choices. Results of sensitivity analyses are presented. Models were esti-
mated using lme() and gamm() in the nlme (Pinheiro et al., 2022;
Pinheiro and Bates, 2000) and mgcv (Wood, 2017) packages of R version
4.2.1 (R Core Team, 2022).

3. Results

3.1. Descriptive statistics

Distributions of selected zip code demographic and socioeconomic
characteristics are presented in Table 1. Among the 1238 zip codes in the
asthma ED visit analysis, the mean population size was 31,296 (min: 702
and max: 111,165) and the total population size across all 1238 zip codes
was 38,743,804. Zip code level educational attainment ranged from 1.1
% to 87.1 % of adults over age 25 years with at least a bachelor's degree,
with a mean (SD) of 33.4 % (20.1 %). The zip code level nZEV per 1000
population had a mean (SD) of 1.4 (2.0) in 2013 and 14.7 (14.7) in 2019
(Supplemental Table 1). Zip code level number of ZEV per 1000 in 2019
was highly correlated with measures of socioeconomic status, with
Pearson's correlation of: 0.84 for % bachelor's degree, 0.83 for median
household income, 0.55 for % high school degree, and − 0.51 for % pov-
erty. Zip code level annual age-adjusted asthma ED visit rates had a mean
(SD) of 49.5 (30.5) per 10,000 in 2013 and 43.0 (27.5) per 10,000 in
2019 (Supplemental Table 1).

Annual NO2 data were available from 107 monitoring locations, which
were located in a subset of 95 of the 1238 zip codes. The 95 zip codes cov-
ered a total of 4,246,931 people, representing 11.0 % of the population in-
cluded in the asthma ED visit analysis. Compared to zip codes without NO2

monitors, the 95 zip codes with NO2 monitors had higher average popula-
tion size (p < 0.001), lower educational attainment (p=0.01–0.02), lower
household income (p=0.005), higher level of poverty (p=0.003), fewer
ZEV per 1000 in 2019 (p< 0.001), and higher age-adjusted rates of asthma
ED visits in 2019 (p=0.006; Table 1 and Supplemental Table 1). Extensive
longitudinal data were available over the 7-year study period, from 2013 to
2019, with 100 % of zip codes having nZEV data for all 7 years, 80.4 % of
included monitoring sites having 5 or more years of NO2 data, and 93.0 %
of included zip codes having 5 or more years of asthma ED visit data.

3.2. Longitudinal trends in nZEV, annual average NO2, and asthma-related ED
visits

Therewas considerable growth in nZEV from2013 to 2019 in California
(Fig. 1a), and growth in nZEV was slower for zip codes with lower educa-
tional attainment (p < 0.0001). For example, we estimated that a typical
zip code at the 25th percentile of educational attainment (17.1% bachelor's
degree) had an annual increase in nZEV per 1000 of 0.70 (95% Confidence
Interval [CI]: 0.61, 0.78) while a typical zip code at the 75th percentile of
Table 1
Distribution of selected demographic and socioeconomic characteristics among zip cod
(standard deviation) presented, unless otherwise indicated.

Characteristic Zip codes in asthma ED visit analysis

N 1238
Population size 31,295.5 (21,311.5) (min: 702; max: 111,16
Educational attainmentb

% Bachelor's degree or higher 33.4 (20.1)
% High school degree or higher 83.8 (13.1)

Income
Median household income $79,385 ($34,477)
% Povertyc 13.7 (8.6)

a P-value from t-tests comparing differences in characteristics between zip codes with
b Among adults over age 25 years.
c Percentage of the population whose income in past 12 months was below the pover
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educational attainment (47.2 % bachelor's degree) had an annual increase
in nZEV per 1000 of 3.55 (95 % CI: 3.47, 3.63). Declines in annual average
NO2 and in age-adjusted rates of asthma-related ED visits were more mod-
est over the study period (Fig. 1b-c). The 2013 level of annual average NO2

was negatively associated with educational attainment (p < 0.001), but the
annual rate of change was not (p= 0.48). Similarly, the 2013 level of age-
adjusted asthma-related ED visits was negatively associated with educa-
tional attainment (p < 0.001), but the annual rate of change was not (p =
0.30).
3.3. Associations of nZEV with monitored annual average NO2 concentrations

Higher nZEV was associated with lower annual NO2 concentrations
measured at monitoring sites, though not statistically significant in the pri-
marymodel. Results were consistent both in a crude analysis (Fig. 2) and in
a linear mixed model adjusting for confounders (Table 2) where we esti-
mated that a within-zip code increase of 20 ZEVs per 1000 population
was associatedwith a− 0.41 ppb change in annual averageNO2 concentra-
tion (95 % CI:−1.12, 0.29; p-value = 0.25). The estimated association re-
mained negative in a variety of sensitivity analyses (Supplemental Table 2)
and had even greater magnitude of associations, some statistically signifi-
cant, when: adjusting for alternative measures of socioeconomic status,
adjusting for a fixed effect of monitoring site, or excluding the random
slope on year. Inclusion of additional data from 2020 to 2021 or only
2021 (to avoid 2020, which was heavily impacted by the COVID-19 pan-
demic) resulted in greatermagnitude negative associations that were statis-
tically significant, even when restricting to the subset of observations that
satisfied regulatory requirements for completeness (≥75 %; Supplemental
Table 2).
3.4. Associations of nZEV with asthma-related emergency department visits

Higher nZEV was statistically significantly associated with fewer ED
visits for asthma. Adjusting for zip code educational attainment and secular
trends (Table 2), we estimated that a within-zip code increase of 20 ZEVs
per 1000 population was associated with a 3.2 % decrease in annual age-
adjusted rate of asthma-related ED visits (95 % CI: −5.4, −0.9; p-value
= 0.006). The estimated association remained negative and statistically
significant in a variety of sensitivity analyses (Supplemental Table 3). In a
secondary analysis evaluating nonlinearity (Supplemental Fig. 1), there
was statistical evidence of the association being nonlinear (p-value =
0.002 for a test of nonlinear vs linear) with a negative association between
nZEV and asthma ED visits which was stronger at higher levels of nZEV.
However, much of the evidence for nonlinearity was driven by the 4 obser-
vations with nZEV >82 (from zip codes 94,022 and 95,070 in Santa Clara
County, in 2018 and 2019). Upon excluding these observations evidence
for nonlinearity was more modest (p = 0.03).
es included in the asthma ED visit rate and nitrogen dioxide (NO2) analysis. Mean

Zip codes in NO2 analysis P-value a

95
5) 44,704.5 (19,253.9) (min: 1771; max: 88,979) <0.001

29.2 (17.8) 0.019
80.7 (12.2) 0.013

$71,248 ($28,645) 0.005
16.3 (8.6) 0.003

and without NO2 monitor data.

ty level.



Fig. 1. Longitudinal trends, from 2013 to 2019 in. (a) number of zero-emissions vehicles (ZEVs) per 1000 population in 1238 California zip codes, (b) annual average nitrogen
dioxide (NO2) concentrations observed at 107 California monitoring stations, and (c) annual age-adjusted rate of asthma-related emergency department (ED) visits per
10,000 in 1238 California zip codes. Color indicates educational attainment (% of adults age 25+ with at least a bachelor's degree) at the zip code level, from lower
(purple) to higher (green).
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4. Discussion
Fig. 2. Crude association between predicted 7-year change in nitrogen dioxide
(NO2) versus 7-year change in number of zero-emissions vehicles (ZEVs) based on
data from 102 air monitoring sites in 91 zip codes in California, with color
indicating zip code level educational attainment (low: purple; high: green).

Table 2
Adjusted model results for change in annual average nitrogen dioxide (NO2) con-
centration (ppb) and percent difference in age-adjusted asthma-related emergency
department (ED) visits associated with a within-zip code increase of 20 zero-emis-
sions vehicles (ZEVs) per 1000 population.

Model Estimate 95 % CI P-value

NO2 and ZEVs a −0.41 (−1.12, 0.29) 0.252
Asthma ED visit rate and ZEVsb −3.2 (−5.4, −0.9) 0.006

a NO2 model estimated using a linear mixed effects model adjusted for % bach-
elor's degree, calendar year (linear and quadratic effect, centered at 2013),with ran-
dom intercepts for zip code and site within zip cope, and a zip code-level random
slope on the linear effect of year.

b Asthma ED visit rate model estimated using a linear mixed effects model ad-
justed for % bachelor's degree, calendar year (linear and quadratic effect, centered
at 2013), with random intercepts for zip code, and a zip code-level random slope on
the linear and quadratic effects of year.
4.1. Air quality and health co-benefits of ZEV adoption

This study provides real-world evidence supporting air quality and re-
spiratory health co-benefits from the ZEV transition, using observational
data during a natural experiment of the early phase ZEV transition in Cali-
fornia. We found statistically significant evidence that within-zip code in-
creases in ZEV adoption were associated with decreases in rates of asthma
EDvisits. Therewas some evidence that this inverse associationwas nonlin-
ear, with a suggested greater health co-benefit at higher levels of ZEV adop-
tion—but caution must be taken not to overinterpret these nonlinear effect
estimates at this early stage of the ZEV transition. As the number of ZEV in-
creases in future years, researchers will increasingly be better positioned to
evaluate evidence of nonlinear exposure-response functions. For air quality
co-benefits, while the association of ZEV with annual average monitored
5

NO2 concentrations was not statistically significant, it was in the hypothe-
sized direction (inverse association) and relatively large in magnitude.
We considered only air quality data from U.S. EPA monitoring sites, and
these tended to be in zip codes that also had lower levels of ZEV adoption
during the study period. We observed an adoption gap, wherein zip codes
with a greater percentage of residents with lower educational attainment
lagged in the ZEV transition. The strong evidence for health co-benefits
and suggestive evidence for air quality co-benefits is remarkable given
the still low rate of ZEV adoption in California in 2013–2019. Taken to-
gether, these results suggest that increasing ZEV adoption has the potential
to improve both air quality and neighborhood-level asthma health out-
comes, but the already evident adoption gap raises equity concerns.

While most studies have estimated environmental health impacts of EV
adoption under hypothetical scenarios, (Pan et al., 2019; Rizza et al., 2021;
Gai et al., 2020;Maesano et al., 2020; Filigrana et al., 2022) ourfindings are
consistentwith the few studies that have investigated real world co-benefits
of the transition to EVs or other alternative fuels (Lovasi et al., 2022; Adar
et al., 2015). Lovasi et al. evaluated the air quality effects of the Clean Fuel
Bus Program, which adopted lower-emissions buses including compressed
natural gas, hybrid-electric, and ultra-low-sulfur diesel buses, in New
York City, NewYork from 2009 to 2014 (Lovasi et al., 2022). They reported
that the shift towards clean bus service was associated with larger improve-
ments in local NO and NO2 concentrations and areas withmore bus service
and higher proportional shifts towards clean buses had the largest declines
in these pollutants (Lovasi et al., 2022). Adar et al. evaluated the air
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pollution and pulmonary health effects of adopting clean air technologies
(e.g., diesel oxidation catalysts and crankcase ventilation systems used to
reduce tailpipe and engine emissions) and fuels (e.g., ultra-low-sulfur diesel
and a biodiesel mixture) on school buses in Seattle and Tahoma,
Washington from 2005 to 2009 (Adar et al., 2015). With these adoptions
they found lower in-vehicle concentrations of fine and ultrafine particulate
matter and lower pulmonary inflammation, improved lung growth, and re-
duced risk of school absenteeism among the schoolchildren bus riders
(Adar et al., 2015). These studies provide important critical data on the en-
vironmental health impacts of vehicle technology/fuel transitions, and the
present study furthers the literature by presenting the first results from a
large, state-wide, population-based observational analysis of light duty ve-
hicles.

4.2. ZEV adoption gap

Historically marginalized communities disproportionately experience
higher exposure to air pollution, including TRAP, (Miranda et al., 2011;
Loustaunau and Chakraborty, 2019; Gunier et al., 2003) and adverse
TRAP-related health outcomes such as asthma-related ED visits; (Jones
et al., 2008; Griswold et al., 2005) thus ZEV adoption can be particularly
beneficial in these communities. During this early phase of the ZEV transi-
tion, most adopters have been of higher education and income, (Canepa
et al., 2019) aligning with the Diffusion of Innovation theory that early
adopters of new technologies tend to be of higher socioeconomic status
(Rogers, 2003). This highlights a challenge for equitable transition to
ZEVs and equitable distribution of related co-benefits for air quality and
health. Indeed, we observed evidence for an adoption gap, with communi-
ties with lower educational attainment lagging in the ZEV transition—edu-
cational attainment here serving as a proxy for socioeconomic status and
representing structural and financial barriers propelling disparities rather
than the lack of education itself. While multiple potential barriers exist,
(Oluwoye, 2020; Canepa et al., 2019) increasing ZEV adoption in and
around underserved and health-disparate communities could potentially
help to improve local air quality and subsequently reduce adverse health
impacts through a reduction in tailpipe emissions (Nordelöf et al., 2014).
Our results provide evidence to inform policy makers for the development
of programs to ensure a just ZEV transition where underserved communi-
ties are able to fully realize health and air quality co-benefits.

4.3. Strengths and limitations

Our study has several strengths. First, is the use of publicly available
data from the large and diverse state of California, which is at the forefront
of the ZEV transition in the U.S., and contains one of the densest air quality
monitoring networks in the U.S. This study setting is ideal to evaluate the
environmental health co-benefits of the early ZEV transition. Second,
using monitored NO2 concentration to study air quality benefits avoided
potential issues with spatial-temporal ambient air pollutant models which
might not yet fully account for the changing transportation fleet. Third,
by studying within-zip codes trends over time, we were able to take advan-
tage of the natural experiment afforded by the early phase ZEV transition.
Finally, the study period ended in 2019, avoiding potential confounding re-
lated to the COVID-19 pandemic. Considerable growth in ZEVs has contin-
ued.

Our study also has limitations which should be taken into consideration
when interpreting results. First is the use of number of ZEVs per zip code
population as our measure for ZEV adoption, which does not consider
ZEV miles driven or if internal combustion engine vehicles are taken off
the road in response to ZEV adoption. Furthermore, the use of this metric
only evaluates local, zip code level effects (based on the vehicle registration
zip code); it does not consider impacts in other localities as vehicles are in
operation, nor are we directly considering the air pollution from the
power generation mix used to charge the vehicles or the total life cycle im-
pacts of ZEVs which have been evaluated elsewhere (Nordelöf et al., 2014).
Second, we only evaluated the impact of light duty ZEVs and did not
6

include zero-emissions public transit or freight transport which are also
key components of the ZEV transition, since these data were unavailable.
Many public agencies and regulatory efforts are shifting towards low- and
zero-emissions transport and continued release of temporally and spatially
resolved data would allow for better evaluation of associated health co-
benefits, potentially beneficial for cost-benefits analyses of such policy ef-
forts. Third, due to the realities of relying on data from an air monitoring
network—which is relatively extensive in California compared with other
U.S. states—our analysis on the air pollution effects of the ZEV transition
was in only 96 zip codes across the state. Although these locations do not
represent the full spatial coverage across California, monitors are generally
placed near population centers. Fourth, our ecologic analyses were con-
ducted at the zip code level, which is a suboptimal geographic unit for pop-
ulation health studies because zip codes were designed for postal delivery.
They represent varying geographic and population sizes, they can cross
city/county/census boundaries, and theymay change over time. This, how-
ever, was the finest spatial resolution available for the publicly available
ZEV data. The challenges with zip code-level analyses are outweighed by
the advantages of fine spatial resolution, especially in a state like California
where a county-level analysis effectively combines a large percentage of the
state's population because some counties are so large (e.g., Los Angeles
County contains~25%of California's population). Last, as inmost observa-
tion studies, unmeasured confounding might have biased our estimated as-
sociations. We did adjust for area-level educational attainment—as a proxy
for socioeconomic status—and our analyses included random intercepts for
zip code which provides some control for possible unmeasured zip code-
level confounding factors, and we additionally conducted various sensitiv-
ity analyses changing model specifications, adjusted covariates, and other
data inclusions/exclusions; however, caution is warranted not to
overinterpret results.
4.4. Future research

This study of the co-benefits of the early phase ZEV transition lays the
foundation for future work. Research studying trends in the adoption of
EV technology suggests that the U.S. entered the “takeoff” phase of EV
adoption in 2017, marking the transition from an introductory phase to a
phase of growth and mass adoption (Zimm, 2021). With increasing num-
bers of ZEVs, future studies can focus solely on the EV transition (excluding
plug-in hybrids which are included in the present analysis) and/or with co-
benefits analysis investigating a variety of health outcomes (including dif-
ferences by vulnerable subgroups) and investigating a full set of ambient
air pollutants (e.g., not only NO2 which has key tailpipe sources, but also
PM2.5 which is impacted by brake and tire wear and might have a more
complex association with EV adoptions given that EVs are on average
heavier than their gasoline combustion counterparts (Timmers and
Achten, 2016)). Evaluation of possible nonlinear associations with co-
benefits across a broader numerical range of ZEVs will be possible as their
numbers increase. Additionally, the impact of electrification of other vehi-
cle classes (e.g., such as heavy-duty on-road vehicles used in freight trans-
port) or of transit systems (e.g., public transit, school buses) will enable
new studies of observed associated public health co-benefits, including in
high-traffic communities who are disproportionately exposure to TRAP.
5. Conclusions

This study leveraged a natural experiment and documents the first real-
world associations between increasing nZEV and changes in air quality and
health, suggesting co-benefits of the early-phase transition to ZEVs in Cali-
fornia, along with the adoption gap which threatens the equitable distribu-
tion of these co-benefits. These early results provide crucial evidence for
informing future policies for a just and equitable transition to an electrified
transportation sector, to both mitigate climate change and realize environ-
mental and health co-benefits for all.
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