TRAINING MODULE 1

Delaware Urban Runoff Management Model DURMM v2.5

Quick-Start Guide

Introduction

This Quick-Start Guide has been developed as an overview of the basic use of the 2nd version of the Delaware Urban Runoff Management Model (DURMM). It is not intended to serve as a detailed description of each cell in the spreadsheet or the algorithms used in those cells. The Quick-Start Guide first describes the general workflow and data input, then continues with two examples illustrating typical uses of the model to meet the requirements of the 2019 Delaware Sediment & Stormwater Regulations (DSSR). The final series of slides describes typical project set-up options.

Users should always make sure they're using the latest version of DURMM v2.5, which is available for download from the Sediment & Stormwater Program website. Contact the Sediment & Stormwater Program (DNREC.Stormwater@delaware.gov) for additional information.

The latest version of DURMM v2.5 can be found here: <u>Plan Review, Engineering,</u> Construction and Maintenance Resources - DNREC Alpha (delaware.gov)

Use the "Save-As" option to download the Microsoft Excel file.

NOTE: Designers proposing redevelopment projects in New Castle County will need to download the alternate version of DURMM for applicable projects.

Users should always make sure they're using the latest version of DURMM v2.5, which is available for download from the Sediment & Stormwater Program website. Contact the Sediment & Stormwater Program (DNREC.Stormwater@delaware.gov) for additional information.

The latest version of DURMM v2.5 can be found here: <u>Plan Review, Engineering,</u> <u>Construction and Maintenance Resources - DNREC Alpha (delaware.gov)</u>

- 1. Select the "Engineering" tab.
- 2. Two versions of the DURMM spreadsheets are available for projects
 - The first version depicted is utilized statewide.
 - The second version depicted is utilized for redevelopment projects within the jurisdiction of New Castle County Land Use. All other projects should utilize the first version of DURMM.
- 3. The RPv Summary Table is used to demonstrate compliance with the RPv requirements under the 2019 DSSR.
- 4. The BMP Design Worksheet is a spreadsheet used to assist in the design of Sheet Flow to Filter Strips (BMP 9.0), Traditional Constructed Wetlands (BMP 12.0), and Afforestation (BMP 17.0)

Use the "Save-As" option to download the Microsoft Excel file to be edited offline.

	File Hor Paste ♀ ♀	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ormulas Data A^{*} $\Xi \equiv \pm$ $*$ $\Xi \equiv \pm$	Revie 	ew V eb	iew H	Help E	BLUEE	BEAM	Acrobat Conditional ormat as Ta Cell Styles ~	Formatting ible ~	 ✓ Ins Ins De Image: Former
	Clipboard Is	Font	Aligr	nment	121	r	lumber		121	Style	es	1 0
	SECURITY	RISK Microsoft has blocked macros fre	om running because	e the sourc	e of this f	ile is untru	isted.	Lea	rn More			
		· · · · · jx						_				
• •		B	C	DE	F	н	ĸ		N (P	s	т
Socurity	1	PROJECT		0 1			ĸ		N		3	
Jecunity	2	DRAINAGE SUBAREA ID										
	3	LOCATION (County)	:									
Cattinana	4	UNIT HYDROGRAPH	:							-		
Sellings	CONT	RIBUTING AREA RUNOFF CURVE NUMBER	R									
	5	(C.A. RCN) WORKSHEE	Hudselegis		Curve Nu	mbers for	Hydrolog	tic Soi	Туре	_		
	6 Cover Type	Ireatment	Gondition	Acres	RCN AC	B RCN	C Acres I	RCN	Acres R	-M		
	59 FULLY DEVE	LOPED URBAN AREAS (Veg Established)	condition	Acres	ACIA AC	ies non	Acros	101V	Acros Me			
	60 Open space (Lawns,parks etc.)										
	61	Poor condition; grass cover < 50%			68	79		86	8	9		
	62	Fair condition; grass cover 50% to 75	6		49	69		79	8	4		
	63	Good condition; grass cover > 75%			39	61		/4	8	0		
	64 Impervious At	Paved parking lote roofs driveways			98	98		98	0	8		
	66	Streets and roads			50	50				•		
	67	Paved; curbs and storm sewers			98	98		98	9	8		
	68	Paved; open ditches (w/right-of-way			83	89		92	9	3		
	69	Gravel (w/ right-of-way)			76	85		89	9	1		
	70	UIT (w/ right-of-way)	Aug 9/ impagy/aug		12	82		8/	8	a		
	71 Urban District	Commercial & husiness	Avg % impervious		89	92		94	9	5		
	73	Industrial	72		81	88		91	9	3		
	74 Residential dis	stricts by average lot size	Avg % impervious									
	75	1/8 acre (town houses)	65		77	85		90	9	2		
	76	1/4 acre	38		61	75		83	8	7		
	77	1/3 acre	30		57	72		81	8	6		
		C.A. RCN LOD OLOD	RPv TMDL	CV F	v DU	RMM Re	port	Data	& Docum	entation	+	÷ 4
										DELAWA NATURA ENVIRON	RE DEPARTM L RESOURCI NMENTAL CO	ENT OF ES AND INTROL

Upon opening a newly downloaded DURMM, you'll notice the "Security Risk" banner at the top. Current Microsoft settings default to disable macros.

For more information or for instructions to enable macros click "Learn More"

<u>Layout</u>

DURMM v.2.5 was developed using Microsoft's Excel 2016 spreadsheet program. However, it should be compatible with any version back to Excel 97. There are several macros that allow clearing and resetting some of the user input cells, however these are not absolutely necessary for the model to function properly. Upon initial use of the model, the user will be prompted to allow the use of the macros. Enabling macros varies depending on the version of Excel being used.

The model itself consists of 8 worksheets. The general workflow proceeds from one worksheet to the next in a left-to-right direction. The cells within each worksheet are color-coded, as follows:

- Green Cells cells intended for user input
- Cyan Cells cells that contain either pre-set values or secondary output
- Magenta Cells cells that contain calculated results for primary output
- Orange Cells these cells are used to input data from upstream contributing areas as explained further on Page #5

The next series of slides describe each of the 8 worksheets included in the model and some of the important elements contained in that sheet.

"C. A. RCN" Worksheet

The "C. A. RCN" worksheet is used to determine the weighted Runoff Curve Number (RCN) for the entire contributing area under analysis. Key elements of this worksheet include:

- 1. Project Data: Project name and subarea ID are entered in the green cells provided. The county location and unit hydrograph are then selected from their respective dropdown lists. This information will be carried over to other worksheets without the need for additional user input.
- Land Cover Data: Acres of land cover by Hydrologic Soil Group (HSG) and hydrologic condition within the contributing area are entered in the green cells. The table is set up similar to the standard RCN tables in TR-55. The "User defined urban" cells can be used to enter RCN values not included in the standard table, with prior approval.
- 3. The default setting for this worksheet opens to the urban land cover data. However, the scroll button can be used to scroll up to other land cover descriptions as used in TR-55.
- 4. User Defined: The spreadsheet includes two (2) lines for user defined land cover, hydrologic condition, acreage and RCN. User defined values require concurrence by DNREC and/or Delegated Agency.
- 5. Upstream Contributing Areas: The ID, acreage and RCN for up to four (4) previously analyzed upstream areas within the total contributing area can be entered by the user. Data for these cells will be in the separate DURMM Report for those contributing areas.
- 6. Total acreage and weighted RCN of the total contributing area are computed and reported in their respective fields.
- 7. The "Clear Table" button can be used to clear all user supplied data from the worksheet and reset any user-defined values.

NOTES:

- Acreage values should be entered to no more than two (2) decimal places. A popup warning to this effect will appear if a user tries to enter values greater than 2 decimal places.
- Acreage values within the project Limit of Disturbance (LOD) for the subarea under analysis is assumed to be fully captured by the BMP(s) entered on the RPv Sheet unless a Project Level Analysis is being performed in accordance with the procedures covered later in this module.

"LOD" Worksheet

This worksheet is used to determine the runoff reduction requirement within the proposed limit of disturbance of the drainage subarea. Since the DSSR only require management of disturbed areas, this may or may not coincide with the total contributing area that drains to the BMPs within that subarea. Key elements of this worksheet include:

- Total LOD acreage by HSG is entered in the first row of green cells. Acreage of any predeveloped woods/meadow within the LOD is entered in the next row. Post-developed imperviousness is then entered as either an acreage or as a percentage in the respective cells provided. (NOTE: Entering imperviousness as a percentage will overwrite a formula in those cells. See #5 below.)
- 2. The subarea RPv runoff and target runoff is calculated in this section.
- 3. Data from up to four (4) previously analyzed upstream subareas are entered in this section. Data is taken from the appropriate DURMM reports for those subareas.
- 4. A weighted runoff volume for the Resource Protection Event is calculated based on the data entered above along with an estimate of the annual runoff volume. The required runoff reduction is then calculated in watershed inches and percent reduction.
- 5. The "RESET" button clears any user input data and resets the formulas used in the imperviousness cells.

NOTE: Acreage values should be entered to no more than two (2) decimal places. A popup warning to this effect will appear if a user tries to enter values greater than 2 decimal places.

"OLOD" Worksheet

This worksheet is used to account for runoff that is outside the LOD, but within the total contributing area of the BMP drainage subarea. If the total contributing area and the LOD coincide, this worksheet may be skipped. Key elements on this sheet include:

- 1. Data entered previously for the "C.A. RCN" and "LOD" worksheets are used to calculate the area outside the LOD and the RCN for that area. If the total contributing drainage area and LOD coincide, the result will display "N/A" for these cells.
- 2. Data used to determine the time of concentration for the area outside the LOD is entered in the green cells. There are allowances for 3 sheet flow, 3 shallow concentrated flow and 5 open channel flow segments. (NOTE: The user must supply an estimated velocity for the open channel flow segments; it is not calculated within the model.) The total time of concentration for the area outside the LOD is calculated in the magenta cell.
- 3. The "Clear Tc" button can be used to clear any user input for the Time of Concentration calculation.
- 4. The peak discharge for the Conveyance Event and the Flooding Event are calculated in their respective magenta cells.

NOTE: The "OLOD" sheet provides a good way to check for errors previously entered on the "C.A. RCN" and "LOD" worksheets. Negative acreage values at Step 1.5 and/or RCN values exceeding 100 at Step 1.4 indicate such errors.

"RPv" Worksheet

This worksheet is used to calculate the runoff reduction for the selected BMP suite and check for compliance for the Resource Protection Event. Key elements on this sheet include:

- 1. User selects a BMP from the dropdown list. BMP 1 would represent the most upstream BMP if a treatment train is proposed. Numbering then proceeds downstream for subsequent BMPs.
- 2. The model adjusts the runoff reduction requirement for the LOD to the total contributing area. It also checks to ensure any weighted adjustment is no less than the requirement for the LOD itself. The required reduction is calculated in both watershed inches and as a percentage.
- 3. If the BMP selected has an annual runoff reduction component (refer to "Data & Documentation" sheet, Page 14), the proportion of the BMP footprint in soils in HSG A/B is entered in the green cell and the appropriate runoff reduction value is entered by the model.
- 4. If the BMP selected has a retention storage component (refer to "Data & Documentation" sheet, Page 14), the available storage in cubic feet is entered in the green cell.
- 5. The model calculates the retention reduction and/or the annual runoff reduction and checks to see if the required reduction has been met.
- 6. If the required runoff reduction is not met, the model calculates the residual runoff volume that must be managed using detention or other means, such as an on-site credit or off-site offset.
- 7. If the residual volume will be managed using a detention practice, these cells contain the calculated average and maximum discharge rates to be used for design and compliance.
- 8. The "RESET" button can be used to clear user input data from the worksheet to model a different BMP suite.

"TMDL" Worksheet

This worksheet is used to calculate the Total Maximum Daily Load (TMDL). Although compliance is not currently based on specific TMDL targets, the Department is collecting this data to assess attainment of overall watershed TMDL goals. The BMP suite selected on the RPv worksheet is carried over to this sheet, precluding the need to input any BMP data. Key elements on this sheet include:

- 1. The user selects the appropriate TMDL watershed from the dropdown list.
- 2. The model calculates the total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) annual pollutant load in milligrams and pounds based on the runoff volume calculated previously and the Event Mean Concentrations (EMCs) provided in the model.
- 3. The adjusted runoff volume is carried over from the RPv worksheet.
- 4. Load reduction is calculated based on the input loads and adjusted runoff reduction. Additional adjustment is calculated for removal efficiency.
- 5. The model checks to determine if the pollutant reduction goal for the TMDL watershed has been met and calculates a final adjusted annual load for TN, TP and TSS for reporting purposes.

NOTE: There is currently no regulatory requirement under the 2019 DSSR to meet a specific TMDL target. However, DNREC requires the TMDL Worksheet to be completed for all projects in order to provide data for tracking TMDL progress.

	File Home Insert PageLayout Form				IBAT Q Tell me wh			
	A58 * : × ✓ fr							
	A A		c	DE	F 1	G	н	J K
	1 PROJECT:	0						
	2 DRAINAGE SUBAREA ID: 3 LOCATION (Country)	0						
	4 CONVEYANCE EVENT (CV) WORKSHEET							
	5	8MP 1		BMP 2	BMP	3	BMP 4	BMP 5
	6				7			Trans
	7 Step 1 - Calculate Initial Cv	Data		Data	Data		ata	Data
	8 1.1 Total contributing area to BMP (ac)	0.00	0	0.00	0.00		0.00	0.00
	9 1.2 Initial RCN	#DIV/0!						
	10 1.3 10-Year Rainfall (in.)	#N/A						
/7	11 1.4 Cv runoff volume (in.)	#N/A						
	12							
	14 2.1 Storage volume (cu.ft.)	N/A		N/A	N/A		N/A	N/A
	15 2.2 Storage volume (ac-ft)	N/A		N/A	N/A		N/A	N/A
. .	16 2.3 Storage volume (in.)	N/A		N/A	N/A		N/A	N/A
haat	17 2.4 Runoff volume after reduction (in.)	N/A	,	N/A	N/A		N/A	N/A
τιμμτ	18 2.5 CN*	N/A	,	N/A	N/A		N/A	N/A
	19							
	20 Step 3 - Adjust for Annual Runoff Reduction							
	21 3.1 Runoff reduction allowance (%)	N/A		N/A	N/A		N/A	N/A
	22 3.2 Annual runoff after reduction (in.)	N/A	E H	N/A	N/A		N/A	N/A
	24 3.4 Event-based runoff reduction (in)	N/A		N/A	N/A		N/A	N/A
	25							100
	26 Step 4 - Calculate Cv with BMP Reductions							
	27 4.1 Cv runoff volume after all reductions (in.)	N/A	,	N/A	N/A		N/A	N/A
	28 4.2 Total Cv runoff reduction (%)	N/A	,	N/A	N/A		N/A	N/A
	29 4.3 Adjusted RCN for H&H modeling	N/A	,	N/A	N/A		N/A	N/A
	30							
	22							
	33							
	34							
	35							
	36							
	37							
	39							
	40							
	41							
	42							
	43							
	44							
	45							
	10							
		THEN OF	EV DURMM	VI Report Data & Doc	umentation (+)	1 4		
	C.A. RCN LOD OLOD R	or mor cr						

"Cv" Worksheet

This worksheet calculates the effect of runoff reduction practices for the Conveyance (10-YR) Event. The BMP suite selected on the RPv worksheet is carried over to this sheet, precluding the need to input any BMP data. All other cells are calculated based on data entry and results from previous worksheets. Reductions based on available storage are given full credit. However, the adjustments for runoff reduction BMPs are lower than those for the Resource Protection Event since they are less able to mitigate runoff from a storm of this magnitude.

	님 아····· 없 ㅋ File Home Inset PageLayout Fom	nulas Data Review Vie	DURMM_v2.51_ w Developer Help ACR	Overview.xtsm - Excel DBAT 🛛 Tell me what you war	it to do	Sign in 😡 -
	A60 • I × ✓ fr A PROJECT 2 DRAINAGE SUBAREA IN 3 LOCATION (County)	B C	DE	F G	H I	J K
	4 FLOODING EVENT (FV) WORKSHEE	EMP 1	DMP 2	BMP 3	BMP 4	8MP 5
" F v"	6 7 Step 1 - Cokulate Initial Fu 8 1.1 Total contributing area to BMP (ac) 9 1.2 Initial RON 10 1.3 100-Year Reinfold (in,) 1 4.6 Reconficienting (in)	Type: Data 0.00 #DIV/01 #N/A #V/A	Type: - Data 0.00	Type: Data 0.00	Type: Data 0.00	Type: - Data 0.00
	12	BD/A				
Worksheet	10 step 2 - rugsit for Reference in Reduction 14 2.1 storage volume (n.f.) 15 2.2 storage volume (n.g. oft) 16 2.3 storage volume (n.g. oft) 17 2.4 storage volume after reduction (in.) 18 2.5 C.N*	N/A N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
	19 20 Step 3 - Adjust for Annual Runoff Reduction					
	21 3.2 Annual runoff after reduction (in.) 23 3.3 Adjusted ACN 24 3.4 Event-based runoff reduction (in.) 25	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A
	25 Step 4 - Cakulate Fv with BMP Reductions 27 4.1 Fv runoff volume after all reductions (in.) 28 4.2 Total Fv runoff reduction (%) 29 4.3 Adjusted RXN for H&H modeling	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
	30 31 32 33					
	34 35 36 37					
	38 39 40					
	42 43 44					
	45					
	C.A. RCN LOD OLOD	RPv TMDL Cv Fv	DURMM Report Data & Do	cumentation 🕀 i 🗨		
	100					

"Fv" Worksheet

This worksheet calculates the effect of runoff reduction practices for the Flooding (100-YR) Event. The BMP suite selected on the RPv worksheet is carried over to this sheet, precluding the need to input any BMP data. All other cells are calculated based on data entry and results from previous worksheets. Reductions based on available storage are given full credit. However, the adjustments for runoff reduction BMPs are even lower than those for the Conveyance Event since they have minimal ability to mitigate runoff from a storm of this magnitude.

"DURMM Report" Worksheet

This worksheet summarizes the results from the previous worksheets in a format suitable for submission with the project application package. Some key elements include:

- 1. DURMM version.
- 2. Summary of BMP suite selected.
- 3. Determination of compliance with runoff reduction requirements and any residual volume to be managed with detention or other means.
- 4. Determination of final annual pollutant loads.
- 5. Summary of results for the RPv event.

The remaining sections of the DURMM Report worksheet are continued on the Page 13.

NOTE: The DURMM version is shown in the header of the report using the format:

DURMM v2.5#.yymmdd

The most current version of DURMM v2.5 should always be used for submission.

"DURMM Report" Worksheet (cont.)

The information in the remaining sections is largely self-explanatory. However, some key elements include:

- 6. Results for Conveyance Event (Cv).
- 7. Results for Flooding Event (Fv).
- 8. Data to be used for downstream DURMM modeling.
- 9. Data to be used with the DNREC Nutrient Protocol model.
- 10. Data to be used for external quantity and/or quality modeling.

The report allows a reviewer to quickly determine if the runoff reduction requirements have been met and the calculated pollutant reductions. If these requirements could not be satisfied due to site constraints or other justifiable technical reasons, the site would be subject to the offset provisions of the DSSR.

		/ Jx 0%							
	- A	D	c	0 6	F Q	н	J	K L Annual Runoff Reduction	M N Annual Runoff Reduct
	1 Class 27 Annual Runoll Reduction Practice	BMP Category 4.0 Vegetated Roofs	DURMM Variant 4-B Intensive Vegetated Roofs	TN Reduction (0) of Load Reduction	TP Reduction 0% of Load Reduction	TSS Reduction (%) of Load Reduction	Allowance 0%	RPv, A/8 Soll 75% Annual RR	C/D Soil 0% Annual PR
	28 29 Retention Practice 30 Retention Practice	5.0 Rainwater Harvesting 5.0 Rainwater Harvesting	5-A Seasonal Rainwater Harvesting 5-B Continuous Bailwater Harvesting	100% of Load Reduction	100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction	50%	0% of Retention Storage	0% of Retention 0% of Retention
	21 22 Annual Runolf Reduction Practice 23 Annual Runolf Reduction Practice 24 Annual Runolf Reduction Practice	6.0 Pestoration Practices 6.0 Pestoration Practices 6.0 Pestoration Practices	6-A Step Pool RSCS 6-B Seepage Wetland RSCS 6-C Streambank Stabilization	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	054 054 054	0% Annual RR 0% Annual RR 0% Annual RR	0% Annual RR 0% Annual RR 0% Annual RR
	35 36 Annual Runotl Reduction Practice 37 Annual Runotl Reduction Practice 38 Annual Runotl Reduction Practice 39 Annual Runotl Reduction Practice	7.0 Rootop Disconnection 7.0 Rootop Disconnection 7.0 Rootop Disconnection 7.0 Rootop Disconnection	7-A Full Rootop Deconnection - HSG A 7-B Full Rootop Deconnection - HSG B 7-C Full Rootop Deconnection - HSG D 7-0 Full Rootop Deconnection - HSG D	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	0% 0% 0%	381c Annual RR 81tc Annual RR 631c Annual RR 51tc Annual RR	50% Annual RR 81% Annual RR 63% Annual RR 51% Annual RR
"Data &	40 41 Annual Runoff Reduction Practice 42 Annual Runoff Reduction Practice	8.0 Vegetated Channels 8.0 Vegetated Channels	8-A Borvale 8-8 Grassed Channel	100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction	0% 0%	S0% Annual RR 20% Annual RR	25% Annual PR 10% Annual PR
Documentation"	41 47	3.0 Sheet Flow 3.0 Sheet Flow 3.0 Sheet Flow 3.0 Sheet Flow 3.0 Sheet Flow	9-A Sheet Flow to Gassed Filter Step 9-B Sheet Flow to Afforested Filter Step 9-C Sheet Flow to Forested Filter Step 9-D Sheet Flow to Gassed Open Space 9-E Sheet Flow to Afforested Open Space	1001; of Load Reduction 1001; of Load Reduction 1001; of Load Reduction 1001; of Load Reduction 1001; of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	054 054 054 054 054	25% Annual RR 30% Annual RR 40% Annual RR 50% Annual RR 60% Annual RR 60% Annual RR	10% Annual RR 10% Annual RR 20% Annual RR 20% Annual RR 30% Annual RR
	 Winnual Punot Preduction Practice Stormu ater Treatment Practice Stormu ater Treatment Practice Stormu ater Treatment Practice 	30 Sheet nov 10.0 Detention Practices 10.0 Detention Practices 10.0 Detention Practices	3-F Sneet Flow to Forested Upen Space 10-A Dry Detention Pond 10-B Dry Extended Detention (ED) Basin 10-C Underground Detention Facilities	St: RemovalEfficiency 201: RemovalEfficiency St: RemovalEfficiency	101c of Load Heduction 101c Removal Dificiency 201c Removal Dificiency 101c Removal Dificiency	102: Or Load Heduction 102: Removal Efficiency 601: Removal Efficiency 102: Removal Efficiency	054 054 054 055	CCC Annual RR CCC Annual RR CCC Annual RR CCC Annual RR	0% Annual PR 0% Annual PR 0% Annual PR
worksneet	54 Stormwater Treatment Practice 55 56 Stormwater Treatment Practice 57 Stormwater Treatment Practice 58 Stormwater Treatment Practice	10.0 Detention Practices 11.0 Stormy after Filtering Systems 11.0 Stormy after Filtering Systems 11.0 Stormy after Filtering Systems	10-DUnderground 40-HR Determion Facilities 11-A Non-Structural Sand Filter 11-B Surface Sand Filter 11-C 3-Dunder Endermined Sand Filter	201: RemovalEfficiency 401: RemovalEfficiency 401: RemovalEfficiency 401: RemovalEfficiency 401: RemovalEfficiency	2011 Removal Efficiency 6011 Removal Efficiency 6011 Removal Efficiency 6021 Removal Efficiency	60% Removal Efficiency 80% Removal Efficiency 80% Removal Efficiency 80% Removal Efficiency	0% 0% 0%	01: Annual RR 01: Annual RR 01: Annual RR 01: Annual RR	0% Annual RR 0% Annual RR 0% Annual RR 0% Annual RR
	53 Stormwater Treatment Practice 60 61 Stormwater Treatment Practice	11.0 Stormwater Filtering Systems 12.0 Werlands	11-D Perimeter Sand Filter (DE Sand Filter) 12-A Traditional Constructed Werlands	40% RenovalEfficiency 30% RenovalEfficiency	60% Removal Efficiency 40% Removal Efficiency	80% Removal Efficiency 80% Removal Efficiency	0%	0% Annual RR 0% Annual RR	0% Annual RR 0% Annual RR
	62 Stormwater Treatment Practice Stormwater Treatment Practice	12.0 Wetlands	12-8 Vetland Svales 12-C Epheneral Constructed Vetlands	2011 Removal Efficiency (* 100% of Load Reduction 2011 Removal Efficiency (*	30% Removal Efficiency (+ 1) 100% of Load Reduction 30% Removal Efficiency (+	60% Removal Efficiency (+ 100% of Load Reduction) 60% Removal Efficiency (+	0% 0%	15% Annual RR 40% Annual RR	10% Annual PR
	63 64 Stormwater Treatment Practice	12.0 Wetlands	12-D Submerged Gravel Verlands	30% Penoval Efficiency	100% of Load Reduction 40% Removal Efficiency	100% of Load Reduction) 80% Removal Dificiency	0%	0% Annual RR	0% Annual RR
	65 66 Stormwater Treatment Practice 67 Stormwater Treatment Practice	13.0 Wet Pond 13.0 Wet Pond	13-A Wet Quantity Management Pond 13-B Wet Extended Detection (EDI Pond	(0) Removal Efficiency 300: Removal Efficiency	0% Removal Efficiency 55% Removal Efficiency	0% Removal Efficiency 60% Removal Efficiency	0% 0%	014 Annual RR 014 Annual RR	0% Annual RR 0% Annual RR
	68 69 Annual Runotl Reduction Practice 78 Annual Runotl Reduction Practice 71 Annual Runotl Reduction Practice 72 Annual Runotl Reduction Practice	N.O.Sol Amendments N.O.Sol Amendments N.O.Sol Amendments N.O.Sol Amendments	14-A Compose Amended Sol - HSG A 14-B Compose Amended Sol - HSG B 14-C Compose Amended Sol - HSG D 14-D Compose Amended Sol - HSG D	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	100% of Load Reduction 100% of Load Reduction 100% of Load Reduction 100% of Load Reduction	0% 0% 0% 0%	401: Annual RR 501: Annual RR 01: Annual RR 01: Annual RR	0% Annual RR 0% Annual RR 2% Annual RR 13% Annual RR
	73 74 Stormwater Treatment Practice	15.0 Proprietary Practices	15-A Proprietary Practices	0% RenovalEfficiency	014 Removal Efficiency	0% Removal Efficiency	0%	01: Annual RR	0% Annual RR
	76 Stormwater Treatment Practice 77 Stormwater Treatment Practice	16.0 Source Controls 16.0 Source Controls	16-A Numiers Management 16-B Street Sveeping	17% RenovalEfficiency 3% RenovalEfficiency	22% Removal Efficiency 3% Removal Efficiency	0% Removal Efficiency 3% Removal Efficiency	0% 0%	0% Annual RR 0% Annual RR	0% Annual RR 0% Annual RR
	78 79 Annual Runotl Reduction Practice 80 Annual Runotl Reduction Practice 81 Annual Runotl Reduction Practice 82 Annual Runotl Reduction Practice	17.0 Allorestation 17.0 Allorestation 17.0 Allorestation 17.0 Allorestation	17-AA Alforentation - HSG A 17-AB Alforentation - HSG B 17-AC Alforentation - HSG C 17-AD Alforentation - HSG D	100% of Load Reduction	100% of Load Reduction	100% of Load Reduction	0% 0% 0%	essee Annual RR essee Annual RR 0.00% Annual RR 0.00% Annual RR	0.00% Annual RR 0.00% Annual RR 17.68% Annual RR 12.52% Annual RR
	83 Annual Runoll Reduction Practice	17.0 Alforestation	17-B Ulban Tree Planting	100% of Load Reduction	100% of Load Reduction	100% of Load Reduction	0%	0% Annual RR	0% Annual RR
	C.A. RON	LOD OLOD RPV	TMDL Cv Fv DURMM Rep	Data & Documer	itation (+) (+)		18		1

<u>"Data & Documentation" Worksheet</u>

This worksheet summarizes the runoff reduction values used in calculations on the "RPv" sheet for all available Best Management Practices (BMPs). These values are derived from the appropriate Standards & Specifications for those BMPs. They are categorized as either "Retention Allowance" or "Annual Runoff Reduction" depending on the type of BMP. Reductions for Cv and Fv are also included where applicable.

Example #1: Concept Level Analysis

The procedures outlined in the previous section will now be used to perform a typical concept level analysis for a fictional land development project named "Broadkill Estates". For the purposes of this example, a concept level analysis assumes an artificial watershed boundary that coincides with the parcel boundary.

Data Sources

The information compiled for the Stormwater Assessment Study (SAS) will provide the necessary data inputs for the analysis.

<u>Site GIS Data</u>

The Stormwater Assessment Study GIS App is an on-line GIS tool that can be used for collecting data necessary to perform the DURMM analysis. The SAS GIS App is available at the following link:

https://firstmap.delaware.gov/sasgis

<u>Soils Data</u>

The Soils layer contains information on Hydrologic Soil Group (HSG) of the various soils on the site that is used by the model to determine runoff volume.

Existing and Proposed Conditions

The majority of the site consists of existing cropland. A small tributary bisects the site into two major drainage subareas. Although the tributary has been partially piped to facilitate cultivation, a small wetland area is located near the center of the site. There is also a small area of scrub/shrub forest at the downstream discharge point of the site.

"Broadkill Estates" has been proposed as a single-family residential site with an average lot size of 1 acre. For purposes of the concept level analysis, the Limit of Disturbance (LOD) has been assumed to coincide with the parcel boundary, except for the wetland area which will remain undisturbed.

Data Inputs - "C.A. RCN" Worksheet

The slide above summarizes the data that will be input to the "C.A. RCN" worksheet. The colored soil mapping areas are considered the total LOD for the Conceptual Level Analysis. The unshaded area is a delineated wetland that will remain undisturbed.

Data Inputs – "LOD" Worksheet

The slide above summarizes the data that will be input to the "LOD" worksheet. Since the analysis assumes an artificial watershed boundary that coincides with the parcel boundary and LOD, the "OLOD" worksheet is not needed for the Concept Level Analysis.

"C.A. RCN" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. Acreage values should be entered to no more than two (2) decimal places, otherwise a popup error message will appear. The model has calculated the following results:

- Total Acreage: 103
- Weighted RCN: 58

In keeping with NRCS tradition, results for the RCN are reported in rounded whole numbers on this worksheet even though the internal calculations are performed at the standard level of precision used in Excel.

	File Home Insert Page Layout Formulas Dat	a Review View Help ACROBAT 🗘 Tell me what you want to do
	→ X Cut Calibri - 11 - A'	$A' = = = \gg - $ (2) Weap Test $P_2 = P_2$ $P_3 = \mathbb{P}$ $P_4 = \mathbb{P}$ $P_4 = \mathbb{P}$
	Paste V Format Painter B I U - B - A	- 三三三 刊 刊 圓 Merge & Center - S + % , 1% 4% Conditional Formatias Cell Inset Delete Format Formatting - Table - Styles - Styles - File - Sett - File - Sett -
	Clipboard 5 Font	5 Alignment 5 Number 5 Styles Cells Editing A
	N52 * : × ✓ fr	۷
	A A PRO	B C D E F G H I J K L M N O P Q R S T U V W -
	2 DRAINAGE SUBAR	A ID: Site - Concept Level Analysis
	4 UNIT HYDROGE	Inty: Sussex
	5 LIMIT OF DISTURBANCE (LOD) WORKS	
	6 Step 1 - Subarea LOD Data	HSGA HSGB HSGC HSGD RESET
··/ ()/)//	8 1.2 Pre-Developed Woods/Meadow Within LOD (ac)	100 17.1 23.8
LUD	9 1.3 Pre-Developed Impervious Within LOD (ac)	
	10 1.4.a Post-Developed Imperviousness Within LOD, Option #1 (sc): 00
	11 1.4.b Post-Developed Imperviousness Within LOD, Option #2 (%) <u>20%</u> 20% 20% 0%
Markabaat	13 Step 2 - Subarea LOD Runoff Calculations	
VVOTKSNEEL	14 2.1 RCN per HSG	50.80 68.40 78.80 0.00
	15 2.2 RPv per HSG (in.)	0.41 0.85 1.25 0.00
	16 2.3 Target RCN per HSG	18.80 60.72 74.00 0.00
	17 2.4 Target Runoff per HSG (in.) 18	0.21 0.64 1.06 0.00
	19 2.5 Subarea LOD (ac)	102.73
	20 2.6 Subarea Weighted RCN	57.97
	21 2.7 Subarea Weighted RPv (in.)	0.57
	22 2.8 Subarea Weighted Target Kunoff (in.) 23	041
	24 Step 3 - Upstream LOD Areas (Iram previous DURNM Report a.	r appa Area 1 Area 2 Area 3 Area 4
	25 3.1 Upstream Sub-Area ID	
	26 3.2 Upstream Contributing Area (ac)	
	27 3.3 Target Runoff for Upstream Area (in.)	
	28 3.4 Adjusted CN after all reductions	
	29 3.5 Adjusted RPV (III.) 30 3.6 Adjusted Cy (In.)	
	31 3.7 Adjusted Fv (in.)	
	32	
	33 Step 4 - RPv Calculations for Combined LOD	
	34 4.1 Combined LOD (ac)	102.73
	35 4.2 Weighted RCN 36 4.3 Weighted RDr (in)	57.97 6.57
	37 4.4 Weighted Target Runoff (in.)	041
	38 4.5 Estimated Annual Runoff (in.)	5.93
	39 4.6 Req'd Runoff to be Managed within LOD (in.)	016
	40 4.7 Req'd Runoff to be Managed within LOD (%)	20%
	41 42	
	C.A. RCN LOD OLOD RPV TM	DL Cv Fv DURIMM Report Data & Documentation 🔶 : [4
	Ready (& Accessibility: Investigate	
		DELAWARE DEPARTMENT OF
		NATURAL RESOURCES AND
		ENVIRONMENTAL CONTROL

"LOD" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. Again, acreage values should be entered to no more than two (2) decimal places to avoid a popup error message. The model has calculated the following results:

- Total LOD Area: 102.73
- Weighted LOD RCN: 57.97
- Weighted RPV runoff volume: 0.57"
- Estimated annual runoff: 5.93"
- Required runoff reduction: 0.16" (29%)

The results on this sheet are carried out to 2 decimal places. In some cases, the user may detect a slight discrepancy between the computed RCN on the "LOD" worksheet and the previous "C.A. RCN" worksheet if the typical TR-55 land use descriptions were used on the "C.A. RCN" worksheet. This is the result of rounding of impervious area when the typical land use descriptions are used. If the user wishes better agreement between these worksheets, impervious and pervious (open space) acreages should be entered directly on the "C.A. RCN" worksheet. In either case, the results from the "LOD" worksheet are used for all subsequent worksheet calculations.

	표 5 - c ^a - Qa + File Home Insert PageLayout Fi	rmulas Data Review	View Help ACRC	DURMM-v251 BAT V Tell me what y	-220414.xlsm - Excel ou want to do			Sign in D	n – o × Ģ
	X cut Calibri Paste ✓ Format Painter Clipboard 5 D16 ✓ I	$\begin{vmatrix} 11 & A^* & A^* \\ & & \begin{vmatrix} \Delta^* & A^* \\ & & \end{vmatrix} = = \frac{1}{2}$ $= = \frac{1}{2}$	= ♥ - ♥ Wrap To = ■ ■ ■ ■ ■ Merge 8 Alignment Data & Documentation'	t Center ~ \$ ~ % 1 G Numb SC\$1:\$Q\$83,8,FALSE))	r 5	Format as Cell Table × Styles × Styles	Cells	m * Ary O Sort & Find & Filter * Select * Editing	~
	A PROJE DRAINAGE SUBARIA DRAINAGE SUBARIA LOCATION (Count RESOURCE PROTECTION EVENT (Levy) WORKSIN	B C Th Broadkil Estates Dr. Site - Concept Level Analysis VP Susseer ET	D 6	FG	HI	J K	L M N	P Q	R S A
"RPV"	S RESET 6 7. Stoge 1 - Calculater basical (PP+ 6 11 Trail contributing areas to (SPF) (ac) 9 12 Invalid CN 10 13 PP+(obc combuting dates in.) 11 14 Pe+(dP+) to be Manageding Combuting Areas (n) 11 14 Pe+(dP+) to be Manageding Combuting Areas (n) 11 15 Pe+(dP+) to be Manageding Combuting Areas (n) 11 15 Pe+(dP+) to be Manageding Combuting Areas (n)	BHP 1 Type 8-8 Grassed Channel Data 0273 57:57 0.57 0.57 0.57 0.55 255:57	Type BMP 2 A Traditional Bioterention - Infiltration	туре	Tipe	БМР 5 Туре			
Worksheet	9 Step 2 - Adjace to Resention Reducation 9 2.1 Resentance Advances and Global 9 2.1 Resentance Advances Advances 9 2.3 Resentance Advances Advances 9 2.3 Resentance Advances Advances 9 2.4 Resentance Advances Advances 9 2.5 Reported material advances 9 2.5 Adjusted CM	0% 0.00 0.00 0.557 57.58	34665 3006 0.80 0.05 0.41 50.52	NA NA NA NA NA	NA NA NA NA NA	NUA NUA NUA NUA NUA			
	22 Step 3"- Adjust for Annual Runnell Reduction 23 31 Annual CHI(AD) 23 33 Annual AURI(AD) 23 33 Require AURI(In) 23 33 Require AURI(In) 23 34 Annual mort if net reduction allowance (C) 23 36 Adjusted ACM 23 56 Adjusted ACM 23 37 Annual Runnell Reduction Relowance for PPV (in) 23 37 Annual Runnel Relowance for PPV (in) 33 77 Annual Runnell Relowance for PPV (in) 33 77 Annual Runnell Runnell Relowance	57.97 5.53 78% 4.89 54.87 0.07	54.35 4.32 07: 07: 4.32 54.35 54.35 0.07	NAA NAA OC: NAA NAA NAA NAA	NVA NVA 02: NVA NVA NVA NVA	NAA NAA OC: NAA NAA NAA NAA			
	Step 4 - Calculate DP + eth CMP Reductions 31 FPR-Print Management Provided (so. h). 32 4 FP non01 volume alter alleductors (n. h). 33 4 FP non01 volume alter alleductors (so. h). 34 4 Teal DP number ductors (n. h). 35 4 F Teal DP number ductors (n. h). 36 4 Teal DP number ductors (n. h). 37 4 Teal DP number ductors (n. h). 38 4 Teal DP number ductors (n. h). 39 4 7 Agenter d'N alter all reductors (1). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 4 7 Agenter de qualitate remained (n. h). 39 5 Agenter de qualitate remained (n. h).	28704 0.50 38,455 0.7 224 4.07 4.05 ND ND	60765 0.41 51750 0.85 285 5052 3.67 YES -0.94	100A 100A 100A 100A 100A 100A 100A 100A	NGA NGA NGA NGA NGA NGA NGA NGA	1424. 1425. 1426. 1426. 1426. 1426. 1426. 1426. 1426. 1426. 1426.			
	Singe 5 - Determine Residual Volume to be Man. S 199V Residual Volume (n.) S 199V Residual Volume (n.) S 199V Residual Volume (n.), S 199V and al Volume (n.), S 199V and al Volume to the Managed or Effection(n), S 199V and dochage rate of the determinin(n), S 199V name, dischage rate of the determini(n), S 199V	0.09 0.09 337 34.094 0.201 1.003	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NAA NAA NAA NAA NAA			
	60 Destprint lise if (e.e., for Sheet Row to Turt Filter Strip on B	In the second seco	his occurs contact the DMILC- / DURMM Report	558 for further guidence. Data & Documentation	•	: •		· · · · ·	* * * * 70%
								AWARE DEPARTMEN TURAL RESOURCES VIRONMENTAL CONT	T OF AND ROL

"RPv" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. The designer has selected a BMP treatment train consisting of grassed channels for all rooftops and roadways draining to infiltrating bioretention. It is estimated approximately 75% of the grass channels will be located in soils with Hydrologic Soil Group (HSG) A or B. The model has calculated the following results:

- RPv for total contributing area: 0.57"
- Reduction after BMP 1: 0.07" (12%)
- •Residual volume to be managed after BMP 1: 34,664 cu. ft.
- Reduction after BMP 2: 0.16" (29%)

Annualized runoff reductions are used for BMPs that do not have a storage component, such as the grassed channels used in this example. Since infiltration BMPs will store and retain all the captured runoff, their reduction values are based on their storage capacity. A "NO" in the magenta cells of Step 4 indicate additional runoff reduction is required in order to comply with the RPv. A "YES" in the magenta cells indicates the required reduction has been met. In this case, the residual volume to be managed after BMP 1 was used to estimate the storage provided for BMP 2. The reduction allowances for the BMP suite should be considered representative of the subarea as a whole rather than a strict hydraulic routing from one BMP to the next. This will need to be verified by the Design Level Analysis. Any residual runoff subject to additional management or an offset for the RPv is calculated in Step 5 and shown in the magenta cells. Since this example was able to meet the required runoff reduction with two BMPs, the residual volume to be managed after BMP 2 is reported as "N/A".

"TMDL" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. Once the user selects the appropriate TMDL watershed from the dropdown list, the model calculates the total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) loads for the subarea, as well as the reductions from the BMP suite selected on the "RPv" worksheet. The model has calculated the following results:

- Pollutant Load: 3.77 lb/ac/yr-TN; 0.66 lb/ac/yr-TP; 121 lb/ac/yr-TSS
- Pollutant load after BMP 1: 3.11 lb/ac/yr-TN; 0.54 lb/ac/yr-TP; 100 lb/ac/yr-TSS
- Pollutant load after BMP 2: 2.33 lb/ac/yr-TN; 0.41 lb/ac/yr-TP; 75 lb/ac/yr-TSS

Pollutant load is calculated using the RPv runoff volume and the Event Mean Concentration (EMC) values for the various pollutants that are integrated into the model. The model checks to determine whether the required pollutant reduction has been met. Since the Broadkill River does not have a regulatory TMDL for TSS, these cells are shown as "N/A". A "YES" in the magenta cells indicates that the load reduction has been met. In this example, the TN load reduction has been met as a result of meeting the RPv runoff reduction attributed to BMP 1. The TP reduction was only met with the addition of BMP 2. There is currently no regulatory requirement under the 2019 DSSR to meet a specific TMDL target. However, DNREC requires the TMDL Worksheet to be completed for all projects in order to provide data for tracking TMDL progress.

	E 5 - ∂ - R =				DUI	UMM-v251-22	10414.xism - Excel					Sign in	B –	0
	File Home Insert Pane Lawrut Form	uulas Dat	a Review View	Helo	CRORAT O TH	me what you	want to do							
	The Traine man Page Layout Tom			Thop	echolosi y iei	The White you		1		n. <u>H-H.</u>	Station -			-
	Bit Copy -	1 • A	^* = = = ≫	~ 8 W	ip Text			1	🐨 i	× 📰	Z Abiosom • A	▼ P		
	Paste 💞 Format Painter B I 🛛 - 🖂 -	<u>⇒</u> - A	· = = = =	11 문 M	rge & Center 🕤 🖇	× % >	*.0 .00 %0 .00 Formattin		s Cell Insert D Styles	elete Format		rt & Find & er * Select *		
	Clipboard 5 Font			Vignment		Number		Styles		cells.	Editing			
	88 ▼ I × √ fr =RPvIB	8												
	A A	в	c	D	E	F	G	н	1	1	к	ι	M N	
	1 PROJECT	Broadkill	Estates											
	3 LOCATION (County)	Sussex	Copy Cover Million yang											
	4 CONVEYANCE EVENT (Cv) WORKSHEET	r						_		_				
	5		BMP 1		EMP 2		BMP 3		BMP 4	-	BMP 5			
	6	Type:	8-8 Grassed Channel	Type:	Bioretention -	Type:	-	Type:	-	Type:	-			
	7 Step 1 - Calculate Initial Cv	Data		Data		Data		Data		Data				
-	8 1.1 Total contributing area to BMP (ac) 9 1.2 Initial PCN	102.73	-	102.73		102.73	-	102.73	-	102.73	-			
 .	10 1.3 10-Year Rainfall (in.)	5.3	1											
Markchaat	11 1.4 Cv runoff volume (in.)	1.34												
VVUINSIIEEL	12 13 Step 2 - Adjust for Retention Reduction													
	14 2.1 Storage volume (cu. ft.)	0.00		34665.00		N/A		N/A		N/A				
	15 2.2 Storage volume (ac-ft)	0.00		0.80		N/A	-	N/A	_	N/A	-			
	17 2.4 Runoff volume after reduction (in.)	1.34		1.24		N/A		N/A	-	N/A	-			
	18 2.5 CN*	57.97		\$6.59		N/A		N/A		N/A				
	19 20 Step 3 - Adjust for Annual Runoff Reduction													
	21 3.1 Runoff reduction allowance (%)	0%		0%		N/A		N/A		N/A				
	22 3.2 Annual runoff after reduction (in.)	1.33		1.33		N/A		N/A		N/A				
	23 3.3 Adjusted ACN 24 3.4 Event-based runoff reduction (in.)	0.00		0.00		N/A N/A	-	N/A N/A	-	N/A N/A	-			
	25													
	26 Step 4 - Calculate Cv with BMP Reductions	1.00		1.24		N/A		N/A		N/A				
	28 4.2 Total Cv runoff reduction (%)	0%		7%		N/A		N/A	-	N/A	1			
	29 4.3 Adjusted RCN for H&H modeling	57.93		56.59		N/A		N/A		N/A				
	30													
	32													
	33													
	35													
	36													
	37													
	39													
	CA.RCN LOD OLOD	RPv TM	DL CV FV D	URMM Repo	rt Data & Docum	entation	(+)	: •						
	Ready Ge Accessibility: Investigate										=	(II) E -		
										A	DELAWAR		ENT OF	
										-	NATURAL	RESOURCE	SAND	
										-		JENTAL CO	NTROI	

"Cv" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. There are no user-input cells on the "Cv" worksheet. The model has calculated the following results:

- Cv runoff volume: 1.34"
- Cv runoff volume after BMP 1: 1.33" (0% reduction)
- Cv runoff volume after BMP 2: 1.24" (7% reduction)

The runoff reduction values for the Cv event are adjusted downward, as discussed in the Cv Worksheet overview section.

	- ⊟ •5 - ♂ - & +				DUI	RMM-v251-22	0414.xlsm - Excel					Sign in	⊞ –	o x
	File Home Insert Page Layout Form	ulas Dat			ACROBAT 🗘 Tell									Þ
	Calibri - 1	1 • A	= = _ ≫	~ 8 W	ip Text		- F		P = 1	× 🖬	∑ AutoSum × A	7 🔎		
	Paste v View Copy Composition Copy Copy Copy Copy Copy Copy Copy Copy	$\underline{\diamond} \in A$	· = = = =	•]] 臣 Mi	rge & Center 🕤 💲	× % >	*.0 .00 Condition Formatting	al Formatian y Table -	Cell Insert De Styles	lete Format	Clear - Filb	t & Find & r ~ Select ~		
	Clipboard 5 Font		5	lignment		Number		Styles		ells	Editing			^
	B8 ▼ I × √ fr =RPv1B	8												v
	1 PROJECT:	Broadkill	Estates	U	Ł		G	н		, ,	K		MN	Q _
	2 DRAINAGE SUBAREA ID: 3 LOCATION (County):	Site - Con Sussex	cept Level Analysis											
	4 FLOODING EVENT (Fv) WORKSHEET					_		_		-				
((F , .))	5		BMP 1		2-A Traditional		BMP 3		BMP 4	-	BMP 5			
	6 7 Step 1 - Cokulate Initial Fv	Type: Data	8-8 Grassed Channel	Type: Data	Bioretention -	Type: Data		Type: Data		Type: Data				
	8 1.1 Total contributing area to BMP (ac)	102.73	1	102.73		102.73	1	102.73		102.73				
	10 1.3 100-Year Rainfall (in.)	9.2												
Workshoot	11 1.4 Fv runoff volume (in.) 12	4.00										-		
W UI NSIICCI	13 Step 2 - Adjust for Retention Reduction	0.00		24555.00		N/A		N/A		N/1				
	15 2.2 Storage volume (co.rt.)	0.00		0.80		N/A		N/A		N/A				
	16 2.3 Storage volume (in.) 17 2.4 Runoff volume after reduction (in.)	0.00	-	0.09		N/A N/A	-	N/A N/A	-	N/A N/A				——U
	18 2.5 CN*	57.97		57.23		N/A		N/A		N/A				
	20 Step 3 - Adjust for Annual Runoff Reduction											_		
	21 3.1 Runoff reduction allowance (%) 22 3.2 Annual runoff after reduction (in.)	0% 4.00	-	4.00		N/A N/A	-	N/A N/A	-	N/A N/A				
	23 3.3 Adjusted ACN	57.97	1	57.97		N/A	1	N/A		N/A				
	24 3.4 Event-based runoit reduction (in.) 25	0.00		0.00		N/A		N/A		N/A				
	26 Step 4 - Colculate Fv with BMP Reductions 4.1 Fv runoff volume after all reductions (in.)	4.00		3.91		N/A		N/A		N/A		1		
	28 4.2 Total Fv runoff reduction (%)	0%	1	2%		N/A	1	N/A	-	N/A				
	30	57.37		57.45		n/A		n/A		N/8				
	31 32													
	33													
	35													
	30													
	38 39													
	CA.RCN LOD OLOD	RPV TM		URMM Repo	rt Data & Docum	entation	(+)	: •						•
	Ready C Accessibility: Investigate										=	(II) E) -		- + 90%
											DELAWARE	DEPARTM	INT OF	
											NATURAL ENVIRONM	RESOURCE	S AND	
												LIVIALCO	TROL	

"Fv" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. There are no user-input cells on the "Fv" worksheet. The model has calculated the following results:

- Fv runoff volume: 4.00"
- Fv runoff volume after BMP 1: 4.00" (0% reduction)
- Fv runoff volume after BMP 2: 3.91" (2% reduction)

The runoff reduction values for the Fv event are adjusted downward, as discussed in the Fv Worksheet overview section.

	Image: Section of the section of t	Eggin 00 - 0
"DURMM Report"	3 Control Series - Part Revision (Part Revision (Pa	
Worksheet	0 000° Data 100° D	
	30 Product Concentral Found PDPS 40 Product Concentral Point (1) 41 Product Concentral Point (1) 42 Product Concentral Point (1) 43 Product Concentral Point (1) 44 Product Point Point (1) 45 Product Point Point (1) 46 Product Point Point (1) 47 Product Point Point (1) 48 Product Point Point (1) 49 Product Point Point (1) 40 Product Point Point (1) 41 Product Point (1) 41 Product Point (1) 41 Product Point (1) 41 Product Point (1) 42 Product Point (1) 43 Product Point (1) 44 Product Point (1) 45 Product Point (1) 45 Product Point (1) 45 Product Point (1) <td></td>	
	B Concentration Execution (Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	
		OFLAWARE DEPARTMENT OF NATURAL RESOURCES AND WINGOWMENTAL CONTROL

"DURMM Report" Worksheet

The "DURMM Report" worksheet summarizes the results from the other worksheets. Information is filled into the cells automatically as the user progresses from worksheet to worksheet. The report includes the runoff volumes for the RPv, Cv and Fv, as well as the reductions for the various BMPs selected to manage the subarea. It also summarizes whether the site meets the required runoff reduction for the RPv and the required TMDL pollutant load reductions.

The next section of the report summarizes the adjustments to the RCN for the Cv and Fv that can be used for more detailed hydrologic and hydraulic modeling in more complex situations. These adjustments account for the equivalent lower RCN that results from using runoff reduction techniques.

In this example, the designer was able to show at the concept level that the use of runoff reduction practices <u>could</u> meet both the runoff reduction requirements of the 2019 DSSR and the TMDL goals in the watershed. The results of the Concept Level Analysis will need to be verified through the more detailed Design Level Analysis to show the site complies with the requirements of the 2019 DSSR.

Example #2: Design Level Analysis

The procedures outlined in the previous section will now be used to perform a more detailed design level analysis for the fictional land development project "Broadkill Estates".

NOTE: This approach can also be used for a Total Site Analysis as noted later in this Quick-Start Guide.

<u>Site Layout</u>

At the design level, the lot and road layout have typically been determined, as well as the general proposed grading and drainage patterns.

Hydrologic Analysis

The concept level analysis assumed an artificial drainage boundary that coincided with the parcel boundary. This is rarely the case in practice. The more typical situation is illustrated by the "Broadkill Estates" example site in which significant offsite areas drain through the site. In addition, there are incidental areas which drain onto the site around the site boundary. Both these situations must ultimately be considered in the final design. For the purposes of this example, it will be assumed that the larger upstream area will be allowed to pass through the site relatively unmanaged. This will require that the site runoff be managed prior to discharge into the tributary stream. Although incidental offsite areas that would be captured by the selected BMP suite do not need to be managed to the same level as the area within the site LOD, they will still need to be accounted for in the design of the BMPs. The following pages illustrate how DURMM v2.5 is used to perform the analysis and check for compliance with the requirements of the DSSR.

Onsite Drainage

As described in the concept level analysis, the site is bisected by a tributary stream that runs from south to north. This site drainage is therefore characterized by a west drainage subarea and an east drainage subarea.

Offsite Drainage

The "Existing Drainage" map included in the Project Application Package is helpful to determine any offsite drainage areas that must be accounted for in the final BMP design for the site.

<u>Site Design</u>

For the purposes of this example, the proposed lot and road layout for the east drainage subarea will be analyzed. The area outside the lots will be designated as common open space.

NOTE: For a Total Site Analysis, both the East and West subareas would need to be combined into a single subarea.

LOD vs. OLOD

The 2019 DSSR require that only those areas that are disturbed during the construction of the project must be managed. When designing BMPs to manage those areas, however, it is likely that undisturbed areas may contribute drainage to them. These undisturbed areas which are outside the limit of disturbance may be either onsite or offsite. DURMM v2.5 can account for this situation by calculating a weighted RPv runoff volume that reflects the LOD runoff as well as the OLOD runoff. The runoff reduction requirement for the LOD is then adjusted for the total contributing area.

For the purposes of this example, the LOD for the east drainage subarea is bounded by the tributary stream and parcel boundary, excluding the wetland area. The OLOD consists of an area to the east of the property boundary that is currently in cropland.

Soils Data - LOD

The LOD area consists mainly of soils in HSG A, with a small area of soils in HSG B adjacent to the stream.

<u>Soils Data – OLOD</u>

The area outside the LOD consists entirely of soils in HSG A.

<u>OLOD – Time of Concentration</u>

DURMM v2.5 is capable of determining a peak discharge for OLOD areas if they will be managed by BMPs that are discharge-based, such as grassed channels and bioswales. This requires the user to enter an estimate of the time of concentration (Tc) for the area outside the LOD. Since the OLOD areas are often irregular in shape, it is adequate for the user to designate a single representative Tc path for the entire OLOD area for any particular subarea under analysis. The Tc path should be carried through to the final onsite stormwater management BMP in the flow path.

Data Inputs - "C.A. RCN" Worksheet

The slide above summarizes the data that will be input to the "C.A. RCN" worksheet. It includes both LOD and OLOD areas.

Data Inputs – "LOD" and "OLOD" Worksheets

The slide above summarizes the data that will be input to the "LOD" and "OLOD" worksheets.

"C.A. RCN" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above for the OLOD area. Note that the user must scroll up to the input cells associated with agricultural land uses. RCN data for the urban land uses within the LOD area are shown on the next page.

"C.A. RCN" Worksheet (cont.)

The remaining data inputs/outputs for this worksheet are illustrated in the slide above. The model has calculated the following results:

- Total Acreage: 41.9
- Weighted RCN: 53

	□ ➔ · ♂ · Q. + D00044-x231-22444.kim - Eccel 2009.kim 00 − 0	×
	File Home Insert PageLayout Formulas Data Review View Help ACR08AT 🗘 Tellime what you want to do	ц,
	ACC IN Carding Section 2 Constraint Constrai	~
	811 · · · · × · · · · · · · · · · · · · ·	~
		W
	1 PROJECT: Broadwill States	
	2 DRAINARS SUBRRIA ID: [Last Chanage - Design Level Analysis 3 LOCATION (County)]: Susses	
	4 UNIT MOROGRAPHE DWV	
	5 LIMITOP UD FURDARCE (CUD) WORKSTEET ISG A ISG A ISG C ISG D ISG C ISG C ISG D ISG C ISG C	
<u>"" ^ "</u>	7 1.1 H5G Area Within LOD (ac) 29.22 2.99 KESE I	
LUD	8 1.2 Pre-Developed Woods/Meadow Within (DD (a) 1.55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	10 1.4.8 Post-Developed Imperviourness Within 100, Option #2 (kc); <u>98</u> 4.28 6.15 11 1.4.6 Post-Developed Imperviourness Within 100, Option #2 (ki) <u>144</u> <u>55</u> <u>06</u>	
Markahaat	12 Step 2 - Subarea LOD Runoff Calculations	
vvorksneer	14 2.1 RCN per H3G 47.54 62.88 0.00 0.00	
	15 2.2 RPyper MSG (in) 0.35 0.79 0.00 0.00 16 2.3 Turner RDN per MSG 88.2 61.00 0.00	
	17 2.4 Target Runoff per HSG (in.) 0.20 0.65 0.00 0.00	
	18	
	20 2.5 Subarea Weighted RCN 48.95	
	21 2.7 Subare Weighted RPv (n.) 0.38 22 2.8 Subare Weighted RPv (n.) 0.24	
	22	
	24 Step 3 - Upstream UD Areas Incomprension DUMMM Report as applied. Area 1 Area 2 Area 4	_
	23 5.4 Upstrem Contributing Area (ac) 24 3.2 Upstrem Contributing Area (ac)	
	27 3.3 Target Runoff for Upstream Area (in.)	
	28 3.4.4djusted RV (n). 29 3.4.4djusted RV (n). 29 3.5.4djusted RV (n). 29 3.5.4djusted RV (n). 29 3.5.4djusted RV (n). 29 3.5.4djusted RV (n). 20 3.5	
	36 3.5.4djuzed Cv (in)	
	31 3.7.4g/usted Fv (in.)	_
	33 Step 4 - RPv Cakulations for Combined LOD	
	34 4.1 Combined LOD (ac) 32.21	
	35 4.2 Weighted RN 44.56 56 4.3 Weighted RN 0.0 38	
	37 4.4 Weighted Target Runoff (in.) 0.24	
	38 4.5 tstimeted Annual Runoff (in) 329 4.4 LSt Simited Annual Runoff (in) 0.14	
	40 4.7 Regid Runoff to be Managed within LOD (%) 35%	
	4	_
	CARCN LOD CLOD ROV (MDL CV FV DURAM Report Data & Documentation) (+)	
	Ready (§ Accessitality: investigate	r 83%
	DELAWARE DEPARTMENT OF	
	NATURAL RESOURCES AND ENVIRONMENTAL CONTROL	

"LOD" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. The model has calculated the following results:

- Total LOD Acreage: 32.21
- Weighted LOD RCN: 48.96
- Weighted RPV runoff volume: 0.38"
- Weighted RPv target runoff volume: 0.24"
- Estimated annual runoff: 3.29"
- Required runoff reduction: 0.14" (36%)

	For Norm Instruct Conv Holp Add/Dial There and argument to difference and argument to di
"OLOD"	1 11/rad/outbody/while) d15 1 11/rad/outbody/while) 257 1 11/rad/outbody/while) 60 1 11/rad/outbody/while) 10
Worksheet	Normalization 12 23 24 25 76 Normalization 11 22 23 24 25 76 Normalization 11 22 23 24 25 76 Normalization 10 22 23 24 25 76 Normalization 10 20 20 10 10 10 State Consequer 10 10 10 10 10 10 10 State Consequer 100 10 10 10 10 10 10 10 State Consequer 100 10 10 10
	Image: Control And Control Cont
	O OW 0 1310546988_158 OW 0 332547686476 0 0 332547686476 0 0 332547686476 0 0 332547686476 0 0 332547686476 0 0 3104686476 0 0 310468777 0 0 31046877777 0 0 310486777777 0 0 3104867777777 0 0 310486777777777 0 0 3104867777777777777 0 0 3104867777777777777777 0 0 310486777777777777777777777777777777777777
	C A KIX UD OLOD PV MOL CY V DUMM Report Data & Doumentation @ IC
	DELAWARE DEPARTMENT OF NATURAL RESOURCES AND LOWIRONMENTAL CONTROL

"OLOD" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. The model has calculated the following results:

- OLOD Acreage: 9.68
- OLOD RCN: 64
- OLOD Tc: 0.98 hrs
- OLOD Peak Discharge (Cv): 5.38 cfs
- OLOD Equiv. Unit Discharge (Cv): 0.56 cfs/ac
- OLOD Peak Discharge (Fv): 15.77 cfs
- OLOD Equiv. Unit Discharge (Fv): 1.63 cfs/ac

	Image: State Page Layout Formular Data Room Water Mainton Control Page Layout Formular Data Room Water Mainton Page Layout Formular Data Room Water Mainton Page Layout Formular Data Page Layout Formular Data Page Layout Page Layout Formular Data Page Layout Page Layout Formular Data Formular Data Page Layout Formular Data Formular Data Formular Data Formular Fo	- • ×		
"RPV"	Dist * K // <th <="" th=""> // // <th <="" t<="" th=""><th>× 8 6 *</th></th></th>	// // <th <="" t<="" th=""><th>× 8 6 *</th></th>	<th>× 8 6 *</th>	× 8 6 *
Worksheet	11 Description 12 13 14 14 14 12 Appendix Applications Approximations approximation			
	2 3 5			
	0 100 100 100 100 100 100 100 100 100 100	▼ ▼ + 70%		
		ND ROL		

"RPV" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. The same BMP treatment train consisting of grassed channels for the road drainage and infiltrating bioretention as used in the concept level analysis will be used. For the East Drainage, the grassed channels are completely within HSG A soils. The infiltrating bioretention facility will be sized to store any residual runoff required to be managed after the reduction from the grassed channels. The model has calculated the following results:

- RPv for total contributing area: 0.45"
- Reduction after BMP 1: 0.07" (16%)
- Reduction after BMP 2: 0.10" (23%)

Note that the required reduction of 0.14" for the 32.21 acre LOD as determined on the "LOD" worksheet has been adjusted to 0.10" for the total contributing area of 41.89 acres. Similarly, the required 36% reduction requirement has been adjusted to 23% based on the combined LOD and OLOD areas. As with the conceptual design, grassed channels and an infiltrating bioretention facility are adequate to meet the runoff reduction requirements for the RPv, thus the residual volume to be managed or offset is "N/A".

NOTE: Select the "No BMP" option if performing a Total Site Analysis. The "RPv Residual Volume" calculated at Step 5.3 is the total runoff volume in cubic feet that is required to be managed for RPv compliance for the entire site. Only those subareas with BMPs then need to be further analyzed in DURMM.

"TMDL" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. The model has calculated the following results:

- Pollutant Load:
 - o 2.67 lb/ac/yr-TN
 - 0.47 lbac/yr-TP
 - 86 lb/ac/yr-TSS
- Pollutant load after BMP 1:
 - o 2.13 lb/ac/yr-TN
 - o 0.37 lb/ac/yr-TP
 - o 69 lb/ac/yr-TSS
- Pollutant load after BMP 2:
 - o 1.84 lb/ac/yr-TN
 - o 0.32 lb/ac/yr-TP
 - 59 lb/ac/yr-TSS

The pollutant loads and reductions are likewise adjusted to account for the total contributing area to the BMPs. For the East Drainage, the grassed channels were adequate to meet both the TN and TP goals for the watershed.

	Proofing Accessibility Insid	art Transi kup ahts Langu	ate New Delete Comment	Previous P	CRUEAL V LEI Show/Hide Ci Iert Show All Com	me what you omment iments	want to do	Niow Edit Uns Ranges Work	Hide book					
	88 ▼ I × √ fr =RPv181	3												~
	A	8	с	D	E	F	G	н	1	J	к	L	M N	Q .
	1 PROJECT	Broadkill	istates											
	3 LOCATION (County):	Sussex	age - Design Level Analy	1919										
	4 CONVEYANCE EVENT (CV) WORKSHEET											_		
	5		BMP 1		BMP 2		BMP 3		BMP 4	-	BMP 5			
	6	Time	8-8 Grassed Channel	Type	2-A Traditional Bioretention -	Type:		Tune		Tune				
LV LV	7 Step 1 - Cokulate Initial Cv	Data	a o grasseo chamiler	Data	DIVICTORIAN -	Data		Deta	-	Deta				
	8 1.1 Total contributing area to BMP (ac)	41.89		41.89		41.89		41.89		41.89				
	y 1.2 initial RCN 10 1.3 10-Year Rainfall (in.)	52.53												
Markahaat	11 1.4 Cv runoff volume (in.)	0.97												
vvorksneel	12													
	13 Step 2 - Adjust for Retention Reduction 14 2.1 Storage volume (cu. ft.)	0.00		5293.00		N/A		N/A		N/A				
	15 2.2 Storage volume (ac-ft)	0.00		0.12		N/A	1	N/A		N/A				
	16 2.3 Storage volume (in.)	0.00		0.03		N/A		N/A		N/A				
	18 2.5 CN*	52.53		51.94		N/A N/A		N/A		N/A				
	19													
	20 Step 3 - Adjust for Annual Runoff Reduction											-		
	22 3.2 Annual runoff after reduction (in.)	0.97		0.97		N/A N/A		N/A N/A		N/A N/A				
	23 3.3 Adjusted ACN	52.50		52.50		N/A	1	N/A		N/A				
	24 3.4 Event-based runoff reduction (in.)	0.00		0.00		N/A		N/A		N/A				
	25 26 Step 4 - Cokulate Cy with BMP Reductions													
	27 4.1 Cv runoff volume after all reductions (in.)	0.97		0.94		N/A		N/A		N/A				
	28 4.2 Total Cv runoff reduction (%)	0%		4%		N/A	-	N/A		N/A				
	30	52.50		51.94		N/A		n/a		n/a		-		
	31													
	32													
	34													
	35													
	37													
	38													
	39		_											
	CA. RCN LOD OLOD	RPv TM0	AL CV FV DU	JRMM Repo	rt Data & Docum	entation	۲	4						Þ
	Ready Ck Accessibility: Investigate											(II) E) -		- + 90%
												E DEPARTMI RESOURCE	ENT OF	

"Cv" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. There are no user-input cells on the "Cv" worksheet. The model has calculated the following results:

- Cv runoff volume: 0.97"
- Cv runoff volume after BMP 1: 0.97" (0% reduction)
- Cv runoff volume after BMP 2: 0.94" (4% reduction)

When the total contributing area consists of both an LOD and an OLOD, the model calculates an adjusted RCN for the combined LOD and OLOD that can be used as input to another DURMM analysis for a downstream subarea or for additional H&H modeling using an external program such as HydroCAD.

	田 ち・ご・R +											Sign in		οx
			a Review View											Ģ
	ABC III III III III III III	D 🛛	6 *		Chow/Hide Co	mment	TTD (TTD	EEQ						
		a			🗌 💭 Show All Com	ments	BCA BCA	- e						
	Statistics Accessibility v Loo	kup	Comment				Sheet Workbook	Ranges Wor	kbook Ink -					
	Proofing Accessibility Insi	ghts Lange	iage	Com	ments		Prote	t	Ink					^
	88 ▼ ! × √ fr =RPv181	8												~
	A A	B	с	D	E	F	G	н	1	J.	к	L	M N	Q A
	1 PROJECT:	Broadkill East Oral	Estates	an la										
	3 LOCATION (County):	Sussex	lage - Design Level Analy	yara										
	4 FLOODING EVENT (Fv) WORKSHEET													
··	5		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5			
" [], <i>,</i> "					2-A Traditional									
	7 Step 1 - Cokulate Initial Fy	Data	8-0 Grassed Channel	Data	biorecention -	Data		Data		Dete				
	8 1.1 Total contributing area to BMP (ac)	41.89		41.89		41.89		41.89		41.89				
	9 1.2 Initial RCN	52.53												
	10 1.3 100-Year Rainfall (in.) 11 1.4 Excurptif volume (in.)	9.2	-											
VVOrkendat	12	0.00		-		-		-		-		-		
I IUI NJIICCL	13 Step 2 - Adjust for Retention Reduction											_		
	14 2.1 Storage volume (cu. ft.)	0.00		5293.00		N/A		N/A		N/A				
	15 2.2 Storage volume (ac-tt) 16 2.3 Storage volume (in.)	0.00		0.12		N/A N/A	-	N/A N/A	-	N/A N/A				
	17 2.4 Runoff volume after reduction (in.)	3.33	1	3.29		N/A		N/A		N/A	1			U
	18 2.5 CN*	\$2.53		52.25		N/A		N/A		N/A				
	19 20 Stan 2 - Adjust for Annual Duroff Peduation													
	21 3.1 Runoff reduction allowance (%)	0%		0%		N/A		N/A		N/A				
	22 3.2 Annual runoff after reduction (in.)	3.33	1	3.33		N/A		N/A	1	N/A	1			
	23 3.3 Adjusted ACN	52.53		52.53		N/A		N/A	-	N/A				
	24 3.4 Event-based runoff reduction (in.) 25	0.00		0.00		N/A		N/A		N/A		-		
	26 Step 4 - Cokulate Fv with BMP Reductions													
	27 4.1 Fv runoff volume after all reductions (in.)	3.33		3.29		N/A		N/A		N/A				
	28 4.2 Total Fv runoff reduction (%)	0%	-	1%		N/A		N/A	-	N/A				
	30	52.55		32.23		n/A		n/A		N/A		-		
	31													
	32													
	33													
	35													
	36													
	37													
	39													
		PD- 1 TM		IDLALA Report	et Data & Dacum	antation	A	1.04	1					
	Cacher Characteria			oronini repu		entation	(I)	: 🖻			999	000 000 -		- 000
	Ready CX Accessionly, intestigate										855	000 EJ -		- + 2V/0
											DELAWARI	DEPARTME	NT OF	
											NATURAL	RESOURCE	SAND	
											ENVIRON	MENTAL COL	ROL	

"Fv" Worksheet

The data inputs/outputs for this worksheet are illustrated in the slide above. There are no user-input cells on the "Cv" worksheet. The model has calculated the following results:

- Fv runoff volume: 3.33"
- Fv runoff volume after BMP 1: 3.33" (0% reduction)
- Fv runoff volume after BMP 2: 3.29" (1% reduction)

As with the Cv, the model calculates an adjusted RCN for the combined LOD and OLOD that can be used as input to another DURMM analysis for a downstream subarea or for additional H&H modeling using an external program such as HydroCAD.

	Image: Solution Coll
	B1 × X
"DURMM Report"	2 Montanian Res 10(Pr)(m) 140 5 C.A.ROV 1535 5 Schwartz 1535 6 A.ROV 1535 7 Schwartz 1535 8 Martin Schwartz 1537 9 Schwartz 1547 9 Schwartz 1537 9 Schwartz<
Worksheet	BPP Data BPP Data
	Display Display <t< th=""></t<>
	ToPAranta ellibri _200 Converse for RFY _200 Result Chin Merritologi (C) 332 Result Chin Merritologi (C) 100 Re

"DURMM Report" Worksheet

In this example, the designer was able to show that the use of runoff reduction practices complies with the requirements of the 2019 DSSR and TMDL pollutant reduction goals for the watershed. Since DURMM v2.5 does not include a BMP design module, the designer must next use an appropriate methodology to ensure the BMPs selected for analysis are designed in accordance with the Post Construction Stormwater BMP Standards & Specifications in accordance with the 2019 DSSR.

Once BMP design has been completed, the user will need to complete the Summary Table for RPv Compliance as shown in the next series of slides.

Summary Table for RPv Compliance

The Summary Table for RPv Compliance is used to demonstrate compliance with the RPv requirements under the 2019 DSSR.

<u>Sheet 1</u>

The cell coloring scheme used in the Summary Table for RPv Compliance is the same as that used in DURMM v2.5:

- Green Cells cells intended for user input
- Cyan Cells cells that contain either pre-set values or secondary output
- Magenta Cells cells that contain calculated results for primary output

Input data for the Summary Table is taken from the DURMM Report worksheet or from an approved hydrologic model. If DURMM v2.5 was used for the BMP analysis, the data from the DURMM Report is entered in the appropriate columns on the Summary Table. A key is included at the bottom of Sheet 1 identifying what cell from the DURMM Report should be entered in which column.

Data entry and results are further coded in accordance with the following coloring scheme:

- Yellow invalid entry; managed volume entered is greater than runoff volume generated in the subarea
- Dk. Green the site has an overall credit
- Red the site has an overall shortfall

<u>Sheet 2</u>

Sheet 2 is only used in those cases where the design-level analysis was done using an external model, such as HydroCAD. Since these external models do not typically model water quality, Sheet 2 is used to determine the pollutant reductions based on the proposed BMPs for the project. The results are then transferred to the appropriate columns on Sheet 1.

ן לאי לי∘ (ב ⊂ DURMM, v2.5 Summary Table, Ref-Latur - Eved	Sign in	œ	- 1	•
File Home Inset Page Layout Formulas Data Review View Developer Help ACROBAT 👰 Tell me what you want to do				, Shar
ASS \checkmark i $\times \checkmark f_{e}$				
A	8	c	D	Ε
1 USER GUIDE FOR DURMM v2.5 SUMMARY TABLE				
2				
The Summary Table is intended to be included in the narrative portion of the Stormwater Management Report to document RPv compliance for a project. If DURMM V2.5 was used exclusively, Sheet 1 is adequate. The footnotes at the bottom of the Summary Table reference the cells where the data can be found. The results are color coded to fullitate the require process are follow:				
a mentane one remet process, as to nons.				
GREEN: Overall credit for project				
6 RED: Overall shortfall for project				
7 YELLOW: Invalid entry: managed volume entered is greater than runoff volume in subarea				
9 Basic instructions for filling out Sheet 1 are as follows:				
If analyzing the entire site LOD to determine total compliance requirements and providing BMDs in only some subareas:				
A in a straty angle in come and code to determine out compliance requirements and providing one's in only some substrates				
A Enter data for entire COD in Section 1 b. Enter managed rundf rolling provided in BMD subareas in Section II. rolumn M				
4 c. Enter TMDi, poliutant loads in columns I-K				
2. If analyzing each subarea individually:				
12 Fotor data for each RMP subarea in Section II only				
7 b. Enter runoff management required in column G				
18 c. Enter runoff management provided in column H				
19 d. Enter TMDL pollutant loads in columns I-K				
20 d. Include both managed and unmanaged subareas				
If HydroCAD was used for any subarea to show compliance, both Sheets 1 and 2 should be included in the narrative. The basic steps for completing Sheet 2 are as follows:				
23				
24 1. Enter data in columns 8 & C the same as Sheet 1				
22 2. Column b is the initial KCN of the contributing area prior to BMP treatment 3. Before to be table at light and fill a colume L. K. with N. T. and TSS and the advection of the approximate BMP: thus numefil reduction BMPs are collision reduction allowance.				
a minimum to the same an ego is and in a column set with Eq. (2) and (3) reactions for appropriate same; the function of the same set of th				
equivalent to them is volume reductions exclusion and the second secon				
28				
^a This is the % volume reduction of the full RPv runoff generated by the contributing drainage area to the BMP, not just that necessary for compliance. In a HydroCAD report, this				
would be shown as the discarded volume from the routing of an infiltrating BMP or as the attenuated volume using the Link Node method for a surface recharge BMP receiving				
extra debit. Any period of the Key volume not captured and immutated with resolution are resoluted politication to account of the BMD and the second politication of the SMD and the second politication of the SMD and the second s				
cature the total most volume from the Box event.				
30				
s Shaet1 Shaet2 Hear Guide (A)				

<u>User Guide</u>

The third worksheet in the Summary Table workbook is a basic user guide for completing Sheet 1 and Sheet 2.

Sheet 1 for Broadkill Estates Example

This slide shows the data for the east drainage from the DURMM v2.5 Report Worksheet for the Broadkill Estates example as it should be entered into Section II of the Summary Table for RPv Compliance. A similar design level analysis would need to be completed for the west drainage and the resulting data also entered into Section II of this Summary Table to show RPv compliance for each sub-area within the total site. All subareas, including any unmanaged areas, must be entered in Section II when using this approach in order to ensure any shortfall is mitigated by BMPs in the managed subareas.

For a Total Site Analysis, the East and West drainage areas would be combined into a single sub-area and results using the "No BMP" option would be entered into Section I of the Summary Table for RPv compliance. Only those subareas that contain BMPs then need to be entered in Section II. DURMM will automatically calculate any shortfall based on the "No BMP" values from Section I. Additional examples of completing the "Summary Table for RPv Compliance" are included in Module 3.

The DURMM v2.5 worksheets would be included with the other H&H computations in the SWM Report.

Include the Summary Table for RPv Compliance in the narrative summary portion of the SWM Report.

There is more than one way to use DURMMv2.5 to demonstrate RPv compliance.

DURMM v2.5 may be used to analyze the entire site LOD to determine the total site RPv volume to be managed, which is often referred to as a Project Level DURMM (PLD).

Alternately, DURMM may be set up to have separate DURMM workbooks for the drainage area of each BMP or BMP treatment train.

Both options require the use of the Summary Table for Site RPv Compliance when the site LOD contains more than one subarea.

When utilizing DURMM v2.5 at the total site analysis level, all the proposed Land Cover Data (in acres) within the project LOD is entered into the RCN tab of one DURMM workbook. With the remainder of the workbook completed, the BMP 1 selection in cell B6 of the RPv Tab should be set to "No BMP". The resulting residual runoff volume in Step 5.3 of the RPv tab is the total runoff volume that must be managed in BMPs or otherwise offset to meet RPv compliance.

First, complete one DURMM workbook for the total site LOD. If Step 5.3 of the RPv tab results in "N/A" and Step 4.8 indicates "yes" no further analysis is necessary. RPv compliance is met based on the land use changes.

Otherwise, once the total site residual runoff volume has been calculated, separate DURMMs are created for each BMP, and/or the BMPs sized using hydrologic modeling software to manage the RPv volume.

Information from the Project Level DURMM is entered into the RPv Summary Table spreadsheet in Section I. Information from the hydrologic modeling of BMPs and/or the BMP DURMM information is entered in Section II. The RPv Summary Table spreadsheet calculates the total RPv credit/shortfall. To comply with DSSR 5.2 or 5.6, the project must show a net RPv credit.

When utilizing DURMM v2.5 at the BMP drainage area level, each BMP or BMP treatment train drainage area has an individual DURMM workbook. Areas within the LOD that do not discharge to a BMP will have a "No BMP" DURMM workbook for the unmanaged areas. Some of the DURMM workbooks, including the "No BMP" workbooks, may show an RPv shortfall and some DURMM workbooks may demonstrate an RPv credit.

Once completed, some of the DURMM workbooks will show a shortfall and some will show credits.

During the design process drainage areas with proposed BMPs may select "No BMP" in the RPv tab to calculate the shortfall in residual runoff volume (Step 5.3), thereby assisting in the sizing of a given BMP. This "No BMP" selection should then be modified to a specific BMP type to calculate the partial or extra RPv credit.

Information from the BMP Drainage Area DURMM workbooks are entered into the RPv Summary Table spreadsheet in Section II. The RPv Summary Table spreadsheet will calculate the total credit or shortfall for the site. To comply with DSSR 5.2 or 5.6, the project must show a net credit.

Multiple BMPs in series (Treatment Train):

When a series of BMPs are receiving the same flow conditions with no other drainage area being discharged to the downstream BMPs, multiple BMPs may be entered within the same DURMM. For example, in the scenario pictured, all of drainage area X is routed first through a filter strip, then to a bioswale, and finally to a bioretention basin. No additional drainage area is discharging to BMPs 2 or 3. The DURMM model for drainage area X would include the filter strip as BMP 1 in the RPv tab, the bioswale as BMP 2 and the bioretention as BMP 3. Refer to Example 2, page 45, in this Module for an example of BMP treatment train set-up in DURMM.

Multiple BMPs in series (Treatment Train):

When a series of BMPs are not all receiving the same flow conditions, a DURMM model should created for each BMP drainage area. Information from an upstream DURMM workbook upstream will be entered into the next downstream DURMM model and so forth. Any new drainage areas unique to a given BMP will be incorporated into that given model. Refer to Example 2D in training Module 2.

In the scenario depicted in the slide above, all of drainage area X is routed through a filter strip, bioswale, and bioretention basin, but drainage area Y is also being managed by the bioretention basin. In this case a DURMM model (DURMM DA-X) for drainage area X would include the filter strip as BMP 1 in the RPv tab, the bioswale as BMP 2.

A separate DURMM model (DURMM DA-Y) would be developed for the bioretention basin, BMP 3. The upstream contributing drainage area from DURMM DA-X will be entered on the CA-RCN and LOD tabs of DURMM DA-Y, reducing in the inlet runoff flows into the bioretention basin from DA-X to account for the upstream management. Only the bioretention BMP is entered into the RPv sheet as BMP1 for DURMM DA-Y.

Results from each DURMM model should be entered into the RPv Summary Table.

(THIS CONCLUDES THE DURMM V2.5 QUICK-START GUIDE. FOR ADDITIONAL INFORMATION CONTACT THE DELAWARE SEDIMENT & STORMWATER PROGRAM.)