Project/Activity Name:

Delaware Department of Natural Resources and Environmental Control Delaware Coastal Management Program

nitialReview:	
Updated On:	
Complete:	
Officia	l Use Only

Coastal Zone Management Act Federal Consistency Form

This document provides the Delaware Coastal Management Program (DCMP) with a Federal Consistency Determination or Certification for activities regulated under the Coastal Zone Management Act of 1972, as amended, and NOAA's Federal Consistency Regulations, 15 C.F.R. Part 930. Federal agencies and other applicants for federal consistency are not required to use this form; it is provided to applicants to facilitate the submission of a Consistency Determination or Consistency Certification. In addition, federal agencies and applicants are only required to provide the information required by NOAA's Federal Consistency Regulations.

I. Federal Agency or Non-Federal Applicant Contact Information:			
Con	tactName/Title:		
Fed	eral Agency Contractor Name (if applicable):		
(eith	Federal Agency: (either the federal agency proposing an action or the federal agency issuing a federal license/permit or financial assistance to a non-federal applicant)		
Mail	ingAddress:		
City	State:	Zip Code:	
E-m	ail:	Telephone #:	
II.	Federal Consistency Category:		
	Federal Activity or Development Project (15 C.F.R. Part 930, Subpart C)	Federal License or Permit Activity (15 C.F.R. Part 930, Subpart D)	
	Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E)	Federal License or Permit Activity which occurs wholly in another state (interstate consistency	
	Federal Financial Assistance (15 C.F.R. Part 930, Subpart F)	activities identified in DCMP's Policy document)	
III.	Detailed Project Description (attach additional	I sheets if necessary):	
		1	

•	General Analysis of Coastal Effects (attach additional sheets if flecessary).
	Detailed Analysis of Consistency with DCMP Enforceable Policies (attach additional sheets if necessary):
Ċ	licy 5.1: Wetlands Management
C	licy 5.2: Beach Management
C	licy 5.3: Coastal Waters Management (includes wells, water supply, and stormwater management. Attach additional sheets if necess
_	licy 5.4: Subaqueous Land and Coastal Strip Management
_	ncy 5.4. Subaqueous Land and Soastal Strip Management
o	licy 5.5: Public Lands Management

Policy 5.6: Natural Lands Management			
Policy 5.7: Flood Hazard Areas Management			
Policy 5.8: Port of Wilmington			
Policy 5.9: Woodlands and Agricultural Lands Management			
Policy 5.10: Historic and Cultural Areas Management			
Policy 5.11: Living Resources			
Policy 5.12 Mineral Resources Management			

Policy 5.13: State Owned Coastal Recreation and Conservation		
Policy 5.14: Public Trust Doctrine		
Policy 5.15: Energy Facilities		
1 oney error and gy r demands		
Delian F 40. Dublic bone of mant		
Policy 5.16: Public Investment		
Policy 5.17: Recreation and Tourism		
Policy 5.18: National Defense and Aerospace Facilities		
Delieu E 40: Transportation Escilitics		
Policy 5.19: Transportation Facilities		

Policy 5.20: Air Quality Management	
Policy 5.21: Water Supply Management	
Policy 5.22: Waste Disposal Management	
Policy 5.23: Development	
Policy 5.24: Pollution Prevention	
Policy 5.25: Coastal Management Coordination	
VI. JPP and RAS Review (Check all that apply):	
Has the project been reviewed in a monthly Joint Permit Processing and/or Regulatory Advisory Service meeting	12
) :
☐ JPP ☐ RAS ☐ None	
*If wes, provide the date of the meeting(s):	

. VII.	Statement of Certification/Determination and Signature (Check one and sign below):			
	FEDERAL AGENCY CONSISTENCY DETERMINATION. Based upon the information, data, and analysis included herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity is consistent to the maximum extent practicable with the enforceable policies of the Delaware Coastal Management Program.			
	OR			
	FEDERAL AGENCY NEGATIVE DETERMINATION. Based upon the information, data, and analysis include herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity will not have any reasonably foreseeable effects on Delaware's coastal uses or resources (Negative Determination) and is therefore consistent with the enforceable policies of the Delaware Coastal Management Program.			
	OR			
	NON-FEDERAL APPLICANT'S CONSISTENCY CERTIFICATION. Based upon the information, data, an analysis included herein, the non-federal applicant for a federal license or permit, or state or local government agency applying for federal funding, listed in (I) above, finds that this proposed activity complies with the enforceable policies of the Delaware Coastal Management Program and will be conducted in a manner consistent with such program.			
	Signature: Zuzne Baeh	-		
Print	ed Name: Eugene Bailey		Date: 09 2620	
Fede	or objection to this consistency determination or consistency certification in accordance with the deadlines listed below. Concurrence will be presumed if the state's response is not received within the allowable timeframe. Federal Consistency Review Deadlines:			
	Federal Activity or Development Project (15 C.F.R. Part 930, Subpart C) 60 days with option to extend an additional 15 days or stay review (15 C.F.R. § 930.41)			
Federal License or Permit (15 C.F.R. Part 930, Subpart D)			Six months, with a status letter at three months. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.63)	
1	Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E) Six months, with a status letter at three months. If three month status letter not issued, then concurrence presumed. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.78)			
Federal Financial Assistance to State or Local Governments (15 C.F.R. Part 930, Subpart F) State Clearinghouse schedule			State Clearinghouse schedule	
OFFI	OFFICIAL USE ONLY:			
Revi	ewed By: Fed Co	on ID:	Date Received:	
Publ	c notice dates: to		Comments Received: NO YES [attach comments]	
Decision type: (objections or conditions attach details)			_ Decision Date:	

SECTION 3

COASTAL ZONE MANAGEMENT ACT FEDERAL CONSISTENCY FORM ADDENDUM

5.3 COASTAL WATERS MANAGEMENT

- 5.3.1.1 The development and utilization of the land and water resources of the State shall be regulated to ensure that water resources are employed for beneficial uses and not wasted, to protect beneficial uses of water resources, and to assure adequate water resources for the future. [7 Del.C. §6001 (a)(2)(3)]
- Response: Since the continued operation of the Port of Wilmington, an economic focal point of the Delaware economy, is dependent upon this project's completion, this project constitutes a beneficial use.
- 5.3.1.2 The water resources of the State shall be protected from pollution which may threaten the safety and health of the general public. [7 Del.C. §§6001 (a)(5)(c)(2)]
- Response: Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources.
- 5.3.1.3 The coastal water resources of the State shall be protected and conserved to assure continued availability for public recreational purposes and for the conservation of aquatic life and wildlife. [7 Del.C. §6001(a)(4)]
- Response: Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.
- 5.3.1.4 It is the policy of the DNREC to maintain within its jurisdiction surface waters of the State of satisfactory quality consistent with public health and public recreation purposes, the propagation and protection of fish and aquatic life, and other beneficial uses of the water. [7 DE Admin. Code 7401 subsection 1.1]
- Response: Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources. Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.

H-7912 SECTION 3 - 1 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.5 The designated uses applicable to the various stream basins represent the categories of beneficial use of waters of the State which must be maintained and protected through application of appropriate criteria. Such uses shall include public water supply; industrial water supply; primary contact recreation involving any water-based form of recreation, the practice of which has a high probability for total body immersion or ingestion of water such as swimming and water skiing; secondary contact recreation involving a water-based form of recreation, the practice of which has a low probability for total body immersion or ingestion of water such as wading, boating and fishing; maintenance, protection and propagation of fish, shellfish, aquatic life and wildlife preservation; agricultural water supply; and waters of exceptional recreational or ecological significance (ERES waters). [7 DE Admin. Code 7401 Sections 2.0 and 3.0]

Response:

Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources. Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.

5.3.1.6 Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. Degradation of water quality in such a manner that results in reduced number, quality, or river or stream mileage of existing uses shall be prohibited. Degradation shall be defined for the purposes of this section as a statistically significant reduction, accounting for natural variations, in biological, chemical, or habitat quality as measured or predicted using appropriate assessment protocols. [7 DE Admin. Code 7401 subsection 5.1]

Response:

Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources.

5.3.1.7 Where the quality of the waters exceeds levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that water quality shall be maintained and protected. In the case of E.R.E.S. waters, existing quality shall be maintained or enhanced. Limited degradation may be allowed if the DNREC finds, after review, that allowing lower water quality would result in a substantial net environmental or public health benefit and does not impede existing uses in the area in which the waters are located In while allowing for full protection of existing uses. [7 DE Admin. Code 7401 subsections 5.2 and 5.6]

Response: The Christina River is not an E.R.E.S. waterbody, therefore this does not apply.

H-7912

SECTION 3 - 2

5.3.1.8 Where high quality waters constitute an outstanding national resource, such as waters of national parks and wildlife refuges, existing quality shall be maintained and protected. [7 DE Admin. Code 7401 subsection 5.3]

Response: The project area does not lie within a national park or wildlife refuge, therefore this rule does not apply.

5.3.1.9 In those cases where potential water quality impairment associated with a thermal discharge is involved, the antidegradation policy and implementing method shall be consistent with Section 316 of the Water Quality Act of 1987. [7 DE Admin. Code 7401 subsection 5.4]

Response: No thermal discharges are associated with this project.

- 5.3.1.10 All surface waters of the State shall be free from substances that are attributable to wastes of industrial, municipal, agricultural or other human-induced origin. Examples include but are not limited to the following:
 - 5.3.1.10.1 Floating debris, oil, grease, scum, foam, or other materials on the water surface that may create a nuisance condition, or that may in any water interfere with attainment and maintenance of designated uses of the water.
 - 5.3.1.10.2 Settleable solids, sediments, sludge deposits, or suspended particles that may coat or cover submerged surfaces and create a nuisance condition, or that may in any way interfere with attainment and maintenance of designated uses of the water.
 - 5.3.1.10.3 Any pollutants, including those of a thermal, toxic, corrosive, bacteriological, radiological, or other nature that may interfere with attainment and maintenance of designated uses of the water, may impart undesirable odors, tastes, or colors to the water or to aquatic life found therein, may endanger public health, or may result in dominance of nuisance species. [7 DE Admin. Code 7401 subsection 4.1]

Response: It is the priority of the applicant to minimize the release of settleable solids and suspended sediment that is typically a result of dredging. While it is not possible to completely eliminate it, hydraulic dredging typically minimizes the resuspension of sediment within the water column. Hydraulic dredging will be conducted in a controlled manner and the process will be observed by attendants at the surface to ensure that activities do not result in an unforeseen release of sediment into the water column. If this should occur, dredging will halt until turbidity dissipates and the dredger and line will be inspected for defects.

H-7912

SECTION 3 - 3

Regulatory mixing zones shall not impinge upon areas of special importance, including but not limited to drinking water supply intakes, nursery areas for aquatic life or waterfowl, approved or conditional shellfish areas or heavily utilized primary contact recreation areas. Zones shall not be located in such a manner as to interfere with passage of fishes or other organisms. Shore-hugging plumes should be avoided to the maximum extent practicable. In areas where multiple discharges are located in proximity, overlapping discharge plumes may occur. In such instances, the thermal mixing zone, which is not to exceed 25% of the cross-sectional area of the receiving water as measured from the point of discharge to the opposite shore, may be reduced to preclude acute toxicity in the overlap areas, or to ensure an adequate zone of passage for fish. [7 DE Admin. Code 7401 subsections 6.2 and 6.4]

Response: This rule does not apply as there is no discharge associated with a mandated mixing zone.

5.3.1.12 Streams with a designated use of public water supply shall provide waters of acceptable quality for use for drinking, culinary or food processing purposes after application of approved treatment equivalent to coagulation, filtration, and disinfection (with additional treatment as necessary to remove naturally occurring impurities). Water shall be free from substances (except natural impurities) that, alone or in combination with other substrates, result in:

- 5.3.1.12.1 Unacceptable levels of taste or odor in the treated water;
- 5.3.1.12.2 Significant disruption of the treatment processes at the treatment facility; or
- 5.3.1.12.3 Concentrations of toxic substances in the treated water that may be harmful to human health. [7 DE Admin. Code 7401 subsection 4.2]

Response: This rule does not apply.

5.3.1.13 Designated exceptional recreational or ecological significance (ERES) waters shall be accorded a level of protection and monitoring in excess of that provided most other waters of the State. These waters are recognized as special natural assets of the State, and must be protected and enhanced for the benefit of present and future generations of Delawareans. [7 DE Admin. Code 7401 subsection 5.6.1.1]

Response: The Christina River is not an ERES waterbody, therefore this does not apply.

5.3.1.14 ERES waters shall be restored, to the maximum extent practicable, to their natural condition. To this end, the DNREC shall, through adoption of a pollution control strategy for each ERES stream basin, take appropriate action to cause the systematic control, reduction, or removal of existing pollution sources, and the diversion of new pollution sources, away from ERES waters. [7 DE Admin. Code 7401 subsection 5.6.1.2]

Response: The Christina River is not an ERES waterbody, therefore this does not apply.

H-7912 SECTION 3 - 4 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.15 The discharge of oil from a vessel, truck, pipeline, storage, tank or tank car which causes or poses a threat of making a film on, emulsion in or sludge beneath the waters of the State or its shoreline shall be prohibited. [7 Del.C. §§6203, 6202(7)(5)(9)]

Response: This rule does not apply.

- 5.3.1.16 At a minimum, any discharge of liquid waste - sewage, industrial waste or other waste to State waters shall be subject to effluent limitations, discharge requirements and any alternate effluent control strategy that reflect a practicable level of pollutant removal technology. For the purposes of this section, a practicable level of pollutant removal technology is defined as the application of "best" treatment technology, control measures and practices, including pollution prevention, available to prevent, manage, reduce or remove pollutants taking into account the cost of applying such technology, control measures or practices in relation to the effluent reduction benefits to be achieved, the age of equipment and facilities involved, the process(es) employed, the engineering aspects of applying the various types of control, process changes, pollution prevention measures, non-water quality impacts (e.g. energy requirements) and other factors deemed appropriate. For the parameters, BOD5 (5-day biochemical oxygen demand) and suspended solids, the degree of removal reflecting an application of a practicable level of pollutant removal technology shall be at least 85% of the BOD5 and suspended solids contained in the influent to the treatment works or prior to application of the removal technology, control measures or practices. For discharges of sewage to State waters, a practicable level of pollutant removal technology shall be secondary treatment and disinfection.
 - 5.3.1.16.1 No person shall cause or permit any discharge of liquid waste to the Delaware River, the Delaware Bay, or Atlantic Ocean except liquid waste which has received at least secondary treatment and disinfection.
 - 5.3.1.16.2 No person shall cause or permit discharge of liquid waste to a lake or a pond or any tributary thereof, except liquid waste which has received at least secondary treatment, filtration, nutrient removal and disinfection.
 - 5.3.1.16.3 No person shall cause or permit any discharge of liquid waste to the Little Assawoman Bay, Indian River Bay, or to Rehoboth Bay, including any tributaries to those waterbodies, except liquid waste which has received at least secondary treatment, filtration, and disinfection.
 - 5.3.1.16.4 No person shall cause or permit any discharge of liquid waste to a stream, tidal or non-tidal, except liquid waste which has received at least secondary treatment, filtration, and disinfection. This subsection shall not govern discharge into the Delaware River, the Delaware Bay or the Atlantic Ocean, which shall be governed by subsection 5.3.1.16.1. For existing facilities, filtration may not be required if the existing facility has demonstrated the

H-7912 SECTION 3 - 5 DNREC DREDGING PERMIT SEPTEMBER 2020

ability to continuously meet secondary treatment levels. [7 DE Admin. Code 7201 subsections 7.1 and 7.2]

Response:

If a discharge of decant water from the designated Wilmington Harbor South and/or Pedricktown Confined Disposal Facility is necessary, it will be monitored for contaminants. The dredge material has been tested using the modified elutriate method, which simulates the constituents that are to be expected in decant water. The slurry released into the confined disposal area will be given sufficient time for solids to settle before decant water is released using an adjustable weir system to calibrate the discharge structure to the level necessary to release only water. The slurry will be monitored visually for settlement and the appropriate time for release will then be determined.

5.3.1.17 In the event that Delaware Surface Water Quality Standards are not achieved through application of the technology based requirements, additional effluent limitations and treatment requirements shall be imposed to assure compliance with the Surface Water Quality Standards. Such additional effluent limitations and treatment requirements must control all pollutants or pollutant parameters which the DNREC determines are or may be discharged at a level which will cause, have the reasonable potential to cause or significantly contribute to an excursion of any numerical or narrative water quality criterion contained within Delaware's Surface Water Quality Standards. The need for additional effluent limitations and treatment requirements shall be based upon the results of chemical and/or biological tests in conjunction with studies or analyses designed to assess the potential of the discharge to cause or contribute to in-stream excursions of Delaware's Surface Water Quality Standards. [7 DE Admin. Code 7201 subsection 8.1]

Response: Treatment of decant water is not anticipated to be necessary and therefore is not proposed. This rule does not apply currently.

5.3.1.18 Where conflicts develop between stated surface water uses, stream criteria, or discharge criteria, designated uses for each segment shall be paramount in determining the required stream criteria, which, in turn, shall be the basis of specific discharge limits or other necessary controls. [7 DE Admin. Code 7401 subsection 1.2]

Response: This rule does not apply.

- No person shall, without first having obtained a permit from the Delaware Department of Natural Resources, undertake any activity:
 - 5.3.1.19.1 In a way which may cause or contribute to the discharge of an air contaminant;
 - 5.3.1.19.2 In a way which may cause or contribute to the discharge of a pollutant into any surface or ground water;

H-7912 SECTION 3 - 6 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.19.	.3	In a way which may cause or contribute to withdrawal of ground water or surface water or both;
5.3.1.19.	.4	In a way which may cause or contribute to the collection, transportation, storage, processing or disposal of solid wastes, regardless of the geographic origin or source of such solid wastes;
5.3.1.19.	.5	To construct, maintain or operate a pipeline system including any appurtenances such as a storage tank or pump station;
5.3.1.19.	.6	To construct any water facility; or
5.3.1.19.	.7	To plan or construct any highway corridor which may cause or contribute to the discharge of an air contaminant or discharge of pollutants into any surface or ground water. [7 Del.C. § 6003(a)]
Response:		oplicant has applied for a Wetlands and Subaqueous Lands Permit from atte of Delaware. No other permit is necessary.
5.3.1.20	Depart	erson shall, without first having obtained a permit from the Delaware tment of Natural Resources and Environmental Control, construct, install, e, modify or use any equipment or device or other article:
5.3.1.20.	.1	Which may cause or contribute to the discharge of an air contaminant;
5.3.1.20.	.2	Which may cause or contribute to the discharge of a pollutant into any surface or groundwater;
5.3.1.20.	.3	Which is intended to prevent or control the emission of air contaminants into the atmosphere or pollutants into surface or groundwaters;
5.3.1.20.	.4	Which is intended to withdraw ground water or surface water for treatment and supply; or
5.3.1.20.	5	For disposal of solid waste. [7 Del.C. §6003(b)]

Response: This rule does not apply.

Regulatory variances for the activities identified in the preceding policy statement may be granted pursuant to 7 Del.C. §6011 if all of the following conditions exist in the opinion of the Secretary of the Delaware Department of Natural Resources and Environmental Control:

H-7912

SECTION 3 - 7

5.3.1.21.1	Good faith efforts have been made to comply with these policies;
5.3.1.21.2	The cost of compliance is disproportionately high with respect to the benefits which would be bestowed by compliance, or the necessary technology is unavailable;
5.3.1.21.3	Available alternative operating procedures or interim control measures are being or will be used to reduce adverse impacts; and
5.3.1.21.4	The activities are necessary to the national security or to the lives, health, or welfare of the occupants of Delaware. [7 Del.C. §6011(b)]
Response:	A variance is not requested, therefor this rule does not apply.
5.3.1.22	No permit for the activities identified above shall be granted unless the activities are consistent with county and municipal zoning regulations. [7 Del.C. §6003(c)(1)]
Response:	County and municipal zoning approval is not necessary for maintenance dredging at the Port of Wilmington.
5.3.1.23	No person or entity shall commence construction, replacement, or operation of any of the following without first having obtained a permit from DNREC:
5.3.1.23.	1 Sewer;
5.3.1.23.	Any liquid waste collection or conveyance facilities such as wastewater pump stations and force mains;
5.3.1.23.	3 Liquid waste treatment facilities;
5.3.1.23.4	Any surface impoundment for liquid waste or
5.3.1.23	Any bulk storage, bulk transfer or pipeline facility. [7 DE Admin. Code 7201 Section 2.0 and subsection 4.2]
Response:	This rule does not apply.
5.3.1.24	No person shall construct, install, modify, rehabilitate, or replace an on-site wastewater treatment and disposal system or construct or place any dwelling, building, mobile home, manufactured home or other structure capable of discharging wastewater on-site unless such person has a valid license and permit issued by the DNREC. [7 DE Admin. Code 7101 subsection 3.31.1]
Response:	This rule does not apply.

SECTION 3 - 8

H-7912

DNREC DREDGING PERMIT

SEPTEMBER 2020

No person shall cause or permit to be discharged, thrown, or dumped into any waters or any drainage ditch in the State any garbage, refuse, dead animal, poultry, trash, carton, bottle, container, box, lumber, timber, paper, or light material or other solid waste. [7 DE Admin. Code 7201 subsection 3.2.6]

Response: This rule does not apply.

5.3.1.26 No person or entity shall:

- 5.3.1.26.1 Engage in the drilling, boring, coring, driving, digging, construction, installation, removal, or repair of a water well or water test well, except as or under the supervision of a licensed water well contractor;
- 5.3.1.26.2 Construct, repair, install or replace any part of a septic tank system except by or under the supervision of a licensed septic tank installer; or
- 5.3.1.26.3 Operate any liquid waste treatment system without a licensed liquid waste treatment plant operator.
- 5.3.1.26.4 No permits or licenses shall be issued for these activities unless the DNREC finds that the applicant is prepared and willing to conduct such activities in a manner which is consistent with the CMP policies. [7 Del.C. §6023; Delaware Executive Order 43, August 15, 1996]

Response: This rule does not apply.

5.3.1.27 The person who has caused the contamination of a person's drinking water supply by contaminant other than bacteria, viruses, nitrate or pesticides may be required to provide, at no cost to each person who has had his drinking water supply contaminated, an interim water supply that is of a quality and quantity to meet said person's needs as shall be determined by the Secretary of DNREC, in addition to the dates on which the interim water supply shall commence and be terminated. [7 Del.C. §6037]

Response: This rule does not apply.

5.3.1.28 No permits shall be issued for the discharge of any radiological, chemical or biological warfare agents or high-level radioactive wastes into State waters. [7 DE Admin. Code 7201 subsection 3.2.8.1]

Response: This rule does not apply.

No person shall cast, put, place, discharge in or permit or suffer to be cast, put, placed, discharged in or to escape into any running stream of water within the limits of this State, from which stream the inhabitants of any borough, town or city within this State are supplied wholly or in part with water for and as drink or beverage,

H-7912 SECTION 3 - 9 DNREC DREDGING PERMIT SEPTEMBER 2020

any dye-stuffs, drugs, chemicals or other substance or matter of any kind whatsoever whereby the water so supplied as and for a drink or beverage is made and becomes noxious to the health or disagreeable to the senses of smell or taste. [16 Del.C. §1301]

Response: This rule does not apply.

5.3.1.30 Water delivered to every consumer by any public water supplier shall be so protected by natural means, by proper constructions or by treatment so as maintain or increase water quality above the level determined to be safe and not to negatively impact users of water from such systems, either directly or indirectly. [16 DE Admin. Code 4462 subsection 3.3]

Response: This rule does not apply.

5.3.1.31 After July 1, 1991, unless a particular activity is exempted by these regulations, a person may not disturb land without an approved sediment and stormwater management plan from the appropriate plan approval agency. [Delaware Sediment and Stormwater Regulations, Section 8(1), amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.32 The following activities are exempt from both sediment control and stormwater management requirements:
 - 5.3.1.32.1 Agricultural land management practices, unless the local Conservation District or the DNREC determines that the land requires a new or updated soil and water conservation plan, and the owner or operator of the land has refused either to apply to a Conservation District for the development of such a plan, or to implement a plan developed by a Conservation District;
 - 5.3.1.32.2 Developments or construction that disturbs less than 5,000 square feet.
 - 5.3.1.32.3 Land development activities which are regulated under specific State or federal laws which provide for managing sediment control and stormwater runoff, such as specific permits required under the National Pollutant Discharge Elimination System (NPDES) when discharges are a combination of stormwater and industrial or domestic wastewater.
 - 5.3.1.32.4 Projects which are emergency in nature that are necessary to protect life or property such as bridges, culvert, or pipe repairs and above ground or underground electric and gas utilities or public utility restoration; and

H-7912

SECTION 3 - 10

5.3.1.32.5 Qualifying commercial forest harvesting operations. [Delaware Sediment and Stormwater Regulations, subsection 3.1 amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.33 A project may be eligible for a waiver of stormwater management for both quantitative and qualitative control if the applicant can demonstrate that:
 - 5.3.1.33.1 The proposed project will return the disturbed area to a pre-development runoff condition and the pre-development land use is unchanged at the conclusion of the project; or
 - 5.3.1.33.2 The proposed project consists of a linear disturbance of less than ten (10) feet in width; or
 - 5.3.1.33.3 The project is for an individual residential detached unit or agricultural structure, and the total disturbed area of the site is less than one acre; or
 - 5.3.1.33.4 The proposed project is for agricultural structures in locations included in current soil and water conservation plans that have been approved by the appropriate Conservation District. [Delaware Sediment and Stormwater Regulations, subsection 3.2.1, amended April 11, 2005]

Response: This rule does not apply.

All sediment and stormwater management plans shall be designed to implement water quality control measures to minimize, to the maximum extent possible, degradation of downstream water quality and habitat. Unless a particular activity is exempt, no person may disturb land without an approved sediment and stormwater management plan. [Delaware Sediment and Stormwater Regulations, subsection 10.2.2, amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.35 Water quantity control is an integral component of overall stormwater management. Control of peak discharges will, to some extent, prevent increases in flooding. The following design criteria for peak flow control are established for water quantity control purposes, unless a waiver is granted based on a case-by-case basis:
 - 5.3.1.35.1 Projects in New Castle County that are located north of the Chesapeake and Delaware Canal shall not exceed the post-development peak discharge for the 2, 10, and 100 year frequency storm events at the pre-development peak discharge rates for the 2, 10, and 100 year frequency storm events.

H-7912 SECTION 3 - 11 DNREC DREDGING PERMIT SEPTEMBER 2020

- Projects in New Castle County that are located south of the Chesapeake and Delaware Canal, Kent County, and Sussex County shall not exceed the post-development peak discharge for the 2 and 10 year frequency storm events at the pre-development peak discharge rates for the 2 and 10 year frequency storm events.
- 5.3.1.35.3 Watersheds, other than Designated Watersheds or subwatersheds that have well documented water quantity problems may have more stringent or modified design criteria that are responsive to the specific needs of that watershed. Modified criteria for that watershed must receive Departmental approval, and all projects reviewed and approved by the appropriate plan approval agency shall meet or exceed the modified criteria. Proposed modification of criteria for a watershed shall be subject to public review and comment prior to implementation. [Delaware Sediment and Stormwater Regulations, subsection 10.3.4, amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.36 Water quality control is also an integral component of stormwater management. Control of water quality on-site will prevent further degradation of downstream water quality. The following design criteria are established for water quality protection unless a waiver or variance is granted on a case-by-case basis.
 - 5.3.1.36.1 In general, the preferred option for water quality protection shall be those practices collectively referred to as "Green Technology BMP's". Other practices shall be considered only after preferred practices have been eliminated for engineering or hardship reasons as approved by the appropriate plan approval agency.
 - 5.3.1.36.2 Water quality be designed to manage the rate and volume of flow from the 2.0" NRCS Type II rainfall event, up to a maximum of 1.0" and
 - 5.3.1.36.3 Alternative stormwater quality practices may be acceptable to the Department and/or the plan approval agency if the removal efficiency for suspended solids meets or exceeds 80% as demonstrated by scientifically independent evaluation and monitoring performance data,
 - 5.3.1.36.4 The Department and/or plan approval agency may require other acceptable stormwater practices if a receiving waterbody has been identified as impaired or designated with a specific pollutant reduction target.
 - 5.3.1.36.5 Water quality practices may also be acceptable to the Department and/or the plan approval agency if they are designed to reduce pollutant loading from a specific post-development source.

Response: This rule does not apply.

H-7912 SECTION 3 - 12 DNREC DREDGING PERMIT SEPTEMBER 2020

5.4 SUBAQUEOUS LANDS AND COASTAL STRIP MANAGEMENT

The "coastal zone", referred to in these policies as the "coastal strip", is defined as all that area of the State, whether land, water or subaqueous land between the territorial limits of Delaware in the Delaware River, Delaware Bay and Atlantic Ocean, and a line formed by certain Delaware highways and roads. [7 Del.C. §7002]

Response: We are operating under the assumption that the project is within the Delaware coastal zone.

The natural environment of the coastal strip shall be protected from the impacts of heavy industry and oil pollution for the purpose of recreation, tourism, fishing, crabbing, and gathering other marine life useful in food production. [7 Del.C. §§7001, 6201]

Response: As this project does not involve heavy industry and oil pollution, the project is in compliance with this rule.

5.4.3 The need for protection of the natural environment in the coastal strip shall be balanced with the need for new industry in the State's coastal areas [7 Del.C. §7001]

Response: This rule does not apply; no new industry is proposed.

The location, extent and type of industrial development in the coastal strip that will result in the degradation of the Delaware's bays and coastal areas shall be controlled [7 Del.C. §7001; Kreshtool v. Delmarva Power & Light Co., Delaware Super., 310 A. 2d 649(1973)]

Response: This project involves solely existing land use; therefore, the project is in compliance with this rule.

5.4.5 The development and use of offshore oil, gas, and other mineral resources of the State shall be managed to make the maximum contribution to the public benefit and so as to balance their utilization, conservation, and protection [Delaware Oil, Gas and Mineral Exploration Regulations, 2.1. September, 1971]

Response: This rule does not apply.

New heavy industrial uses shall be prohibited in the coastal strip. Such uses are ones characteristically involving more than 20 acres, and characteristically employing smokestacks, tanks, distillation or reaction columns, chemical processing equipment or waste-treatment lagoons. Heavy industrial uses shall not only be defined by their physical characteristics, however, but also by their potential to pollute in the event of human error or equipment failure. Examples of

H-7912 SECTION 3 - 13 DNREC DREDGING PERMIT SEPTEMBER 2020

heavy industry are oil refineries, basic steel manufacturing plants, basic cellulosic pulp-paper mills, and chemical plants such as petrochemical complexes. For purposes of this policy, public sewage treatment or recycling plants shall not be deemed heavy industrial uses. [7 Del.C. §§7002(e), 7003; Kreshtool v. Delmarva Power & Light Co., Delaware Super., 310 A. 2d 649(1973)]

Response: No new heavy industrial uses are proposed for this project.

New manufacturing uses or the expansion of existing manufacturing uses shall be allowed in the coastal strip by permit only, although in no case shall new manufacturing uses be allowed in wetlands or where inconsistent with local zoning regulations. Manufacturing uses are ones which mechanically or chemically transform substances into new products, and characteristically employ power-driven machines and materials handling equipment. Manufacturing uses typically include establishments engaged in assembling components of manufactured products, provided the new products are not fixed improvements. [7 Del.C. §§7002(d)(e), 7004(a)]

Response: New or expanded manufacturing uses are not proposed as part of this project.

- 5.4.8 The following factors shall be considered in passing on requests for permission to construct or operate a manufacturing use in the coastal strip:
 - 5.4.8.1 Environmental impact, including but not limited to, probable air and water pollution likely to be generated by the proposed use under normal operating conditions, as well as during mechanical malfunction and human error; likely destruction of wetlands and flora and fauna; impact of site preparation on drainage of the area in question, especially as it relates to flood control; impact of site preparation and facility operations on land erosion; effect of site preparation and facility operations on the quality and quantity of surface, and subsurface water resources, such as the use of water for processing, cooling, effluent removal, and other purposes; in addition, but not limited to, the likelihood of generation of glare, heat, noise, vibration, radiation, electromagnetic interference and obnoxious odors.
 - 5.4.8.2 Economic effect, including the number of jobs created and the income which will be generated by the wages and salaries of these jobs in relation to the amount of land required, and the amount of tax revenues potentially accruing to State and local government.
 - 5.4.8.3 Aesthetic effect, such as impact on scenic beauty of the surrounding area.
 - Number and type of supporting facilities required and the impact of such facilities on all factors listed in this subsection.

H-7912 SECTION 3 - 14 DNREC DREDGING PERMIT SEPTEMBER 2020

- 5.4.8.5 Effect on neighboring land uses including, but not limited to, effect on public access to tidal waters, effect on recreational areas, and effect on adjacent residential and agricultural areas.
- 5.4.8.6 County and municipal comprehensive plans for the development and/or conservation of their areas of jurisdiction. [7 Del.C. §7004(b)]

Response: New or expanded manufacturing uses are not proposed as part of this project.

New offshore gas, liquid, or solid bulk product transfer facilities shall be prohibited in the coastal strip. Such facilities are docks or port facilities, whether artificial islands or attached to shore by any means, for the transfer of bulk quantities of any substance from vessel to onshore facility or vice versa. However, a docking facility or pier for a single industrial or manufacturing facility and docking facilities located in the City of Wilmington for the Port of Wilmington shall not be prohibited. [7 Del.C. §§7002(f), 7003; Inf. Attorney General Opinion No. 65, October 22, 1974]

Response: New offshore gas, liquid, or solid bulk product transfer facilities are not proposed as part of this project.

5.4.10 Offshore pipelines which transfer bulk quantities of gas, oil, or other liquids to terminals within the coastal strip shall be prohibited. Such pipelines generally shall be allowed if they transit the coastal strip and environmental safeguards are observed. However, if such pipelines represent a significant danger of pollution to the coastal strip or generate pressure for construction of industrial plants in the coastal strip, they shall be prohibited. [7 Del.C. §§7001, 7002, 7003; Inf. Attorney General Opinion No. 77-33, July 6, 1977]

Response: New offshore pipelines which transfer bulk quantities of gas, oil, or other liquids to terminals within the coastal strip are not proposed as part of this project.

A permit may be issued for geological, geophysical and seismic surveys, including the taking of cores and other samples, or the tide and submerged lands of this State. Such permits shall be nonexclusive and shall not give any preferential rights to any oil, gas and sulfur or other mineral lease. After consultation with those agencies of the State having an interest in the possible effects of the leasing, such rules and regulations deemed necessary to protect the fish, game, wildlife and natural resources of the State shall be included in the permit. Survey activities on any area determined to be an area where a lease should not be granted may be prohibited. The permit shall include conditions and payment proper to safeguard the interests of the State. [7 Del.C. §§6103, 6104]

Response: This rule does not apply.

H-7912 SECTION 3 - 15 DNREC DREDGING PERMIT SEPTEMBER 2020

No operations or activities shall be commenced on the drilling, deepening or plugging back of any offshore oil or gas wells located on underwater lands of Delaware without the permission of the State, and unless the activities are conducted in a manner which do not result in the degradation of the State's natural resources. [Delaware Oil, Gas and Mineral Exploration Regulations Numbers I-V, September 1971]

Response: This rule does not apply.

Easements for mineral exploration and exploitation underlying that part of the surface of the Atlantic shore owned by the state shall be permitted at such times and places as necessary to permit the extraction and transportation of oil, gas, sulfur or other minerals from State, federal or private lands, but permanent interference with the surface of the Atlantic shore shall be prohibited. [7 Del.C. §§6102(d), 6118, 6119(a)]

Response: This rule does not apply.

- 5.4.14 Before offering tide and submerged lands for leasing for possible mineral development, or whenever any person files a written application with the Secretary of DNREC requesting that lands be offered for leasing, accompanying the same with the required fee, a public hearing shall be held. After the public hearing, it will be determined whether an invitation for bidding to lease the area under consideration would be in the public interest. Consideration shall be made as to whether a lease or leases of the area under consideration would:
 - 5.4.14.1 Be detrimental to the health, safety, or welfare of persons residing in, owning real property or working in the neighborhood of such areas;
 - 5.4.14.2 Interfere with the residential or recreation areas to an extent that would render such areas unfit for recreational or residential uses or unfit for park purposes;
 - 5.4.14.3 Destroy, impair or interfere with the aesthetic and scenic values of the Delaware coast, or other affected area;
 - 5.4.14.4 Create any air, water and other pollution;
 - 5.4.14.5 Substantially endanger marine life or wildlife;
 - 5.4.14.6 Substantially interfere with commerce or navigation; and
 - 5.4.14.7 Protect State lands from drainage of oil, gas or other minerals or objectionable substances [7 Del.C. §§6107, 6108]

Response: This rule does not apply.

H-7912 SECTION 3 - 16 DNREC DREDGING PERMIT SEPTEMBER 2020

Avoidable pollution or avoidable contamination of the ocean and of the waters covering submerged lands, avoidable pollution or avoidable contamination of the beaches or land underlying the ocean or waters covering submerged lands, or any substantial impairment of and interference with the enjoyment and use thereof, including but not limited to bathing, boating, fishing, fish and wildlife production, and navigation, shall be prohibited and the lessee shall exercise a high degree of care to provide that no oil, tar, residuary product of oil or any refuse of any kind from any well or works shall be permitted to be deposited on or pass into the waters of the ocean, any bay or inlet thereof, or any other waters covering submerged lands; provided, however, that this policy does not apply to the deposit on, or passing into, such water or waters not containing any hydrocarbons or vegetable or animal matter. [7 Del.C. §6119(a)]

Response: The applicant will take all precautions necessary to ensure that avoidable pollution or contamination of waters does not take place.

- 5.4.16 For the purposes of this section, "avoidable pollution" or "avoidable contamination" means pollution or contamination arising from:
 - 5.4.16.1 The acts of omissions of the lessee or its officers, employees or agents; or,
 - 5.4.16.2 Events that could have been prevented by the lessee or its officers, employees or agents through the exercise of a high degree of care. [7 Del.C. §6119(b)]

No response required.

5.4.17 State subaqueous lands within the boundaries of Delaware constitute an important resource of the State and shall be protected against uses or changes which may impair the public interest in the use of tidal or nontidal waters. [7 Del.C. Ch. 72]

Response: All uses are existing, and no new uses are proposed. The project will not impair the public interest in the use of tidal waters.

No person shall deposit material upon or remove or extract materials from, or construct, modify, repair or reconstruct, or occupy any structure or facility upon submerged lands or tidelands without first having obtained a permit, lease or letter of approval from the DNREC. Such permit, lease or letter of approval, if granted, may include reasonable conditions required in the judgment of the DNREC to protect the interest of the public. If it is determined that granting the permit, lease or approval will result in loss to the public of a substantial resource, the permittee may be required to take measures which will offset or mitigate the loss. [7 Del.C. §7205]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed activity.

H-7912 SECTION 3 - 17 DNREC DREDGING PERMIT SEPTEMBER 2020

The extent of jurisdictional authority over public or private subaqueous lands includes any activity in a navigable stream or waterbody, which have a hydrologic connection to natural waterbodies. "Activity" includes, but is not limited to, any human induced action, such as dredging, draining, filling, grading, bulkheading, mining, drilling, extraction of materials or excavation, or construction of any kind, including, but not limited to, construction of a boat ramp or slip, breakwater, residences, bridge, bulkhead, culvert, dam, derrick, deck, groin, jetty, lagoon, gabion, rip-rap, launching facility, marina, mooring facility, pier, seawall, walkway, or wharf. [7 DE Admin Code 7504 Section 1.0 and subsection 2.2.1.1]

No response required.

H-7912

5.4.20	The following types of activities in, on, over, or under private subaqueous lands
	require a permit or letter of authorization from the DNREC:

5.4.20.1	Construction of a convenience structure or boat docking facility.
5.4.20.2	Construction of a shoreline erosion control structure or measure.
5.4.20.3	Dredging, filling, excavating or extracting of materials.
5.4.20.4	Excavation, creation, or alteration of any channel, lagoon, turning basin, pond, embayment, or other navigable waterway on private subaqueous lands which will make connection with public subaqueous lands.
5.4.20.5	Dredging of existing channels, ditches, dockages, lagoons and other navigable waterways to maintain or restore the approved depth and width.
5.4.20.6	Excavation of land which makes connection to public subaqueous lands.
5.4.20.7	The laying of any pipeline, electric transmission line, telephone line, or any other utility structure in, on, over, or under the beds of private subaqueous lands.
5.4.20.8	Installation of temporary or permanent mooring buoys or private marker buoys.
5.4.20.9	Establishment of an anchorage for the use of a mooring for more than two (2) boats or for appurtenant onshore services.
5.4.20.10	Anchoring or mooring a floating platform over private subaqueous lands and for a period of twenty-four (24) consecutive hours or more.
5.4.20.11	Anchoring or mooring any vessel or platform over private subaqueous lands for revenue generating purposes.

SECTION 3 - 18

DNREC DREDGING PERMIT

SEPTEMBER 2020

5.4.20.12 Repair and replacement of existing serviceable structures over private subaqueous lands, except no permit or letter is required for repairs or structural replacements which are above the mean low tide and which do not increase any dimensions or change the use of the structure. [7 DE Admin. Code 7504 subsection 2.3.3.1]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed dredging.

- 5.4.21 The following types of activities on public subaqueous lands require a lease, permit, or letter of authorization from the DNREC:
 - 5.4.21.1 Construction or use of any structure on, in, under, or over public subaqueous lands, including but not limited to, any convenience structures, shoreline erosion control structure or measure, or boat docking facility.
 - 5.4.21.2 Dredging, filling, excavating or extracting of materials.
 - 5.4.21.3 Continuous anchoring or mooring of a commercial vessel used in a commercial activity on or over public subaqueous lands for thirty (30) or more calendar days during any consecutive three (3) months.
 - 5.4.21.4 The laying of any pipeline, electric transmission line, or telephone line in, on, over, or under the beds of public subaqueous lands.
 - 5.4.21.5 Installation of temporary or permanent mooring buoys or private marker buoys.
 - 5.4.21.6 Establishment of an anchorage for mooring more than two (2) boats or which serves as a permanent place for resident vessels.
 - 5.4.21.7 Anchoring or mooring a floating platform over public subaqueous lands and for a period of twenty- four (24) consecutive hours or more.
 - 5.4.21.8 Maintenance dredging of existing or new channels, ditches, dockages, lagoon and other waterways to maintain or restore the approach depth and width.
 - 5.4.21.9 Anchoring or mooring any vessel or platform over public subaqueous lands for revenue generating purposes.
 - Repair and replacement of existing serviceable structures over private subaqueous lands, except no permit or letter is required for repairs or structural replacements which are above the mean low tide and which do not increase any dimensions or change the use of the structure.

H-7912 SECTION 3 - 19 DNREC DREDGING PERMIT SEPTEMBER 2020

5.4.21.11 New dredging activities of channels, ditches, dockage, or other waterways [7 DE Admin. Code 7504 subsection 2.4.2]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed dredging.

- 5.4.22 The DNREC shall consider the public interest in any proposed activity which might affect the use of subaqueous lands. These considerations include, but are not limited to, the following:
 - 5.4.22.1 The value to the State or the public in retaining any interest in subaqueous lands which the applicant seeks to acquire, including the potential economic value of the interest.
 - 5.4.22.2 The value to the State or the public in conveying any interest in subaqueous lands which the applicant seeks to acquire.
 - 5.4.22.3 The potential effect on the public with respect to commerce, navigation, recreation, aesthetic enjoyment, natural resources and other uses of the subaqueous lands.
 - 5.4.22.4 The extent to which any disruption of the public use of such lands is temporary or permanent.
 - 5.4.22.5 The extent to which the applicant's primary objectives and purposes can be realized without the use of such lands (avoidance).
 - 5.4.22.6 The extent to which the applicant's primary purpose and objectives can be realized by alternatives, i.e. minimize the scope or extent of an activity or project and its adverse impact.
 - 5.4.22.7 Given the inability for avoidance or alternatives, the extent to which the applicant can employ mitigation measures to offset any losses incurred by the public.
 - 5.4.22.8 The extent to which the public at large would benefit from the activity or project and the extent to which it would suffer detriment.
 - 5.4.22.9 The extent to which the primary purpose of a project is water-dependent. [7 DE Admin. Code 7504 subsection 4.6]

Response: The proposed project aligns with the public interest in that it allows for the continued operation of the Port of Wilmington, a vital economic engine for the State of Delaware.

H-7912

SECTION 3 - 20

	e DNREC shall consider the impact on the environment, including but not ited to, the following:
5.4.23.1	Any impairment of water quality, either temporary or permanent, which may reasonably be expected to cause violation of the State Surface Water Quality Standards. This impairment may include violation of criteria or degradation of existing uses;
5.4.23.2	Any effect on shell fishing, finfishing, or other recreational activities and existing or designated water uses;
5.4.23.3	Any harm to aquatic or tidal vegetation, benthic organisms or other flora and fauna, and their habitats;
5.4.23.4	Any loss of natural aquatic habitat;
5.4.23.5	Any impairment of air quality either temporarily or permanently, including noise, odors, and hazardous chemicals;
5.4.23.6	The extent to which the proposed project may adversely impact natural surface and groundwater hydrology and sediment transport functions. [7 DE Admin. Code 7504 subsection 4.7.1]
Response: The	rough the course of reviewing our permit application, this rule is satisfied.
	e DNREC shall also consider the following to determine whether to approve the blication:
5.4.24.1	The degree to which the project represents an encroachment on or otherwise interferes with public lands, waterways or surrounding private interests.
5.4.24.2	The degree to which the project incorporates sound engineering principles and appropriate materials of construction.
5.4.24.3	The degree to which the proposed project fits in with the surrounding structures, facilities, and uses of the subaqueous lands and uplands.
5.4.24.4	Whether the proposed activity complies with the State of Delaware's Surface Water Quality Standards both during construction and during subsequent operation or maintenance.
5.4.24.5	The degree to which the proposed project may adversely affect shellfish beds or finfish activity in the area. [7 DE Admin. Code 7504 subsection 4.7.5]
Response: Thi	rough the course of reviewing our permit application, this rule is satisfied.
II 7012	GEOTION 2 21 DIRECT DEPOCATO DEPOCATO

SECTION 3 - 21

H-7912

DNREC DREDGING PERMIT

SEPTEMBER 2020

- 5.4.25 The following concerns for protecting water quality shall be specifically considered by the DNREC in evaluating applications for dredging projects:
 - 5.4.25.1 All dredging is to be conducted in a manner consistent with sound conservation and water pollution control practices. Spoil and fill areas are to be properly diked to contain the dredged material and prevent its entrance into any surface water. Specific requirements for spoils retention may be specified by the DNREC in the approval, permit or license.
 - 5.4.25.2 All material excavated shall be transported, deposited, confined, and graded to drain within the disposal areas approved by the DNREC. Any material that is deposited elsewhere than in approved areas shall be removed by the applicant and deposited where directed at the applicant's expense and any required mitigation shall also be at the applicant's expense.
 - 5.4.25.3 Materials excavated by hydraulic dredge shall be transported by pipeline directly to the approved disposal area. All pipelines shall be kept in good condition at all times and any leaks or breaks shall be immediately repaired.
 - 5.4.25.4 Materials excavated and not deposited directly into an approved disposal area shall be placed in scows or other vessels and transported to either an approved enclosed basin, dumped, and then rehandled by hydraulic dredge to an approved disposal area, or to a mooring where scows or other vessels shall be unloaded by pumping directly to an approved disposal area.
 - 5.4.25.5 When scows or other vessels are unloading without dumping, they shall have their contents pumped directly into an approved disposal area by a means sufficient to preclude any loss of material into the body of water.
 - 5.4.25.6 In approved disposal areas, the applicant may construct any temporary structures or use any means necessary to control the dredge effluent, except borrowing from the outer slopes of existing embankments and/or hydraulic placing of perimeter embankments. For bermed disposal sites, a minimum freeboard of two (2) feet, measured vertically from the retained materials and water to the top of the adjacent confining embankment, shall be maintained at all times.
 - 5.4.25.7 The applicant shall not obstruct drainage or tidal flushing on existent wetlands or upland areas adjacent thereto. The applicant shall leave free, clear, and unobstructed outfalls of sewers, drainage ditches, and other similar structures affected by the disposal operations. The dredged materials shall be distributed within the disposal area in a reasonably uniform manner to permit full drainage without ponding during and after fill operations.

H-7912

SECTION 3 - 22

5.4.25.8 The dredging operation must be suspended if water quality conditions deteriorate in the vicinity of dredging or spoil disposal site. Minimum water quality standards may be included as an element of the permit and shall be monitored by the applicant. Violation of these conditions shall be cause for immediate suspension of activity and notification of the DNREC. Dredging shall not be resumed until water quality conditions have improved and the DNREC has authorized the resumption. [7 DE Admin. Code 7504 subsection 4.11.3]

Response:

Dredging will be conducted according to best industry practices including observation from the ship deck and controlled use of the dredging equipment. Dredging will cease if excessive levels of turbidity are observed and the cause will be rectified before any dredging resumes. Pipelines will be inspected prior to dredging. All dikes are required to be in sound structural condition and are maintained by the disposal site operator. Dredge material will be placed in a managed disposal area and handled concurrently with the material dredged from the main Christina River channel through the course of its regular upkeep by the Army Corps of Engineers. The dredging and management of the dredge material will be overseen by a contractor selected by the U.S. Army Corps of Engineers.

- 5.4.26 The following types of dredging projects are prohibited:
 - 5.4.26.1 Dredging of biologically productive areas, such as nursery areas, shellfish beds, and submerged aquatic vegetation, if such dredging will have a significant or lasting impact on the biological productivity of the area.
 - 5.4.26.2 Dredging of new dead-end lagoons, new basins and new channels, which have a length to width ratio greater than 3:1. This subsection shall not apply to marina projects governed by the Marina Regulations.
 - 5.4.26.3 Dredging channels, lagoons or canals deeper than the existing controlling depth of the connecting or controlling waterway.
 - 5.4.26.4 Dredging channels, cleaning marinas or other subaqueous areas by using propeller wash from boats. [7 DE Admin. Code 7504 subsection 4.11.6]

Response:

No nurseries, shellfish beds, or submerged aquatic vegetation is known to exist within the project area. The project does not consist of new dredging or the dredging of new areas including dead-end lagoons. Dredging will be conducted to existing, maintained channel depths. Dredging will not be performed using propeller wash from boats.

H-7912

SECTION 3 - 23

5.8 PORT OF WILMINGTON

5.8.1 Advisory Policies

- 5.8.1.1 The long-term economic viability and competitiveness of the Port of Wilmington should be encouraged and supported.
- 5.8.1.2 The people who benefit from the Port of Wilmington should contribute to its support and help maintain the financial health of the port.
- 5.8.1.3 Expansion of the Port of Wilmington along the Delaware River is encouraged to meet future national and regional transshipment needs and to reduce the dredging and spoils disposal activities associated with port operations along the Christina River. Port expansion, however, should not proceed if such expansion means air and water quality standards cannot be kept.
- 5.8.1.4 The port should be promoted for general cargo transfer and, to the extent feasible, as a location for the support of outer continental shelf development.

Response: The proposed project is in accordance with all the aforementioned rules.

5.11 LIVING RESOURCES

5.11.1 General

5.11.1.1 No activity shall have an adverse environmental effect on living resources and shall include consideration of the effect of site preparation and the proposed activity on the following wetland values:

5.11.1.1.1 Value of tidal ebb and flow

- 5.11.1.1.1 Production Value: carving organic matter to adjacent estuaries and coastal waters which serve as breeding areas for certain animal species (especially fish and shellfish).
- 5.11.1.1.2 Value as a natural protective system of absorption of storm wave energy, flood waters, and heavy rainfall, thereby decreasing flood and erosion damage.
- 5.11.1.1.3 The prevention of silting in certain harbors and inlets thereby reducing dredging.
- 5.11.1.1.4 Removal and recycling of inorganic nutrients.

H-7912 SECTION 3 - 24 DNREC DREDGING PERMIT SEPTEMBER 2020

5.	11.1.1.5	Effect on the estuarine waters.
5.11.1.1	.2 Habita	t Value
5.	11.1.1.2.1	Habitat for resident species of wildlife including furbearers, invertebrates, finfish.
5.	11.1.1.2.2	Habitat for migratory wildlife species including waterfowl, wading birds, shorebirds, passerines, finfish, shrimp.
5.	11.1.1.2.3	Rearing area, nesting area, breeding grounds for various species.
5.	11.1.1.2.4	Habitat for rare or endangered plants.
5.	11.1.1.2.5	Presence of plants or animals known to be rare generally, or unique to the particular location.
5.	11.1.1.2.6	Presence of plants or animals near the limits of their territorial range.
5.	11.1.1.2.7	Presence of unique geologic or wetland features [7 DE Admin. Code 7502 subsection 12.2]
5.11.2 Fish and Wildlife		
5.11.2.1		protected wildlife shall be managed and protected from cts. [7 Del.C.§102(a)]
5.11.2.2		n resources shall be protected from further impairment and en possible [7 Del.C. §1902 (a)(1)(2)(5)]
Mosquito and other pest controls shall use techniques such as open may water management, which reduce the application of chemicals and who substitute biological controls. [Delaware Mosquito Control Spray Pol revised February 26, 2018, Delaware Executive Order 43, August 15, 19		ment, which reduce the application of chemicals and which logical controls. [Delaware Mosquito Control Spray Policy,
5.11.3 Nongame and Endangered Species		
5.11.3.1	_	that fauna, including rare and endangered species, which are y trapped, killed, captured or consumed, either for sport or C. §202(a)]
5.11.3.2	to preserve an	angered species are in need of active, protective management and enhance such species. The diversity and abundance of the and fauna of Delaware, particularly those deemed rare or
H-7912		SECTION 3 - 25 DNREC DREDGING PERMIT SEPTEMBER 2020

endangered, shall be preserved and enhanced through the protection of the habitat, natural areas, and areas of unusual scientific significance or having unusual importance to their survival. [7 Del.C. §201(1) and (2)]

5.11.4 Advisory Policy

5.11.4.1 Actions which may interfere with or otherwise adversely affect fish and wildlife in Delaware shall be implemented only after careful consultation with DNREC and exploration of alternatives less damaging to such fish and wildlife.

Response: Seasonal dredging restrictions may be observed in order to protect migratory fish. We do not know of any other endangered or threatened species in the project area. We expect any issues to be addressed during the course of the DNREC permitting process. The dredging procedures outlined in this application are intended to minimize the effect of maintenance dredging on the surrounding environmental while allowing the activity to still take place, which is necessary in order to continue operations at the Port of Wilmington.

5.13 STATE OWNED COASTAL RECREATION AND CONSERVATION

5.13.1 State owned lands whose natural condition or present state of use would maintain important recreational areas and wildlife habitat, or would maintain or enhance the conservation of natural, cultural or historic resources shall be managed, preserved, and protected, for conservation and recreational use. [7 Del.C. §§7301, 7504(6), 5305; 7 Del.C. Ch 45]

Response: The state-owned submerged lands within the project area will be maintained free from obstruction for navigational and recreational purposes as safety permits.

Open-water habitat will be preserved.

Open spaces shall be preserved through the acquisition of interests or rights in real property, or donation of lands, for public recreation and conservation of natural resources promotes biological diversity, public health, prosperity and general welfare [7 Del.C. §7502]

No response required.

5.19 TRANSPORTATION FACILITIES

5.19.1 General

5.19.1.1 The DCMP supports the expansion and development of the Port of Wilmington. [7 Del.C. Ch 70]

H-7912 SECTION 3 - 26 DNREC DREDGING PERMIT SEPTEMBER 2020

5.19.1.2 Due to the threats posed to the natural environment, recreational activities and commercial fishing activities by the transfer of oil, petroleum products and their byproducts between vessels and vessels and onshore facilities and vessels, parties responsible for oil spills, discharges and the escape of oil in the waters of the State shall be required to immediately remove such oil pollution to DNRECs satisfaction or the responsible parties shall be required to pay for the expenses incurred in the removal of such oil pollution. [7 Del.C. §6201]

5.19.2 Advisory Policies

- 5.19.2.1 When essential to the national interest, the construction, maintenance and improvement of transportation systems shall predominate over less essential interests.
- 5.19.2.2 Transportation planning programs shall provide for alternatives to continued reliance on private motor vehicles with their associated highway requirements.
- 5.19.2.3 The State shall undertake an accelerated program of highway maintenance, upgrading, and safety improvements.
- 5.19.2.4 The DCMP supports the maintenance of an adequate and efficient railroad network to serve industry and agriculture on the Delmarva Peninsula.
- 5.19.2.5 The DCMP supports the establishment and maintenance of efficient public transit systems in order to reduce impacts to air quality and natural resources of the State.
- 5.19.2.6 New or expanded ports which involve extensive and continual dredging and spoil disposal in order to keep them useable are discouraged unless it can clearly be demonstrated that such facilities can be developed in an environmentally sound manner and without imposing continuing maintenance costs on any level of government or the general public.

Response: The proposed activity is necessary to sustain vessel traffic to and commerce at the Port of Wilmington. No further port development or expansion is proposed.

5.24 POLLUTION PREVENTION

5.24.1 General

5.24.1.1 Whenever possible, the generation of waste should be reduced or eliminated as expeditiously as possible, and that waste that is generated should be recovered, reused, recycled, treated or disposed of in a manner that

H-7912 SECTION 3 - 27 DNREC DREDGING PERMIT SEPTEMBER 2020

minimizes any present or future threats to human health or the environment. [7 Del.C. §7802(a)(1)]

Response: Not applicable. The project does not involve the generation of waste.

- 5.24.2 Advisory Policies
 - 5.24.2.1 Industries should review their proposed projects for the possible use of pollution prevention opportunities.
 - 5.24.2.2 Industries are encouraged to utilize the DNREC Pollution Prevention Program's services, including non-regulatory technical assistance and information, to ensure that the potential for degradation of the quality of air, land, and water is minimal.

Response: The applicant is already planning to employ known pollution prevention methods for a hydraulic dredging project. The DNREC Pollution Prevention Program services do not pertain to dredging projects.

H-7912

SECTION 3 - 28

U.S. ARMY CORPS OF ENGINEERS

APPLICATION FOR AN

INDIVIDUAL PERMIT FOR MAINTENANCE DREDGING AT THE PORT OF WILMINGTON

ON BEHALF OF
DIAMOND STATE PORT CORPORATION
1 HAUSEL ROAD
WILMINGTON, DE 19801

S. T. HUDSON ENGINEERS, INC.

900 DUDLEY AVENUE CHERRY HILL, NEW JERSEY 08002 PHONE (856) 342-6600 FAX (856) 342-8323 www.STHE.COM

SEPTEMBER 2020 H-7912

September 29, 2020

U.S. Army Corps of Engineers Philadelphia District Regulatory Division 100 Penn Square East Philadelphia, PA 19107

Attention: Mr. Todd Schaible

Reference: Diamond State Port Corporation (Port of Wilmington)

Subject: Joint Permit Application

Maintenance Dredging at Port of Wilmington

Berths 1 - 7

Dear Mr. Schaible:

S. T. Hudson Engineers, Inc. (Hudson) has been retained by Diamond State Port Corporation to assist them in obtaining the necessary approvals for maintenance dredging at the Port of Wilmington, Berths 1-7, to occur concurrently with the regular maintenance dredging of the main channel of the Christina River by the U.S. Army Corps of Engineers.

Herein, please find a complete application for a U.S. Army Corps of Engineers Individual Permit.

Should you have any questions or require additional information, please do not hesitate to contact us.

Sincerely,

Paul T. Ferry

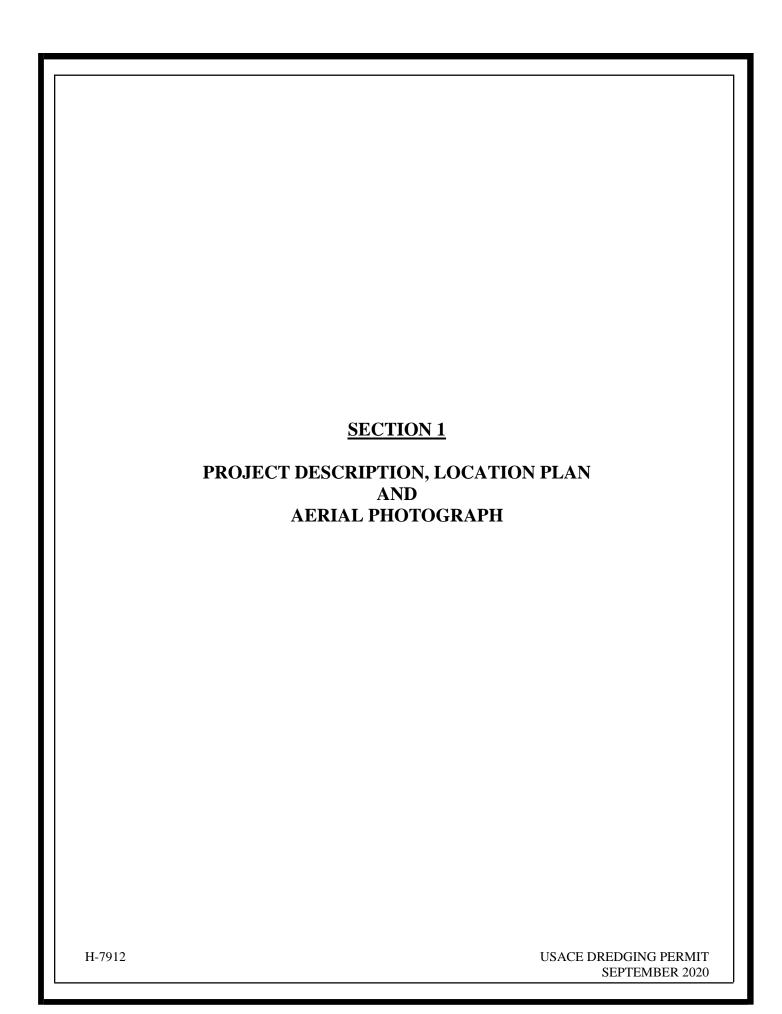
Environmental Specialist

PTF/mle Enclosures

H-7912-00

TABLE OF CONTENTS

SECTION


- 1 PROJECT DESCRIPTION, LOCATION PLAN AND AERIAL PHOTOGRAPHS
- 2 ENG 4345 FORM AND ENVIRONMENTAL QUESTIONNAIRE
- 3 COASTAL ZONE MANAGEMENT ACT FEDERAL CONSISTENCY FORM AND ADDENDUM
- 4 SEDIMENT ANALYSIS COMPARATIVE TABLES, CORE PHOTOGRAPHS, CHAIN OF CUSTODY, AND CORE LOGS
- 5 SAMPLING PLAN APPROVAL PERMIT AND SAMPLING METHODOLOGY
- 6 PREVIOUSLY ISSUED DNREC PERMIT
- 7 PERMIT DRAWINGS, SAMPLING PLAN, AND U.S. ARMY CORPS OF ENGINEERS DISPOSAL SITE PLANS

APPENDIX

- A WILMINGTON HARBOR DREDGING ENVIRONMENTAL
 EFFECTS COMPILATION REPORT AND HISTORICAL DATABASE
 PRODUCED BY U.S. ARMY CORPS OF ENGINEERS (FEBRUARY 1997)
- B WATER QUALITY AND CHEMICAL SEDIMENT TESTING
 WILMINGTON HARBOR DREDGED MATERIAL MANAGEMENT PLAN
 PRODUCED BY U.S. ARMY CORPS OF ENGINEERS (NOVEMBER 2008)
- C ANALYTICAL RESULTS (ON CD)

H-7912

USACE DREDGING PERMIT SEPTEMBER 2020

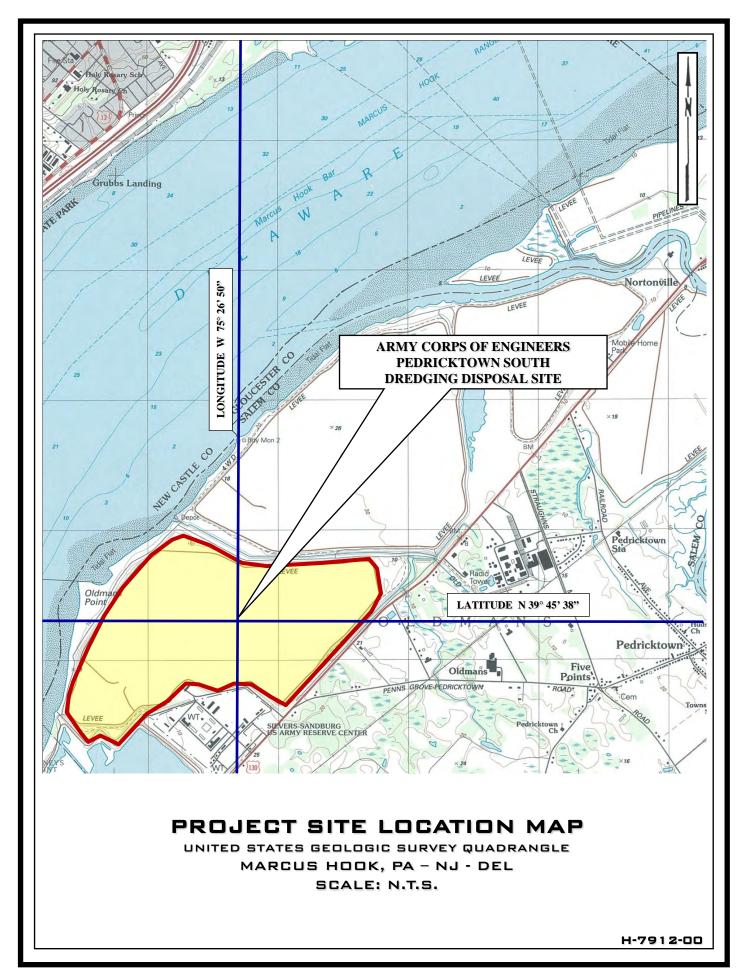
SECTION 1

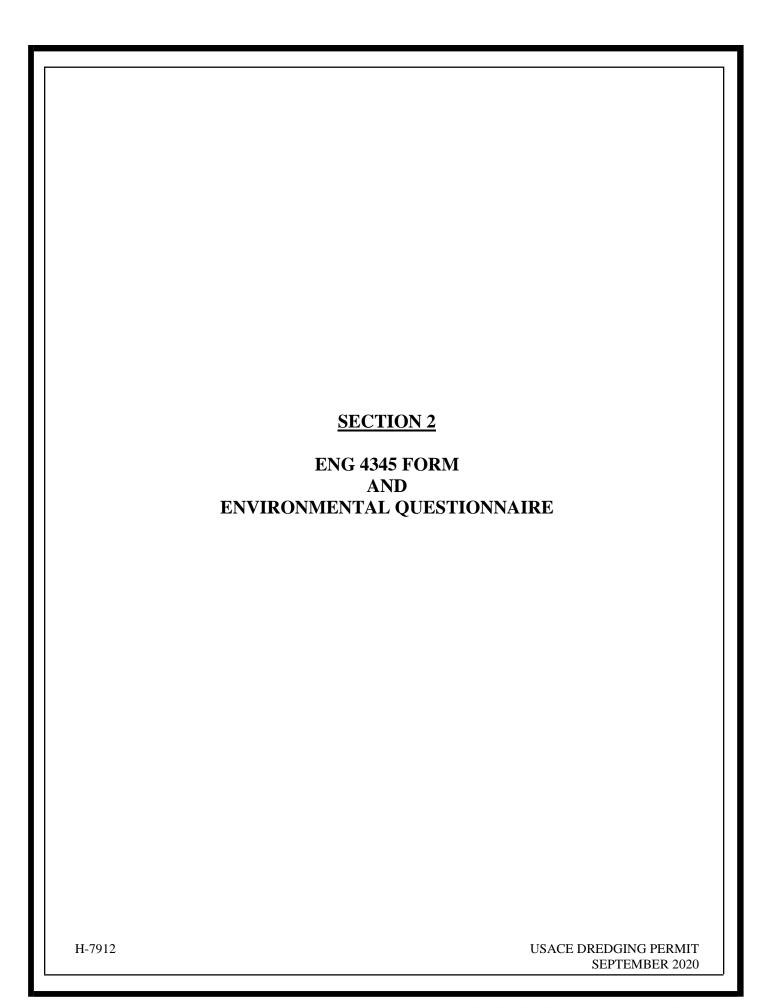
PROJECT DESCRIPTION

GT USA Wilmington LLC dba Diamond State Port Corporation proposes to conduct maintenance dredging at the Port of Wilmington Berths 1 through 7 located in Wilmington, DE.

Dredging will occur hydraulically to a depth of -35 feet Mean Low Water plus an allowable 2-foot of overdredge for Berths 5-7, and -38 feet Mean Low Water plus an allowable -2 foot of overdredge for Berths 1-4. Total volume based upon previous depths and shoaling rates can be estimated at 75,000 cubic yards per yearly dredging event for ten (10) years. Dredged material will be pumped in a slurry via pipeline to the Pedricktown South and/or Wilmington Harbor South Confined Disposal Facilities in Oldmans Township, Salem County, New Jersey and Wilmington Delaware, both of which are operated by the U.S. Army Corps of Engineers.

Material to be dredged is similar in nature and composition to material that has been removed regularly from the project area and adjacent main channel of the Christina River by the U.S. Army Corps of Engineers. Sampling results and methodology from previous dredging projects are included in Appendix A and Appendix B of this application.


The Christina River navigational channel is dredged regularly by the U.S. Army Corps of Engineers and dredging for this project will occur concurrently with main channel dredging.


H-7912

SECTION 1 - 1

USACE DREDGING PERMIT SEPTEMBER 2020

U.S. Army Corps of Engineers (USACE)

APPLICATION FOR DEPARTMENT OF THE ARMY PERMIT

33 CFR 325. The proponent agency is CECW-CO-R.

Form Approved -OMB No. 0710-0003 Expires: 01-08-2018

The public reporting burden for this collection of information, OMB Control Number 0710-0003, is estimated to average 11 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or burden reduction suggestions to the Department of Defense, Washington Headquarters Services, at whs.mc-alex.esd.mbx.dd-dod-information-collections@mail.mil. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR APPLICATION TO THE ABOVE EMAIL.

PRIVACY ACT STATEMENT

Authorities: Rivers and Harbors Act, Section 10, 33 USC 403; Clean Water Act, Section 404, 33 USC 1344; Marine Protection, Research, and Sanctuaries Act, Section 103, 33 USC 1413; Regulatory Programs of the Corps of Engineers; Final Rule 33 CFR 320-332. Principal Purpose: Information provided on this form will be used in evaluating the application for a permit. Routine Uses: This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public and may be made available as part of a public notice as required by Federal law. Submission of requested information is voluntary, however, if information is not provided the permit application cannot be evaluated nor can a permit be issued. One set of original drawings or good reproducible copies which show the location and character of the proposed activity must be attached to this application (see sample drawings and/or instructions) and be submitted to the District Engineer having jurisdiction over the location of the proposed activity. An application that is not completed in full will be returned. System of Record Notice (SORN). The information received is entered into our permit tracking database and a SORN has been completed (SORN #A1145b) and may be accessed at the following website: http://dpcld.defense.gov/Privacy/SORNsIndex/DOD-wide-SORN-Article-View/Article/570115/a1145b-ce.aspx

and may be accessed at the following website	e: http://dpcld.defense.gov/Privacy	//SORNsIndex/DO	DD-wide-SORN-Article-	View/Article/570	115/a1145b-ce.a	ISDX
	(ITEMS 1 THRU 4 TO B	E FILLED BY TH	E CORPS)			
1. APPLICATION NO.	2. FIELD OFFICE CODE		3. DATE RECEIVED	4. DATE APP	LICATION COM	PLETE
	(ITEMS BELOW TO BE	FILLED BY API	PLICANT)			
5. APPLICANT'S NAME First - Eugene Middle - Last - Bailey Company - Diamond State Port Corp. (Port of Wilmington) E-mail Address - gbailey@port.state.de.us		8. AUTHORIZED AGENT'S NAME AND TITLE (agent is not required) First - Paul Middle - T Last - Ferry Company - S. T. Hudson Engineers, Inc. E-mail Address - pferry@sthe.com				
6. APPLICANT'S ADDRESS: Address- 1 Hausel Road City - Wilmington State - DE	Zip - 19801 Country - USA	9. AGENT'S A Address- 900 City - Cherry	Dudley Avenue	√J Zip - 0	8002 Country -	USA
7. APPLICANT'S PHONE NOs. w/AREA COl a. Residence b. Business 302-571-4600	DE c. Fax	10. AGENTS I a. Residence	PHONE NOs. w/AREA b. Busines 856-342-	ss	c. Fax 856-342-8323	
I hereby authorize, Paul Ferry/S.T. Hud supplemental information in support of the supplemental information in support of the support of	son Eng. to act in my behalf as is permit application. SIGNATURE OF APPLICATION, AND DESCRIPTION.	Le CANT	09 09 202	cation and to fur	nish, upon reque	st,
12. PROJECT NAME OR TITLE (see instruc		CIPTION OF PRO	JECT OR ACTIVITY			
Port of Wilmington Maintenance Dredg						
13. NAME OF WATERBODY, IF KNOWN (if applicable) Christina River		14. PROJECT Address 1 Ha	STREET ADDRESS (i	if applicable)		
15. LOCATION OF PROJECT Latitude: •N 39.719978 Long	gitude: •W 75.526553	City - Wilmin	ngton	State- DE	Zip- 1980)1
16. OTHER LOCATION DESCRIPTIONS, IF State Tax Parcel ID 2606700003 Section - Township	Municipality New	w Castle County				

17. DIRECTIONS TO THE SITE	Minimum	
I-495 to Exit 2 - Terminal Avenue	east to port entrance	
1-7 along the Christina River at th	maintenance dredging hydraulically in the amore e Port of Wilmington. Dredging will occur to a e overdredge. Material will be disposed of at the	ount of 75,000 cubic yards of material per year from Berths depth of of -38 feet MLW for Berths 1-4 and -35 MLW for e U.S. Army Corps of Engineers' Wilmington Harbor South
19. Project Purpose (Describe the rea Maintenance dredging is necessar	son or purpose of the project, see instructions) y to ensure adequate berth depth for the draft of	incoming and outgoing vessels.
US	SE BLOCKS 20-23 IF DREDGED AND/OR FILL MAT	EDIAL IS TO BE DISCHARGED
20. Reason(s) for Discharge	E BLOOKS 20-23 IF DICEDGED AND/ON FILE MAY	ERIAL IS TO BE DISCHARGED
20		
and the second s		
Type Type(s) of Material Being Discharg	ged and the Amount of Each Type in Cubic Yards: Type	Туре
Amount in Cubic Yards	Amount in Cubic Yards	Amount in Cubic Yards
22. Surface Area in Acres of Wetlands	s or Other Waters Filled (see instructions)	
Acres		
or Linear Feet		
	ation, and Compensation (see instructions)	
23. Description of Avoidance, within a	ation, and Compensation (see instructions)	

ENG FORM 4345, MAY 2018 Page 2 of 3

24. Is Any Portion of	the Work Already Complete?	Yes No IF YES,	DESCRIBE THE COMPLI	ETED WORK	
25. Addresses of Adj	joining Property Owners, Less	ees, Etc., Whose Property A	Adjoins the Waterbody (if mo	ore than can be entered here, please att	ach a supplemental list).
a. Address- 601 CF	HRISTIANA AVE				
City - WILMINGTO	ON	State -	DE	Zip - 19801	
b. Address- 31 AUT	ГO RD				
City - WILMINGT	ON	State -	DE	Zip - 19801	
c. Address-					
City -		State -		Zip -	
d. Address-					
City -		State -		Zip -	
e. Address-					
City -		State -		Zip -	
26. List of Other Cert AGENCY	ificates or Approvals/Denials	IDENTIFICATION	State, or Local Agencies of DATE APPLIED	for Work Described in This Ap	plication. DATE DENIED
DNREC	Letter of Auth.	NUMBER LA-159/20		6/5/2020	
				,	
	s not restricted to zoning, build		withed in this application. I	certify that this information in	this application is
7/	reby made for permit or permit te. I further certify that I posse		N/ // //	n or am acting as the duly aut	horized agent of the
7	URE OF APPLICANT	DATE	signat	URE OF AGENT	9/29/2020 DATE
	st be signed by the persor the statement in block 11 l			(applicant) or it may be sig	ned by a duly

18 U.S.C. Section 1001 provides that: Whoever, in any manner within the jurisdiction of any department or agency of the United States knowingly and willfully falsifies, conceals, or covers up any trick, scheme, or disguises a material fact or makes any false, fictitious or fraudulent statements or representations or makes or uses any false writing or document knowing same to contain any false, fictitious or fraudulent statements or entry, shall be fined not more than \$10,000 or imprisoned not more than five years or both.

ENG FORM 4345, MAY 2018

ENVIRONMENTAL QUESTIONNAIRE FOR CORPS OF ENGINEERS PERMIT

APPLICATIONS
Philadelphia District,
Corps of Engineers
Philadelphia,
Pennsylvania 19107
CENAP-OP-R

INTRODUCTION AND INSTRUCTIONS

The District Engineer is required by law to assess the initial, cumulative, and long-term effects of any proposed permit on all aspects of the environment.

To speed the analysis of the probable impact of the proposed work, each applicant is required to submit appropriate environmental data as part of a permit application. We ask that you provide a thorough description of your proposed project and answer each question as it applies to the work and the results of that work. Complete and accurate answers will prevent unnecessary delays in processing your permit application

Parts I and II will be filled out by all applicants. Part I is self-explanatory. In Part II, the Environmental Impact Checklist, you should indicate the impacts of your project on all aspects of the environment that are listed. Use the space under "Qualifying Remarks" to indicate the specific impacts that your project will have. This may include types of plants or animals affected, specific adverse, beneficial, or mitigative effects, changes to existing conditions, etc. Although space for answers has been provided, you may wish to supply additional information on attached pages. If you do not anticipate an impact on a certain item, simply place a check in the "No" column.

Part III will be filled out by all applicants applying for a permit to perform dredging.

Part IV will be filled out by all applicants applying for a permit to perform filling operations. This includes activities such as filling behind bulkheads.

Refer any questions you may have concerning this supplemental form to the Regulatory Branch at (215) 656-6728.

PART I

I. PROJECT DESCRIPTION:

A. <u>General Site Location</u>: Accurately locate the project site with respect to State, county, or other subdivision, and in relation to streams and rivers.

The project is located on the Christina River at the Port of Wilmington Berths 1-7 in Wilmington, Delaware.

B. <u>Specific Site Locations:</u> Completely locate the project site with respect to cove, creek, property owner, plot number, etc.

The project is located at the confluence of the Christina River and the Delaware River. The address is:

1 Hausel Road Wilmington, DE 19801

Tax Parcel ID 2606700003

39°43'07.2" N, 75°31'20.1" W

C. <u>Description of Proposed Action:</u> Carefully describe the action proposed, including the method of construction, equipment, and materials to be used. Details in your description are important. Attach additional sheets if necessary.

The applicant proposes to conduct maintenance dredging of Berths 1-7 of the Port of Wilmington via hydraulic dredge up to a maximum of 75,000 cubic yards per year over the course of ten (10) years. Material is to be pumped to the Pedricktown South Disposal Area and Wilmington Harbor South Disposal Area owned and operated by the U.S. Army Corps of Engineers. Dredging will be performed to a depth of -38 feet MLW for Berths 1-4 and -35 MLW for Berths 5-7. Dredging will include an allowable overdredge of up to 2-feet.

D. <u>Purpose of Proposed Action</u>: Define the purpose of the proposed structure or work. For example, the purpose of bulkheading may be to stabilize an eroding bank; whereas, the purpose for a pier may be for the mooring of a private boat, for access to a public or private facility, for a marina, or for another purpose.

Maintenance dredging is necessary to ensure adequate depth of the berths to support vessel ingress and egress from the port.

E. Submit color photographs of the site, with explanations of the views shown (prints only). Photographs help us to better understand your project. The more photographs you provide, the easier it is to understand and process your application.

Please refer to Section 1 for photographs.

PART II – ENVIRONMENTAL IMPACT CHECKLIST					
ENVIRONMENTAL IMPACT	YES	NO	QUALIFYING REMARKS		
A. Physical	•				
1. Topography	\boxtimes		Dredging by its nature alters the benthic topography, however, since this is maintenance dredging, topographic will not differ from its normal surface elevation.		
2. Geological Elements and Leaching		X	Results of the TCLP analyses are included in Appendix C and Section 4.		
3. Air		X	No impacts.		
4. Transportation		\boxtimes	Dredging will have a net benefit to ship transportation.		
5. Handling of Hazardous Materials		X	Not applicable.		
6. Spoil Disposal	X		Material will be disposed of at the Pedricktown South and Wilmington Harbor South CDFs. These are dedicated disposal sites managed by the Army Corps of Engineers. All material has been tested to ensure compliance with soil and water quality standards for acceptable disposal.		
7. Sewage and Solid Wastes		\times	Not applicable.		
8. Water Resources					
a. Water Quality	X		Some turbidity is expected to occur as a result of dredging. This effect is only temporary. Additionally, the return of decant water from a confined disposal facility poses a risk to water quality if untested. The modified elutriate test results included in Appendices A-C show that the decant water should meet all water quality criteria.		
b. Hydrography, Circulation, Littoral Drift.		\times	Dredging will restore the ship berths to their normal depth, hence, no changes.		
c. Ground Water		\times	No impact.		
B. Biological					
1. Vegetation					
a. Terrestrial		X	Not applicable.		
b. Aquatic		\times	No aquatic vegetation exists in the project area.		
2. Fish and Wildlife					
a. Mammals		\boxtimes	No impacts.		
b. Birds		\times	No impacts.		
c. Amphibians		\times	No impacts.		

d. Reptiles		\boxtimes	No impacts anticipated.
e. Fish		X	Seasonal restrictions will be observed for migratory fish to protect nursing and larval stage fishes. Hydraulic dredging always poses a risk of entrainment; however, adult fish are highly mobile and can easily move away from the dredging area. No impact anticipated.
f. Shellfish	X		We do not expect there to be robust shellfish habitat due to the frequent dredging regime. No shellfish beds have been noted within the dredging footprint. Any shellfish that are present, however, will be entrained by the hydraulic dredger.
g. Invertebrates	X		Invertebrates are common in all tidal waters of the Delaware River and may be found at the mouth the Christina River as well. As bottom-dwelling species, some entrainment is expected, followed by recolonization.
3. Rare or Endangered Species		\boxtimes	No rare or endangered species are known to be protected in the Christina River. No impacts anticipated.

ENVIRONMENTAL IMPACT	YES	NO	QUALIFYING REMARKS
C. Cultural			
1. Land Use		\boxtimes	
2. Population Density and Trends		\boxtimes	
3. Regional Development		\boxtimes	
4. Historic Places		X	
5. Archaeological Sites		\times	
6. Aesthetics		\times	
7. Utilities		\times	
8. Transportation Systems	×		Dredging will facilitate continued vessel traffic to and from the port.
9. Recreation		\boxtimes	
10. Public Health		\times	
D. Other Factors			
1. Secondary Effects		\times	
2. Controversiality		X	
3. Is significant dredging involved?	X		Dredging up to 100,000 cubic yards per year for ten years is requested.
4. Is significant filling involved?		\boxtimes	

Part III Considerations of a Dredging Proposal:

A. Describe characteristics and locations of the proposed dredged material disposal site. Provide photographs.

Wilmington Harbor South is an Army Corps of Engineers-managed confined disposal facility occupying 170 acres. It is located approximately one kilometer (1 km) southeast of the dredge area along the Delaware River.

Pedricktown South is also a confined disposal facility managed by the Army Corps of Engineers. It occupies 497 acres as a distance of approximately six kilometers (6 km) northeast of the dredge area along the Delaware River.

Volume calculations will be performed by the Army Corps of Engineers prior to the dredging of the main channel. The Corps of Engineers will ensure that adequate capacity is present at either or both of the disposal areas before disposal will occur.

Aerial photographs are provided in Section 1 of this application, while recent large-scale drawings are provided in Section 8.

B. Is there a comprehensive plan for disposal sites that takes into account the accumulative effect over time and the decreasing amount of suitable sites for disposal?

The U.S. Army Corps of Engineers has policies in place to ensure the continued operation of its dredge material disposal areas. This site will be dredged as part of the regular Army Corps of Engineers channel dredging.

C. Describe the present land use of the disposal site.

The proposed disposal site is a disposal site currently managed by the U.S. Army Corps of Engineers.

- D. Describe characteristics of the material to be disposed, including:
 - 1. Physical source of material (i.e. sand, silt, clay, etc.) Give percentages of the various fractions if available.

The material is predominantly (>90%) silt. Please refer to the grain size analysis in Appendix C for exact specifications.

2. Chemical composition of material: Many areas, especially marinas, highly industrialized areas, etc., have sediments with high concentrations of pollutants (chemicals, organic material, etc.). These materials may be re-suspended or reintroduced into the water and result in serious environmental damage. If your proposed dredging is in an area such as described above, a chemical analysis of the material to be dredged should be provided.

Please refer to Appendix C for a detailed analysis of the material composition, including bulk sediment chemistry testing of inorganics, pesticides, semivolatile

organic compounds.

3. Dewatering properties of the material to be disposed.

Dredged material is expected to be predominantly fine-grained and fairly hydrophilic. Settling is expected to take at least 24 hours before discharge of decant water is possible.

4. Compactability of material and settling rates of material to be disposed.

The sediment at this area consists of almost entirely fine-grained material. Compactability is likely poor and the material would not be well-suited for beneficial reuse. Settling rates are likely poor but disturbed sediments will disperse quickly in a tidal waterbody. An estimated settling/retention time of 24 hours within the CDF will be observed.

5. Dredging and disposal schedule to ensure that operations do not degrade water quality during times of anadromous fish migration.

Dredging will be avoided between April 1 and June 15 of every year to avoid impacts to anadromous fish.

- E. When the project involves land disposal, discuss the following:
 - 1. Method of disposal to be utilized, i.e., pipeline discharge, barge, hopper (underway or stationary).

Material will be transported in a slurry via a pipeline to the disposal site.

2. Describe method of dredged material containment (i.e. embankment, behind bulkhead, etc.)

The confined disposal facility provides containment through earthen dikes. Discharge of decant water is regulated via an adjustable weir.

3. What type of leachates will be produced from the spoil material and what is planned for protection of the groundwater?

The dredge material has been analyzed for leachates using the TCLP method of testing. Results are included in Section 4 and Appendix C.

4. Methods to ensure that spoil water does not adversely affect water quality, both during construction and after completion of the project.

The dredge board stop logs will be maintained at the highest elevation possible to provide maximum retention time without jeopardizing the stability of the dike walls. Daily inspections by both the contractor and the Army Corps of Engineers will occur to ensure proper operation of the weir system.

5. Provisions for monitoring during discharge: water quality, sediment transport, and precautions to prevent "short-circuiting" dumping.

The contractor will be required to record daily discharge readings and keep all pipelines in good condition at all times. Any leaks or breaks along their length will result in shutdown of the operation and immediate repair. There will be no short circuit dumping.

- F. Consider and discuss the following for water disposal:
 - 1. Describe methods to be used for water disposal, including volumes and site selection.

Not applicable. Water disposal will not be utilized.

2. Describe the existing water characteristics at the site, including chemical analysis for water quality.

Not applicable. Water disposal will not be utilized.

G. Discuss the frequency and amount of maintenance dredging which will be required; discuss the resulting impacts.

Dredging will occur up to once per year in the amount of up to 75,000 cubic yards per dredge event. Impacts are expected to be minor and consistent from event to event. Turbidity from the disturbance of the substrate will result in the temporary resuspension of fine-grained sediment from the river bottom. This is likely to not impact finfish as they are highly motile and likely to avoid the area of disturbance while dredging takes place. Fine-grained sediments are expected to disperse quickly in a tidal environment. Benthic invertebrates are less motile and face the risk of entrainment by the dredging equipment.

H. Alternatives:

1. Discuss all alternatives to the project, including the "no action" alternative.

Please refer to the answers to #2 and #3 below.

2. Discuss alternative types and methods of dredging and disposal, such as pipeline discharge, barging, or hopper method.

Hydraulic dredging is the logical option because it allows for dredging to occur at the same time as the regular hydraulic dredging of the channel by the U.S. Army Corps of Engineers, reducing the number of dredging events occurring within the channel over time and therefore reducing the overall disturbance. In-water disposal is not an option in this case due to the nature of hydraulic dredging and the dispersal properties of the dredge material.

3. Discuss alternatives to dredging.

No action would result in the eventual inability of vessels to move into and out of the port. Alternatives relating to dredging and disposal methods are discussed below.

4. Discuss alternative areas of sites for spoil disposal.

Hydraulic dredging requires the presence of a suitable disposal site in the immediate area. Costs increase significantly as distance to the disposal site increases. Other disposal sites are closer than the Pedricktown South disposal site, but these sites are not currently accepting new material. Wilmington Harbor South will be utilized first if there is adequate capacity when dredging occurs.

5. Discuss impact of port docking patterns upon the demand for dredging. Can alternative patterns reduce the amount of dredging required to support port operations?

Vessels dock parallel to the shoreline. This is necessary due to the design of both the ships and the port to facilitate loading and unloading. This configuration results in the smallest dredging footprint possible. Furthermore, immediately outshore of the requested dredging footprint is the federally dredged channel. Connecting the two areas creates the safest and most logistically practical pattern possible.

6. Support alternative means of construction that would prevent or minimize water quality degradation using EPA standards for guidance.

No construction is proposed.

7. State in detail impacts resulting in alternative locations for the proposed project.

Since this is an existing port, there are no alternative locations.

Part IV CONSIDERATIONS OF A FILLING PROPOSAL: N/A

- A. Describe in detail the existing characteristics of the area proposed for filling (i.e. aquatic area, marsh, mudflat, swamp, etc.). In your description, be sure to include the types of vegetation present and the types of animals that use the area. Provide photographs.
- B. Give the following information in regard to the project size:
 - Total area to be filled.
 - 2. Size of underwater area to be filled.
 - 3. Area of intertidal zone to be filled.
 - 4. Area of wetlands to be filled.
 - 5. Proposed height of fill.
 - 6. Volume of material that will be used in filling.
- C. Describe in detail the material to be used as fill including as follows:
 - 1. Type of fill to be used (sand, stone, rubble, etc.). If the material is a composite (i.e., rubble), list the types of materials it will contain.
 - 2. Give the specific location of the source of this material.
 - 3. What types of leachates will be produced from the fill material and what is planned for protection of surface and groundwater?
- D. Carefully describe the method of fill, including the following:
 - 1. Method of fill placement, including equipment used in deposition and grading.
 - 2. Method of stabilization of banks from erosion, sloughing, wave action, boat wakes, etc.
 - 3. Method of stabilization of the surface of the fill.

- 4. Length of time needed for completion of the project. State if filling will be continuous, intermittent, etc.
- 5. Method of controlling turbidity when filling an underwater area.

E. Purpose of the Project:

- 1. What is the intended use of the filled area?
- 2. What structures, if any, will be constructed on the fill?
- 3. What benefits would you gain from the proposed fill?

F. Alternatives

- 1. Discuss the "no action" alternative and how this would affect your present and future plans for the development of the area.
- 2. Discuss alternative locations for the proposed fill.
- 3. Discuss the use of elevated structures (i.e. causeways, elevated platforms, etc.) in place of the proposed fill.
- 4. Discuss any other alternatives you have considered prior to formulating the presently submitted proposal.

Project/Activity Name:

Delaware Department of Natural Resources and Environmental Control Delaware Coastal Management Program

nitialReview:	
Updated On:	
Complete:	
Officia	l Use Only

Coastal Zone Management Act Federal Consistency Form

This document provides the Delaware Coastal Management Program (DCMP) with a Federal Consistency Determination or Certification for activities regulated under the Coastal Zone Management Act of 1972, as amended, and NOAA's Federal Consistency Regulations, 15 C.F.R. Part 930. Federal agencies and other applicants for federal consistency are not required to use this form; it is provided to applicants to facilitate the submission of a Consistency Determination or Consistency Certification. In addition, federal agencies and applicants are only required to provide the information required by NOAA's Federal Consistency Regulations.

I.	I. Federal Agency or Non-Federal Applicant Contact Information:						
Contact Name/Title:							
Federal Agency Contractor Name (if applicable):							
(eith	eral Agency: er the federal agency proposing an action <u>or</u> the fe stance to a non-federal applicant)	ederal agency issuing a federal license/permit or financial					
Mail	ingAddress:						
City	State:	Zip Code:					
E-m	ail:	Telephone #:					
II.	Federal Consistency Category:						
	Federal Activity or Development Project (15 C.F.R. Part 930, Subpart C)	Federal License or Permit Activity (15 C.F.R. Part 930, Subpart D)					
	Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E)	Federal License or Permit Activity which occurs wholly in another state (interstate consistency					
	Federal Financial Assistance (15 C.F.R. Part 930, Subpart F)	activities identified in DCMP's Policy document)					
III.	III. Detailed Project Description (attach additional sheets if necessary):						
		1					

•	General Analysis of Coastal Effects (attach additional sheets if flecessary).
	Detailed Analysis of Consistency with DCMP Enforceable Policies (attach additional sheets if necessary):
Ċ	licy 5.1: Wetlands Management
C	licy 5.2: Beach Management
C	licy 5.3: Coastal Waters Management (includes wells, water supply, and stormwater management. Attach additional sheets if necess
_	licy 5.4: Subaqueous Land and Coastal Strip Management
_	ncy 5.4. Subaqueous Land and Soastal Strip Management
o	licy 5.5: Public Lands Management

Policy 5.6: Natural Lands Management
Policy 5.7: Flood Hazard Areas Management
Policy 5.8: Port of Wilmington
Policy 5.9: Woodlands and Agricultural Lands Management
Policy 5.10: Historic and Cultural Areas Management
Policy 5.11: Living Resources
Policy 5.12 Mineral Resources Management

Policy 5.13: State Owned Coastal Recreation and Conservation
Policy 5.14: Public Trust Doctrine
Policy 5.15: Energy Facilities
1 oney error and gy r demands
Delian F 40. Dublic bone of mant
Policy 5.16: Public Investment
Policy 5.17: Recreation and Tourism
Policy 5.18: National Defense and Aerospace Facilities
Delieu E 40: Transportation Escilitics
Policy 5.19: Transportation Facilities

Policy 5.20: Air Quality Management	
Policy 5.21: Water Supply Management	
Policy 5.22: Waste Disposal Management	
Policy 5.23: Development	
Policy 5.24: Pollution Prevention	
Policy 5.25: Coastal Management Coordination	
VI. JPP and RAS Review (Check all that apply):	
Has the project been reviewed in a monthly Joint Permit Processing and/or Regulatory Advisory Service meeting	12
) :
☐ JPP ☐ RAS ☐ None	
*If wes, provide the date of the meeting(s):	

, VII.	Statement of Certification/Determination and Signature (Check one and sign below):								
	FEDERAL AGENCY CONSISTENCY DETERMINATION. Based upon the information, data, and analysis included herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity is consistent to the maximum extent practicable with the enforceable policies of the Delaware Coastal Management Program.								
	OR								
	FEDERAL AGENCY NEGATIVE DETERMINATION. Based upon the information, data, and analysis included herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity will not have any reasonably foreseeable effects on Delaware's coastal uses or resources (Negative Determination) and is therefore consistent with the enforceable policies of the Delaware Coastal Management Program.								
	OR								
	NON-FEDERAL APPLICANT'S CONSISTENCY CERTIFICATION. Based upon the information, data, and analysis included herein, the non-federal applicant for a federal license or permit, or state or local government agency applying for federal funding, listed in (I) above, finds that this proposed activity complies with the enforceable policies of the Delaware Coastal Management Program and will be conducted in a manner consistent with such program.								
	Signature:	Zuene	Bail	4					
Print	ted Name:	Eugene Baile	ЭУ	0	Date: 09 09 2620				
below. Concurrence will be presumed if the state's response is not received within the allowable timeframe. Federal Consistency Review Deadlines:									
	Federal Activity or Development Project (15 C.F.R. Part 930, Subpart C)					60 days with option to extend an additional 15 days or stay review (15 C.F.R. § 930.41)			
	Federal License or Permit (15 C.F.R. Part 930, Subpart D)					Six months, with a status letter at three months. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.63)			
	Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E)					Six months, with a status letter at three months. If three month status letter not issued, then concurrence presumed. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.78)			
	Federal Financial Assistance to State or Local Governments (15 C.F.R. Part 930, Subpart F)				State Clearinghouse schedule				
OFFI	OFFICIAL USE ONLY:								
Revi	ewed By:			Fed Con ID:	1	Date Rec	eived:		
Publ	ic notice da	tes:	to		Comments Re	ceived:	∐NO [attach	YES comments]	
Decision type: (objections or conditions attach details)					_ Decision Date:				

SECTION 3

COASTAL ZONE MANAGEMENT ACT FEDERAL CONSISTENCY FORM ADDENDUM

5.3 COASTAL WATERS MANAGEMENT

- 5.3.1.1 The development and utilization of the land and water resources of the State shall be regulated to ensure that water resources are employed for beneficial uses and not wasted, to protect beneficial uses of water resources, and to assure adequate water resources for the future. [7 Del.C. §6001 (a)(2)(3)]
- Response: Since the continued operation of the Port of Wilmington, an economic focal point of the Delaware economy, is dependent upon this project's completion, this project constitutes a beneficial use.
- 5.3.1.2 The water resources of the State shall be protected from pollution which may threaten the safety and health of the general public. [7 Del.C. §§6001 (a)(5)(c)(2)]
- Response: Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources.
- 5.3.1.3 The coastal water resources of the State shall be protected and conserved to assure continued availability for public recreational purposes and for the conservation of aquatic life and wildlife. [7 Del.C. §6001(a)(4)]
- Response: Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.
- 5.3.1.4 It is the policy of the DNREC to maintain within its jurisdiction surface waters of the State of satisfactory quality consistent with public health and public recreation purposes, the propagation and protection of fish and aquatic life, and other beneficial uses of the water. [7 DE Admin. Code 7401 subsection 1.1]
- Response: Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources. Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.

H-7912 SECTION 3 - 1 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.5 The designated uses applicable to the various stream basins represent the categories of beneficial use of waters of the State which must be maintained and protected through application of appropriate criteria. Such uses shall include public water supply; industrial water supply; primary contact recreation involving any water-based form of recreation, the practice of which has a high probability for total body immersion or ingestion of water such as swimming and water skiing; secondary contact recreation involving a water-based form of recreation, the practice of which has a low probability for total body immersion or ingestion of water such as wading, boating and fishing; maintenance, protection and propagation of fish, shellfish, aquatic life and wildlife preservation; agricultural water supply; and waters of exceptional recreational or ecological significance (ERES waters). [7 DE Admin. Code 7401 Sections 2.0 and 3.0]

Response:

Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources. Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.

5.3.1.6 Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. Degradation of water quality in such a manner that results in reduced number, quality, or river or stream mileage of existing uses shall be prohibited. Degradation shall be defined for the purposes of this section as a statistically significant reduction, accounting for natural variations, in biological, chemical, or habitat quality as measured or predicted using appropriate assessment protocols. [7 DE Admin. Code 7401 subsection 5.1]

Response:

Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources.

5.3.1.7 Where the quality of the waters exceeds levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that water quality shall be maintained and protected. In the case of E.R.E.S. waters, existing quality shall be maintained or enhanced. Limited degradation may be allowed if the DNREC finds, after review, that allowing lower water quality would result in a substantial net environmental or public health benefit and does not impede existing uses in the area in which the waters are located In while allowing for full protection of existing uses. [7 DE Admin. Code 7401 subsections 5.2 and 5.6]

Response: The Christina River is not an E.R.E.S. waterbody, therefore this does not apply.

H-7912

SECTION 3 - 2

DNREC DREDGING PERMIT SEPTEMBER 2020 5.3.1.8 Where high quality waters constitute an outstanding national resource, such as waters of national parks and wildlife refuges, existing quality shall be maintained and protected. [7 DE Admin. Code 7401 subsection 5.3]

Response: The project area does not lie within a national park or wildlife refuge; therefore this rule does not apply.

5.3.1.9 In those cases where potential water quality impairment associated with a thermal discharge is involved, the antidegradation policy and implementing method shall be consistent with Section 316 of the Water Quality Act of 1987. [7 DE Admin. Code 7401 subsection 5.4]

Response: No thermal discharges are associated with this project.

- 5.3.1.10 All surface waters of the State shall be free from substances that are attributable to wastes of industrial, municipal, agricultural or other human-induced origin. Examples include but are not limited to the following:
 - 5.3.1.10.1 Floating debris, oil, grease, scum, foam, or other materials on the water surface that may create a nuisance condition, or that may in any water interfere with attainment and maintenance of designated uses of the water.
 - 5.3.1.10.2 Settleable solids, sediments, sludge deposits, or suspended particles that may coat or cover submerged surfaces and create a nuisance condition, or that may in any way interfere with attainment and maintenance of designated uses of the water.
 - 5.3.1.10.3 Any pollutants, including those of a thermal, toxic, corrosive, bacteriological, radiological, or other nature that may interfere with attainment and maintenance of designated uses of the water, may impart undesirable odors, tastes, or colors to the water or to aquatic life found therein, may endanger public health, or may result in dominance of nuisance species. [7 DE Admin. Code 7401 subsection 4.1]

Response: It is the priority of the applicant to minimize the release of settleable solids and suspended sediment that is typically a result of dredging. While it is not possible to completely eliminate it, hydraulic dredging typically minimizes the resuspension of sediment within the water column. Hydraulic dredging will be conducted in a controlled manner and the process will be observed by attendants at the surface to ensure that activities do not result in an unforeseen release of sediment into the water column. If this should occur, dredging will halt until turbidity dissipates and the dredger and line will be inspected for defects.

H-7912

SECTION 3 - 3

DNREC DREDGING PERMIT SEPTEMBER 2020 Regulatory mixing zones shall not impinge upon areas of special importance, including but not limited to drinking water supply intakes, nursery areas for aquatic life or waterfowl, approved or conditional shellfish areas or heavily utilized primary contact recreation areas. Zones shall not be located in such a manner as to interfere with passage of fishes or other organisms. Shore-hugging plumes should be avoided to the maximum extent practicable. In areas where multiple discharges are located in proximity, overlapping discharge plumes may occur. In such instances, the thermal mixing zone, which is not to exceed 25% of the cross-sectional area of the receiving water as measured from the point of discharge to the opposite shore, may be reduced to preclude acute toxicity in the overlap areas, or to ensure an adequate zone of passage for fish. [7 DE Admin. Code 7401 subsections 6.2 and 6.4]

Response: This rule does not apply as there is no discharge associated with a mandated mixing zone.

5.3.1.12 Streams with a designated use of public water supply shall provide waters of acceptable quality for use for drinking, culinary or food processing purposes after application of approved treatment equivalent to coagulation, filtration, and disinfection (with additional treatment as necessary to remove naturally occurring impurities). Water shall be free from substances (except natural impurities) that, alone or in combination with other substrates, result in:

- 5.3.1.12.1 Unacceptable levels of taste or odor in the treated water;
- 5.3.1.12.2 Significant disruption of the treatment processes at the treatment facility; or
- 5.3.1.12.3 Concentrations of toxic substances in the treated water that may be harmful to human health. [7 DE Admin. Code 7401 subsection 4.2]

Response: This rule does not apply.

5.3.1.13 Designated exceptional recreational or ecological significance (ERES) waters shall be accorded a level of protection and monitoring in excess of that provided most other waters of the State. These waters are recognized as special natural assets of the State, and must be protected and enhanced for the benefit of present and future generations of Delawareans. [7 DE Admin. Code 7401 subsection 5.6.1.1]

Response: The Christina River is not an ERES waterbody, therefore this does not apply.

5.3.1.14 ERES waters shall be restored, to the maximum extent practicable, to their natural condition. To this end, the DNREC shall, through adoption of a pollution control strategy for each ERES stream basin, take appropriate action to cause the systematic control, reduction, or removal of existing pollution sources, and the diversion of new pollution sources, away from ERES waters. [7 DE Admin. Code 7401 subsection 5.6.1.2]

Response: The Christina River is not an ERES waterbody, therefore this does not apply.

H-7912 SECTION 3 - 4 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.15 The discharge of oil from a vessel, truck, pipeline, storage, tank or tank car which causes or poses a threat of making a film on, emulsion in or sludge beneath the waters of the State or its shoreline shall be prohibited. [7 Del.C. §§6203, 6202(7)(5)(9)]

Response: This rule does not apply.

- 5.3.1.16 At a minimum, any discharge of liquid waste - sewage, industrial waste or other waste to State waters shall be subject to effluent limitations, discharge requirements and any alternate effluent control strategy that reflect a practicable level of pollutant removal technology. For the purposes of this section, a practicable level of pollutant removal technology is defined as the application of "best" treatment technology, control measures and practices, including pollution prevention, available to prevent, manage, reduce or remove pollutants taking into account the cost of applying such technology, control measures or practices in relation to the effluent reduction benefits to be achieved, the age of equipment and facilities involved, the process(es) employed, the engineering aspects of applying the various types of control, process changes, pollution prevention measures, non-water quality impacts (e.g. energy requirements) and other factors deemed appropriate. For the parameters, BOD5 (5-day biochemical oxygen demand) and suspended solids, the degree of removal reflecting an application of a practicable level of pollutant removal technology shall be at least 85% of the BOD5 and suspended solids contained in the influent to the treatment works or prior to application of the removal technology, control measures or practices. For discharges of sewage to State waters, a practicable level of pollutant removal technology shall be secondary treatment and disinfection.
 - 5.3.1.16.1 No person shall cause or permit any discharge of liquid waste to the Delaware River, the Delaware Bay, or Atlantic Ocean except liquid waste which has received at least secondary treatment and disinfection.
 - 5.3.1.16.2 No person shall cause or permit discharge of liquid waste to a lake or a pond or any tributary thereof, except liquid waste which has received at least secondary treatment, filtration, nutrient removal and disinfection.
 - 5.3.1.16.3 No person shall cause or permit any discharge of liquid waste to the Little Assawoman Bay, Indian River Bay, or to Rehoboth Bay, including any tributaries to those waterbodies, except liquid waste which has received at least secondary treatment, filtration, and disinfection.
 - 5.3.1.16.4 No person shall cause or permit any discharge of liquid waste to a stream, tidal or non-tidal, except liquid waste which has received at least secondary treatment, filtration, and disinfection. This subsection shall not govern discharge into the Delaware River, the Delaware Bay or the Atlantic Ocean, which shall be governed by subsection 5.3.1.16.1. For existing facilities, filtration may not be required if the existing facility has demonstrated the

H-7912 SECTION 3 - 5 DNREC DREDGING PERMIT SEPTEMBER 2020

ability to continuously meet secondary treatment levels. [7 DE Admin. Code 7201 subsections 7.1 and 7.2]

Response:

If a discharge of decant water from the designated Wilmington Harbor South and/or Pedricktown Confined Disposal Facility is necessary, it will be monitored for contaminants. The dredge material has been tested using the modified elutriate method, which simulates the constituents that are to be expected in decant water. The slurry released into the confined disposal area will be given sufficient time for solids to settle before decant water is released using an adjustable weir system to calibrate the discharge structure to the level necessary to release only water. The slurry will be monitored visually for settlement and the appropriate time for release will then be determined.

5.3.1.17 In the event that Delaware Surface Water Quality Standards are not achieved through application of the technology based requirements, additional effluent limitations and treatment requirements shall be imposed to assure compliance with the Surface Water Quality Standards. Such additional effluent limitations and treatment requirements must control all pollutants or pollutant parameters which the DNREC determines are or may be discharged at a level which will cause, have the reasonable potential to cause or significantly contribute to an excursion of any numerical or narrative water quality criterion contained within Delaware's Surface Water Quality Standards. The need for additional effluent limitations and treatment requirements shall be based upon the results of chemical and/or biological tests in conjunction with studies or analyses designed to assess the potential of the discharge to cause or contribute to in-stream excursions of Delaware's Surface Water Quality Standards. [7 DE Admin. Code 7201 subsection 8.1]

Response: Treatment of decant water is not anticipated to be necessary and therefore is not proposed. This rule does not apply currently.

5.3.1.18 Where conflicts develop between stated surface water uses, stream criteria, or discharge criteria, designated uses for each segment shall be paramount in determining the required stream criteria, which, in turn, shall be the basis of specific discharge limits or other necessary controls. [7 DE Admin. Code 7401 subsection 1.2]

Response: This rule does not apply.

- No person shall, without first having obtained a permit from the Delaware Department of Natural Resources, undertake any activity:
 - 5.3.1.19.1 In a way which may cause or contribute to the discharge of an air contaminant;
 - 5.3.1.19.2 In a way which may cause or contribute to the discharge of a pollutant into any surface or ground water;

H-7912 SECTION 3 - 6 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.19.3		In a way which may cause or contribute to withdrawal of ground water or surface water or both;				
5.3.1.19.4		In a way which may cause or contribute to the collection, transportation, storage, processing or disposal of solid wastes, regardless of the geographic origin or source of such solid wastes;				
5.3.1.19.5		To construct, maintain or operate a pipeline system including any appurtenances such as a storage tank or pump station;				
5.3.1.19.6		To construct any water facility; or				
5.3.1.19.7		To plan or construct any highway corridor which may cause or contribute to the discharge of an air contaminant or discharge of pollutants into any surface or ground water. [7 Del.C. § 6003(a)]				
Response:		oplicant has applied for a Wetlands and Subaqueous Lands Permit from the of Delaware. No other permit is necessary.				
Depa		erson shall, without first having obtained a permit from the Delaware tment of Natural Resources and Environmental Control, construct, install, e, modify or use any equipment or device or other article:				
5.3.1.20.1		Which may cause or contribute to the discharge of an air contaminant;				
5.3.1.20.2 5.3.1.20.3 5.3.1.20.4		Which may cause or contribute to the discharge of a pollutant into a surface or groundwater;				
		Which is intended to prevent or control the emission of air contamir into the atmosphere or pollutants into surface or groundwaters;				
		Which is intended to withdraw ground water or surface water for treatment and supply; or				
5.3.1.20.5		For disposal of solid waste. [7 Del.C. §6003(b)]				

Response: This rule does not apply.

Regulatory variances for the activities identified in the preceding policy statement may be granted pursuant to 7 Del.C. §6011 if all of the following conditions exist in the opinion of the Secretary of the Delaware Department of Natural Resources and Environmental Control:

H-7912

SECTION 3 - 7

DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.21.1	Good faith efforts have been made to comply with these policies;					
5.3.1.21.2	The cost of compliance is disproportionately high with respect to the benefits which would be bestowed by compliance, or the necessary technology is unavailable;					
5.3.1.21.3	Available alternative operating procedures or interim control measures are being or will be used to reduce adverse impacts; and					
5.3.1.21.4	The activities are necessary to the national security or to the lives, health, or welfare of the occupants of Delaware. [7 Del.C. §6011(b)]					
Response:	riance is not requested, therefor this rule does not apply.					
5.3.1.22	No permit for the activities identified above shall be granted unless the activities are consistent with county and municipal zoning regulations. [7 Del.C. $\$6003(c)(1)$]					
Response:	County and municipal zoning approval is not necessary for maintenance dredging at the Port of Wilmington.					
5.3.1.23	No person or entity shall commence construction, replacement, or operation of any of the following without first having obtained a permit from DNREC:					
5.3.1.23.	1 Sewer;					
5.3.1.23.	Any liquid waste collection or conveyance facilities such as wastewater pump stations and force mains;					
5.3.1.23.	3 Liquid waste treatment facilities;					
5.3.1.23.	Any surface impoundment for liquid waste or					
5.3.1.23.	Any bulk storage, bulk transfer or pipeline facility. [7 DE Admin. Code 7201 Section 2.0 and subsection 4.2]					
Response:	This rule does not apply.					
5.3.1.24	No person shall construct, install, modify, rehabilitate, or replace an on-site wastewater treatment and disposal system or construct or place any dwelling, building, mobile home, manufactured home or other structure capable of discharging wastewater on-site unless such person has a valid license and permit issued by the DNREC. [7 DE Admin. Code 7101 subsection 3.31.1]					
Response:	This rule does not apply.					

SECTION 3 - 8

H-7912

DNREC DREDGING PERMIT

SEPTEMBER 2020

No person shall cause or permit to be discharged, thrown, or dumped into any waters or any drainage ditch in the State any garbage, refuse, dead animal, poultry, trash, carton, bottle, container, box, lumber, timber, paper, or light material or other solid waste. [7 DE Admin. Code 7201 subsection 3.2.6]

Response: This rule does not apply.

5.3.1.26 No person or entity shall:

- 5.3.1.26.1 Engage in the drilling, boring, coring, driving, digging, construction, installation, removal, or repair of a water well or water test well, except as or under the supervision of a licensed water well contractor;
- 5.3.1.26.2 Construct, repair, install or replace any part of a septic tank system except by or under the supervision of a licensed septic tank installer; or
- 5.3.1.26.3 Operate any liquid waste treatment system without a licensed liquid waste treatment plant operator.
- 5.3.1.26.4 No permits or licenses shall be issued for these activities unless the DNREC finds that the applicant is prepared and willing to conduct such activities in a manner which is consistent with the CMP policies. [7 Del.C. §6023; Delaware Executive Order 43, August 15, 1996]

Response: This rule does not apply.

5.3.1.27 The person who has caused the contamination of a person's drinking water supply by contaminant other than bacteria, viruses, nitrate or pesticides may be required to provide, at no cost to each person who has had his drinking water supply contaminated, an interim water supply that is of a quality and quantity to meet said person's needs as shall be determined by the Secretary of DNREC, in addition to the dates on which the interim water supply shall commence and be terminated. [7 Del.C. §6037]

Response: This rule does not apply.

5.3.1.28 No permits shall be issued for the discharge of any radiological, chemical or biological warfare agents or high-level radioactive wastes into State waters. [7 DE Admin. Code 7201 subsection 3.2.8.1]

Response: This rule does not apply.

5.3.1.29 No person shall cast, put, place, discharge in or permit or suffer to be cast, put, placed, discharged in or to escape into any running stream of water within the limits of this State, from which stream the inhabitants of any borough, town or city within this State are supplied wholly or in part with water for and as drink or beverage,

H-7912 SECTION 3 - 9 DNREC DREDGING PERMIT SEPTEMBER 2020

any dye-stuffs, drugs, chemicals or other substance or matter of any kind whatsoever whereby the water so supplied as and for a drink or beverage is made and becomes noxious to the health or disagreeable to the senses of smell or taste. [16 Del.C. §1301]

Response: This rule does not apply.

5.3.1.30 Water delivered to every consumer by any public water supplier shall be so protected by natural means, by proper constructions or by treatment so as maintain or increase water quality above the level determined to be safe and not to negatively impact users of water from such systems, either directly or indirectly. [16 DE Admin. Code 4462 subsection 3.3]

Response: This rule does not apply.

5.3.1.31 After July 1, 1991, unless a particular activity is exempted by these regulations, a person may not disturb land without an approved sediment and stormwater management plan from the appropriate plan approval agency. [Delaware Sediment and Stormwater Regulations, Section 8(1), amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.32 The following activities are exempt from both sediment control and stormwater management requirements:
 - Agricultural land management practices, unless the local Conservation District or the DNREC determines that the land requires a new or updated soil and water conservation plan, and the owner or operator of the land has refused either to apply to a Conservation District for the development of such a plan, or to implement a plan developed by a Conservation District;
 - 5.3.1.32.2 Developments or construction that disturbs less than 5,000 square feet.
 - 5.3.1.32.3 Land development activities which are regulated under specific State or federal laws which provide for managing sediment control and stormwater runoff, such as specific permits required under the National Pollutant Discharge Elimination System (NPDES) when discharges are a combination of stormwater and industrial or domestic wastewater.
 - 5.3.1.32.4 Projects which are emergency in nature that are necessary to protect life or property such as bridges, culvert, or pipe repairs and above ground or underground electric and gas utilities or public utility restoration; and

H-7912

SECTION 3 - 10

5.3.1.32.5 Qualifying commercial forest harvesting operations. [Delaware Sediment and Stormwater Regulations, subsection 3.1 amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.33 A project may be eligible for a waiver of stormwater management for both quantitative and qualitative control if the applicant can demonstrate that:
 - 5.3.1.33.1 The proposed project will return the disturbed area to a pre-development runoff condition and the pre-development land use is unchanged at the conclusion of the project; or
 - 5.3.1.33.2 The proposed project consists of a linear disturbance of less than ten (10) feet in width; or
 - 5.3.1.33.3 The project is for an individual residential detached unit or agricultural structure, and the total disturbed area of the site is less than one acre; or
 - 5.3.1.33.4 The proposed project is for agricultural structures in locations included in current soil and water conservation plans that have been approved by the appropriate Conservation District. [Delaware Sediment and Stormwater Regulations, subsection 3.2.1, amended April 11, 2005]

Response: This rule does not apply.

All sediment and stormwater management plans shall be designed to implement water quality control measures to minimize, to the maximum extent possible, degradation of downstream water quality and habitat. Unless a particular activity is exempt, no person may disturb land without an approved sediment and stormwater management plan. [Delaware Sediment and Stormwater Regulations, subsection 10.2.2, amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.35 Water quantity control is an integral component of overall stormwater management. Control of peak discharges will, to some extent, prevent increases in flooding. The following design criteria for peak flow control are established for water quantity control purposes, unless a waiver is granted based on a case-by-case basis:
 - 5.3.1.35.1 Projects in New Castle County that are located north of the Chesapeake and Delaware Canal shall not exceed the post-development peak discharge for the 2, 10, and 100 year frequency storm events at the pre-development peak discharge rates for the 2, 10, and 100 year frequency storm events.

H-7912 SECTION 3 - 11 DNREC DREDGING PERMIT SEPTEMBER 2020

- Projects in New Castle County that are located south of the Chesapeake and Delaware Canal, Kent County, and Sussex County shall not exceed the post-development peak discharge for the 2 and 10 year frequency storm events at the pre-development peak discharge rates for the 2 and 10 year frequency storm events.
- 5.3.1.35.3 Watersheds, other than Designated Watersheds or subwatersheds that have well documented water quantity problems may have more stringent or modified design criteria that are responsive to the specific needs of that watershed. Modified criteria for that watershed must receive Departmental approval, and all projects reviewed and approved by the appropriate plan approval agency shall meet or exceed the modified criteria. Proposed modification of criteria for a watershed shall be subject to public review and comment prior to implementation. [Delaware Sediment and Stormwater Regulations, subsection 10.3.4, amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.36 Water quality control is also an integral component of stormwater management. Control of water quality on-site will prevent further degradation of downstream water quality. The following design criteria are established for water quality protection unless a waiver or variance is granted on a case-by-case basis.
 - 5.3.1.36.1 In general, the preferred option for water quality protection shall be those practices collectively referred to as "Green Technology BMP's". Other practices shall be considered only after preferred practices have been eliminated for engineering or hardship reasons as approved by the appropriate plan approval agency.
 - 5.3.1.36.2 Water quality be designed to manage the rate and volume of flow from the 2.0" NRCS Type II rainfall event, up to a maximum of 1.0" and
 - 5.3.1.36.3 Alternative stormwater quality practices may be acceptable to the Department and/or the plan approval agency if the removal efficiency for suspended solids meets or exceeds 80% as demonstrated by scientifically independent evaluation and monitoring performance data,
 - 5.3.1.36.4 The Department and/or plan approval agency may require other acceptable stormwater practices if a receiving waterbody has been identified as impaired or designated with a specific pollutant reduction target.
 - 5.3.1.36.5 Water quality practices may also be acceptable to the Department and/or the plan approval agency if they are designed to reduce pollutant loading from a specific post-development source.

Response: This rule does not apply.

H-7912 SECTION 3 - 12 DNREC DREDGING PERMIT SEPTEMBER 2020

5.4 SUBAQUEOUS LANDS AND COASTAL STRIP MANAGEMENT

The "coastal zone", referred to in these policies as the "coastal strip", is defined as all that area of the State, whether land, water or subaqueous land between the territorial limits of Delaware in the Delaware River, Delaware Bay and Atlantic Ocean, and a line formed by certain Delaware highways and roads. [7 Del.C. §7002]

Response: We are operating under the assumption that the project is within the Delaware coastal zone.

The natural environment of the coastal strip shall be protected from the impacts of heavy industry and oil pollution for the purpose of recreation, tourism, fishing, crabbing, and gathering other marine life useful in food production. [7 Del.C. §§7001, 6201]

Response: As this project does not involve heavy industry and oil pollution, the project is in compliance with this rule.

5.4.3 The need for protection of the natural environment in the coastal strip shall be balanced with the need for new industry in the State's coastal areas [7 Del.C. §7001]

Response: This rule does not apply; no new industry is proposed.

The location, extent and type of industrial development in the coastal strip that will result in the degradation of the Delaware's bays and coastal areas shall be controlled [7 Del.C. §7001; Kreshtool v. Delmarva Power & Light Co., Delaware Super., 310 A. 2d 649(1973)]

Response: This project involves solely existing land use; therefore, the project is in compliance with this rule.

5.4.5 The development and use of offshore oil, gas, and other mineral resources of the State shall be managed to make the maximum contribution to the public benefit and so as to balance their utilization, conservation, and protection [Delaware Oil, Gas and Mineral Exploration Regulations, 2.1. September, 1971]

Response: This rule does not apply.

New heavy industrial uses shall be prohibited in the coastal strip. Such uses are ones characteristically involving more than 20 acres, and characteristically employing smokestacks, tanks, distillation or reaction columns, chemical processing equipment or waste-treatment lagoons. Heavy industrial uses shall not only be defined by their physical characteristics, however, but also by their potential to pollute in the event of human error or equipment failure. Examples of

H-7912 SECTION 3 - 13 DNREC DREDGING PERMIT SEPTEMBER 2020

heavy industry are oil refineries, basic steel manufacturing plants, basic cellulosic pulp-paper mills, and chemical plants such as petrochemical complexes. For purposes of this policy, public sewage treatment or recycling plants shall not be deemed heavy industrial uses. [7 Del.C. §§7002(e), 7003; Kreshtool v. Delmarva Power & Light Co., Delaware Super., 310 A. 2d 649(1973)]

Response: No new heavy industrial uses are proposed for this project.

New manufacturing uses or the expansion of existing manufacturing uses shall be allowed in the coastal strip by permit only, although in no case shall new manufacturing uses be allowed in wetlands or where inconsistent with local zoning regulations. Manufacturing uses are ones which mechanically or chemically transform substances into new products, and characteristically employ power-driven machines and materials handling equipment. Manufacturing uses typically include establishments engaged in assembling components of manufactured products, provided the new products are not fixed improvements. [7 Del.C. §§7002(d)(e), 7004(a)]

Response: New or expanded manufacturing uses are not proposed as part of this project.

- 5.4.8 The following factors shall be considered in passing on requests for permission to construct or operate a manufacturing use in the coastal strip:
 - Environmental impact, including but not limited to, probable air and water pollution likely to be generated by the proposed use under normal operating conditions, as well as during mechanical malfunction and human error; likely destruction of wetlands and flora and fauna; impact of site preparation on drainage of the area in question, especially as it relates to flood control; impact of site preparation and facility operations on land erosion; effect of site preparation and facility operations on the quality and quantity of surface, and subsurface water resources, such as the use of water for processing, cooling, effluent removal, and other purposes; in addition, but not limited to, the likelihood of generation of glare, heat, noise, vibration, radiation, electromagnetic interference and obnoxious odors.
 - 5.4.8.2 Economic effect, including the number of jobs created and the income which will be generated by the wages and salaries of these jobs in relation to the amount of land required, and the amount of tax revenues potentially accruing to State and local government.
 - 5.4.8.3 Aesthetic effect, such as impact on scenic beauty of the surrounding area.
 - Number and type of supporting facilities required and the impact of such facilities on all factors listed in this subsection.

H-7912 SECTION 3 - 14 DNREC DREDGING PERMIT SEPTEMBER 2020

- 5.4.8.5 Effect on neighboring land uses including, but not limited to, effect on public access to tidal waters, effect on recreational areas, and effect on adjacent residential and agricultural areas.
- 5.4.8.6 County and municipal comprehensive plans for the development and/or conservation of their areas of jurisdiction. [7 Del.C. §7004(b)]

Response: New or expanded manufacturing uses are not proposed as part of this project.

New offshore gas, liquid, or solid bulk product transfer facilities shall be prohibited in the coastal strip. Such facilities are docks or port facilities, whether artificial islands or attached to shore by any means, for the transfer of bulk quantities of any substance from vessel to onshore facility or vice versa. However, a docking facility or pier for a single industrial or manufacturing facility and docking facilities located in the City of Wilmington for the Port of Wilmington shall not be prohibited. [7 Del.C. §§7002(f), 7003; Inf. Attorney General Opinion No. 65, October 22, 1974]

Response: New offshore gas, liquid, or solid bulk product transfer facilities are not proposed as part of this project.

5.4.10 Offshore pipelines which transfer bulk quantities of gas, oil, or other liquids to terminals within the coastal strip shall be prohibited. Such pipelines generally shall be allowed if they transit the coastal strip and environmental safeguards are observed. However, if such pipelines represent a significant danger of pollution to the coastal strip or generate pressure for construction of industrial plants in the coastal strip, they shall be prohibited. [7 Del.C. §§7001, 7002, 7003; Inf. Attorney General Opinion No. 77-33, July 6, 1977]

Response: New offshore pipelines which transfer bulk quantities of gas, oil, or other liquids to terminals within the coastal strip are not proposed as part of this project.

A permit may be issued for geological, geophysical and seismic surveys, including the taking of cores and other samples, or the tide and submerged lands of this State. Such permits shall be nonexclusive and shall not give any preferential rights to any oil, gas and sulfur or other mineral lease. After consultation with those agencies of the State having an interest in the possible effects of the leasing, such rules and regulations deemed necessary to protect the fish, game, wildlife and natural resources of the State shall be included in the permit. Survey activities on any area determined to be an area where a lease should not be granted may be prohibited. The permit shall include conditions and payment proper to safeguard the interests of the State. [7 Del.C. §§6103, 6104]

Response: This rule does not apply.

H-7912 SECTION 3 - 15 DNREC DREDGING PERMIT SEPTEMBER 2020

No operations or activities shall be commenced on the drilling, deepening or plugging back of any offshore oil or gas wells located on underwater lands of Delaware without the permission of the State, and unless the activities are conducted in a manner which do not result in the degradation of the State's natural resources. [Delaware Oil, Gas and Mineral Exploration Regulations Numbers I-V, September 1971]

Response: This rule does not apply.

Easements for mineral exploration and exploitation underlying that part of the surface of the Atlantic shore owned by the state shall be permitted at such times and places as necessary to permit the extraction and transportation of oil, gas, sulfur or other minerals from State, federal or private lands, but permanent interference with the surface of the Atlantic shore shall be prohibited. [7 Del.C. §§6102(d), 6118, 6119(a)]

Response: This rule does not apply.

- 5.4.14 Before offering tide and submerged lands for leasing for possible mineral development, or whenever any person files a written application with the Secretary of DNREC requesting that lands be offered for leasing, accompanying the same with the required fee, a public hearing shall be held. After the public hearing, it will be determined whether an invitation for bidding to lease the area under consideration would be in the public interest. Consideration shall be made as to whether a lease or leases of the area under consideration would:
 - 5.4.14.1 Be detrimental to the health, safety, or welfare of persons residing in, owning real property or working in the neighborhood of such areas;
 - 5.4.14.2 Interfere with the residential or recreation areas to an extent that would render such areas unfit for recreational or residential uses or unfit for park purposes;
 - 5.4.14.3 Destroy, impair or interfere with the aesthetic and scenic values of the Delaware coast, or other affected area;
 - 5.4.14.4 Create any air, water and other pollution;
 - 5.4.14.5 Substantially endanger marine life or wildlife;
 - 5.4.14.6 Substantially interfere with commerce or navigation; and
 - 5.4.14.7 Protect State lands from drainage of oil, gas or other minerals or objectionable substances [7 Del.C. §§6107, 6108]

Response: This rule does not apply.

H-7912 SECTION 3 - 16 DNREC DREDGING PERMIT SEPTEMBER 2020

Avoidable pollution or avoidable contamination of the ocean and of the waters covering submerged lands, avoidable pollution or avoidable contamination of the beaches or land underlying the ocean or waters covering submerged lands, or any substantial impairment of and interference with the enjoyment and use thereof, including but not limited to bathing, boating, fishing, fish and wildlife production, and navigation, shall be prohibited and the lessee shall exercise a high degree of care to provide that no oil, tar, residuary product of oil or any refuse of any kind from any well or works shall be permitted to be deposited on or pass into the waters of the ocean, any bay or inlet thereof, or any other waters covering submerged lands; provided, however, that this policy does not apply to the deposit on, or passing into, such water or waters not containing any hydrocarbons or vegetable or animal matter. [7 Del.C. §6119(a)]

Response: The applicant will take all precautions necessary to ensure that avoidable pollution or contamination of waters does not take place.

- 5.4.16 For the purposes of this section, "avoidable pollution" or "avoidable contamination" means pollution or contamination arising from:
 - 5.4.16.1 The acts of omissions of the lessee or its officers, employees or agents; or,
 - 5.4.16.2 Events that could have been prevented by the lessee or its officers, employees or agents through the exercise of a high degree of care. [7 Del.C. §6119(b)]

No response required.

5.4.17 State subaqueous lands within the boundaries of Delaware constitute an important resource of the State and shall be protected against uses or changes which may impair the public interest in the use of tidal or nontidal waters. [7 Del.C. Ch. 72]

Response: All uses are existing, and no new uses are proposed. The project will not impair the public interest in the use of tidal waters.

No person shall deposit material upon or remove or extract materials from, or construct, modify, repair or reconstruct, or occupy any structure or facility upon submerged lands or tidelands without first having obtained a permit, lease or letter of approval from the DNREC. Such permit, lease or letter of approval, if granted, may include reasonable conditions required in the judgment of the DNREC to protect the interest of the public. If it is determined that granting the permit, lease or approval will result in loss to the public of a substantial resource, the permittee may be required to take measures which will offset or mitigate the loss. [7 Del.C. §7205]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed activity.

H-7912 SECTION 3 - 17 DNREC DREDGING PERMIT SEPTEMBER 2020

The extent of jurisdictional authority over public or private subaqueous lands includes any activity in a navigable stream or waterbody, which have a hydrologic connection to natural waterbodies. "Activity" includes, but is not limited to, any human induced action, such as dredging, draining, filling, grading, bulkheading, mining, drilling, extraction of materials or excavation, or construction of any kind, including, but not limited to, construction of a boat ramp or slip, breakwater, residences, bridge, bulkhead, culvert, dam, derrick, deck, groin, jetty, lagoon, gabion, rip-rap, launching facility, marina, mooring facility, pier, seawall, walkway, or wharf. [7 DE Admin Code 7504 Section 1.0 and subsection 2.2.1.1]

No response required.

H-7912

5.4.20	The following types of activities in, on, over, or under private subaqueous lands
	require a permit or letter of authorization from the DNREC:

5.4.20.1	Construction of a convenience structure or boat docking facility.
5.4.20.2	Construction of a shoreline erosion control structure or measure.
5.4.20.3	Dredging, filling, excavating or extracting of materials.
5.4.20.4	Excavation, creation, or alteration of any channel, lagoon, turning basin, pond, embayment, or other navigable waterway on private subaqueous lands which will make connection with public subaqueous lands.
5.4.20.5	Dredging of existing channels, ditches, dockages, lagoons and other navigable waterways to maintain or restore the approved depth and width.
5.4.20.6	Excavation of land which makes connection to public subaqueous lands.
5.4.20.7	The laying of any pipeline, electric transmission line, telephone line, or any other utility structure in, on, over, or under the beds of private subaqueous lands.
5.4.20.8	Installation of temporary or permanent mooring buoys or private marker buoys.
5.4.20.9	Establishment of an anchorage for the use of a mooring for more than two (2) boats or for appurtenant onshore services.
5.4.20.10	Anchoring or mooring a floating platform over private subaqueous lands and for a period of twenty-four (24) consecutive hours or more.
5.4.20.11	Anchoring or mooring any vessel or platform over private subaqueous lands for revenue generating purposes.

SECTION 3 - 18

DNREC DREDGING PERMIT

SEPTEMBER 2020

5.4.20.12 Repair and replacement of existing serviceable structures over private subaqueous lands, except no permit or letter is required for repairs or structural replacements which are above the mean low tide and which do not increase any dimensions or change the use of the structure. [7 DE Admin. Code 7504 subsection 2.3.3.1]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed dredging.

- 5.4.21 The following types of activities on public subaqueous lands require a lease, permit, or letter of authorization from the DNREC:
 - 5.4.21.1 Construction or use of any structure on, in, under, or over public subaqueous lands, including but not limited to, any convenience structures, shoreline erosion control structure or measure, or boat docking facility.
 - 5.4.21.2 Dredging, filling, excavating or extracting of materials.
 - 5.4.21.3 Continuous anchoring or mooring of a commercial vessel used in a commercial activity on or over public subaqueous lands for thirty (30) or more calendar days during any consecutive three (3) months.
 - 5.4.21.4 The laying of any pipeline, electric transmission line, or telephone line in, on, over, or under the beds of public subaqueous lands.
 - 5.4.21.5 Installation of temporary or permanent mooring buoys or private marker buoys.
 - 5.4.21.6 Establishment of an anchorage for mooring more than two (2) boats or which serves as a permanent place for resident vessels.
 - 5.4.21.7 Anchoring or mooring a floating platform over public subaqueous lands and for a period of twenty- four (24) consecutive hours or more.
 - 5.4.21.8 Maintenance dredging of existing or new channels, ditches, dockages, lagoon and other waterways to maintain or restore the approach depth and width.
 - 5.4.21.9 Anchoring or mooring any vessel or platform over public subaqueous lands for revenue generating purposes.
 - Repair and replacement of existing serviceable structures over private subaqueous lands, except no permit or letter is required for repairs or structural replacements which are above the mean low tide and which do not increase any dimensions or change the use of the structure.

H-7912 SECTION 3 - 19 DNREC DREDGING PERMIT SEPTEMBER 2020

5.4.21.11 New dredging activities of channels, ditches, dockage, or other waterways [7 DE Admin. Code 7504 subsection 2.4.2]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed dredging.

- 5.4.22 The DNREC shall consider the public interest in any proposed activity which might affect the use of subaqueous lands. These considerations include, but are not limited to, the following:
 - 5.4.22.1 The value to the State or the public in retaining any interest in subaqueous lands which the applicant seeks to acquire, including the potential economic value of the interest.
 - 5.4.22.2 The value to the State or the public in conveying any interest in subaqueous lands which the applicant seeks to acquire.
 - 5.4.22.3 The potential effect on the public with respect to commerce, navigation, recreation, aesthetic enjoyment, natural resources and other uses of the subaqueous lands.
 - 5.4.22.4 The extent to which any disruption of the public use of such lands is temporary or permanent.
 - 5.4.22.5 The extent to which the applicant's primary objectives and purposes can be realized without the use of such lands (avoidance).
 - 5.4.22.6 The extent to which the applicant's primary purpose and objectives can be realized by alternatives, i.e. minimize the scope or extent of an activity or project and its adverse impact.
 - 5.4.22.7 Given the inability for avoidance or alternatives, the extent to which the applicant can employ mitigation measures to offset any losses incurred by the public.
 - 5.4.22.8 The extent to which the public at large would benefit from the activity or project and the extent to which it would suffer detriment.
 - 5.4.22.9 The extent to which the primary purpose of a project is water-dependent. [7 DE Admin. Code 7504 subsection 4.6]

Response: The proposed project aligns with the public interest in that it allows for the continued operation of the Port of Wilmington, a vital economic engine for the State of Delaware.

H-7912

SECTION 3 - 20

	e DNREC shall consider the impact on the environment, including but not ited to, the following:
5.4.23.1	Any impairment of water quality, either temporary or permanent, which may reasonably be expected to cause violation of the State Surface Water Quality Standards. This impairment may include violation of criteria or degradation of existing uses;
5.4.23.2	Any effect on shell fishing, finfishing, or other recreational activities and existing or designated water uses;
5.4.23.3	Any harm to aquatic or tidal vegetation, benthic organisms or other flora and fauna, and their habitats;
5.4.23.4	Any loss of natural aquatic habitat;
5.4.23.5	Any impairment of air quality either temporarily or permanently, including noise, odors, and hazardous chemicals;
5.4.23.6	The extent to which the proposed project may adversely impact natural surface and groundwater hydrology and sediment transport functions. [7 DE Admin. Code 7504 subsection 4.7.1]
Response: The	rough the course of reviewing our permit application, this rule is satisfied.
	e DNREC shall also consider the following to determine whether to approve the blication:
5.4.24.1	The degree to which the project represents an encroachment on or otherwise interferes with public lands, waterways or surrounding private interests.
5.4.24.2	The degree to which the project incorporates sound engineering principles and appropriate materials of construction.
5.4.24.3	The degree to which the proposed project fits in with the surrounding structures, facilities, and uses of the subaqueous lands and uplands.
5.4.24.4	Whether the proposed activity complies with the State of Delaware's Surface Water Quality Standards both during construction and during subsequent operation or maintenance.
5.4.24.5	The degree to which the proposed project may adversely affect shellfish beds or finfish activity in the area. [7 DE Admin. Code 7504 subsection 4.7.5]
Response: Thi	rough the course of reviewing our permit application, this rule is satisfied.
II 7012	GEOTION 2 21 DIRECT DEPOCATO DEPOCATO

SECTION 3 - 21

H-7912

DNREC DREDGING PERMIT

SEPTEMBER 2020

- 5.4.25 The following concerns for protecting water quality shall be specifically considered by the DNREC in evaluating applications for dredging projects:
 - 5.4.25.1 All dredging is to be conducted in a manner consistent with sound conservation and water pollution control practices. Spoil and fill areas are to be properly diked to contain the dredged material and prevent its entrance into any surface water. Specific requirements for spoils retention may be specified by the DNREC in the approval, permit or license.
 - 5.4.25.2 All material excavated shall be transported, deposited, confined, and graded to drain within the disposal areas approved by the DNREC. Any material that is deposited elsewhere than in approved areas shall be removed by the applicant and deposited where directed at the applicant's expense and any required mitigation shall also be at the applicant's expense.
 - 5.4.25.3 Materials excavated by hydraulic dredge shall be transported by pipeline directly to the approved disposal area. All pipelines shall be kept in good condition at all times and any leaks or breaks shall be immediately repaired.
 - 5.4.25.4 Materials excavated and not deposited directly into an approved disposal area shall be placed in scows or other vessels and transported to either an approved enclosed basin, dumped, and then rehandled by hydraulic dredge to an approved disposal area, or to a mooring where scows or other vessels shall be unloaded by pumping directly to an approved disposal area.
 - 5.4.25.5 When scows or other vessels are unloading without dumping, they shall have their contents pumped directly into an approved disposal area by a means sufficient to preclude any loss of material into the body of water.
 - 5.4.25.6 In approved disposal areas, the applicant may construct any temporary structures or use any means necessary to control the dredge effluent, except borrowing from the outer slopes of existing embankments and/or hydraulic placing of perimeter embankments. For bermed disposal sites, a minimum freeboard of two (2) feet, measured vertically from the retained materials and water to the top of the adjacent confining embankment, shall be maintained at all times.
 - 5.4.25.7 The applicant shall not obstruct drainage or tidal flushing on existent wetlands or upland areas adjacent thereto. The applicant shall leave free, clear, and unobstructed outfalls of sewers, drainage ditches, and other similar structures affected by the disposal operations. The dredged materials shall be distributed within the disposal area in a reasonably uniform manner to permit full drainage without ponding during and after fill operations.

H-7912

SECTION 3 - 22

5.4.25.8 The dredging operation must be suspended if water quality conditions deteriorate in the vicinity of dredging or spoil disposal site. Minimum water quality standards may be included as an element of the permit and shall be monitored by the applicant. Violation of these conditions shall be cause for immediate suspension of activity and notification of the DNREC. Dredging shall not be resumed until water quality conditions have improved and the DNREC has authorized the resumption. [7 DE Admin. Code 7504 subsection 4.11.3]

Response:

Dredging will be conducted according to best industry practices including observation from the ship deck and controlled use of the dredging equipment. Dredging will cease if excessive levels of turbidity are observed and the cause will be rectified before any dredging resumes. Pipelines will be inspected prior to dredging. All dikes are required to be in sound structural condition and are maintained by the disposal site operator. Dredge material will be placed in a managed disposal area and handled concurrently with the material dredged from the main Christina River channel through the course of its regular upkeep by the Army Corps of Engineers. The dredging and management of the dredge material will be overseen by a contractor selected by the U.S. Army Corps of Engineers.

- 5.4.26 The following types of dredging projects are prohibited:
 - 5.4.26.1 Dredging of biologically productive areas, such as nursery areas, shellfish beds, and submerged aquatic vegetation, if such dredging will have a significant or lasting impact on the biological productivity of the area.
 - 5.4.26.2 Dredging of new dead-end lagoons, new basins and new channels, which have a length to width ratio greater than 3:1. This subsection shall not apply to marina projects governed by the Marina Regulations.
 - 5.4.26.3 Dredging channels, lagoons or canals deeper than the existing controlling depth of the connecting or controlling waterway.
 - 5.4.26.4 Dredging channels, cleaning marinas or other subaqueous areas by using propeller wash from boats. [7 DE Admin. Code 7504 subsection 4.11.6]

Response:

No nurseries, shellfish beds, or submerged aquatic vegetation is known to exist within the project area. The project does not consist of new dredging or the dredging of new areas including dead-end lagoons. Dredging will be conducted to existing, maintained channel depths. Dredging will not be performed using propeller wash from boats.

H-7912

SECTION 3 - 23

5.8 PORT OF WILMINGTON

5.8.1 Advisory Policies

- 5.8.1.1 The long-term economic viability and competitiveness of the Port of Wilmington should be encouraged and supported.
- 5.8.1.2 The people who benefit from the Port of Wilmington should contribute to its support and help maintain the financial health of the port.
- 5.8.1.3 Expansion of the Port of Wilmington along the Delaware River is encouraged to meet future national and regional transshipment needs and to reduce the dredging and spoils disposal activities associated with port operations along the Christina River. Port expansion, however, should not proceed if such expansion means air and water quality standards cannot be kept.
- 5.8.1.4 The port should be promoted for general cargo transfer and, to the extent feasible, as a location for the support of outer continental shelf development.

Response: The proposed project is in accordance with all the aforementioned rules.

5.11 LIVING RESOURCES

5.11.1 General

5.11.1.1 No activity shall have an adverse environmental effect on living resources and shall include consideration of the effect of site preparation and the proposed activity on the following wetland values:

5.11.1.1.1 Value of tidal ebb and flow

- 5.11.1.1.1 Production Value: carving organic matter to adjacent estuaries and coastal waters which serve as breeding areas for certain animal species (especially fish and shellfish).
- 5.11.1.1.2 Value as a natural protective system of absorption of storm wave energy, flood waters, and heavy rainfall, thereby decreasing flood and erosion damage.
- 5.11.1.1.3 The prevention of silting in certain harbors and inlets thereby reducing dredging.
- 5.11.1.1.4 Removal and recycling of inorganic nutrients.

H-7912 SECTION 3 - 24 DNREC DREDGING PERMIT SEPTEMBER 2020

5.	11.1.1.5	Effect on the estuarine waters.
5.11.1.1	.2 Habita	t Value
5.	11.1.1.2.1	Habitat for resident species of wildlife including furbearers, invertebrates, finfish.
5.	11.1.1.2.2	Habitat for migratory wildlife species including waterfowl, wading birds, shorebirds, passerines, finfish, shrimp.
5.	11.1.1.2.3	Rearing area, nesting area, breeding grounds for various species.
5.	11.1.1.2.4	Habitat for rare or endangered plants.
5.	11.1.1.2.5	Presence of plants or animals known to be rare generally, or unique to the particular location.
5.	11.1.1.2.6	Presence of plants or animals near the limits of their territorial range.
5.	11.1.1.2.7	Presence of unique geologic or wetland features [7 DE Admin. Code 7502 subsection 12.2]
5.11.2 Fish a	and Wildlife	
5.11.2.1		protected wildlife shall be managed and protected from cts. [7 Del.C.§102(a)]
5.11.2.2		a resources shall be protected from further impairment and en possible [7 Del.C. §1902 (a)(1)(2)(5)]
5.11.2.3	water manage substitute biol	other pest controls shall use techniques such as open marsh ment, which reduce the application of chemicals and which logical controls. [Delaware Mosquito Control Spray Policy, ary 26, 2018, Delaware Executive Order 43, August 15, 1996]
5.11.3 Nong	ame and Endang	gered Species
5.11.3.1	_	that fauna, including rare and endangered species, which are y trapped, killed, captured or consumed, either for sport or C. §202(a)]
5.11.3.2	to preserve an	angered species are in need of active, protective management and enhance such species. The diversity and abundance of the and fauna of Delaware, particularly those deemed rare or
H-7912		SECTION 3 - 25 DNREC DREDGING PERMIT SEPTEMBER 2020

endangered, shall be preserved and enhanced through the protection of the habitat, natural areas, and areas of unusual scientific significance or having unusual importance to their survival. [7 Del.C. §201(1) and (2)]

5.11.4 Advisory Policy

5.11.4.1 Actions which may interfere with or otherwise adversely affect fish and wildlife in Delaware shall be implemented only after careful consultation with DNREC and exploration of alternatives less damaging to such fish and wildlife.

Response: Seasonal dredging restrictions may be observed in order to protect migratory fish. We do not know of any other endangered or threatened species in the project area. We expect any issues to be addressed during the course of the DNREC permitting process. The dredging procedures outlined in this application are intended to minimize the effect of maintenance dredging on the surrounding environmental while allowing the activity to still take place, which is necessary in order to continue operations at the Port of Wilmington.

5.13 STATE OWNED COASTAL RECREATION AND CONSERVATION

5.13.1 State owned lands whose natural condition or present state of use would maintain important recreational areas and wildlife habitat, or would maintain or enhance the conservation of natural, cultural or historic resources shall be managed, preserved, and protected, for conservation and recreational use. [7 Del.C. §§7301, 7504(6), 5305; 7 Del.C. Ch 45]

Response: The state-owned submerged lands within the project area will be maintained free from obstruction for navigational and recreational purposes as safety permits.

Open-water habitat will be preserved.

Open spaces shall be preserved through the acquisition of interests or rights in real property, or donation of lands, for public recreation and conservation of natural resources promotes biological diversity, public health, prosperity and general welfare [7 Del.C. §7502]

No response required.

5.19 TRANSPORTATION FACILITIES

5.19.1 General

5.19.1.1 The DCMP supports the expansion and development of the Port of Wilmington. [7 Del.C. Ch 70]

H-7912 SECTION 3 - 26 DNREC DREDGING PERMIT SEPTEMBER 2020

5.19.1.2 Due to the threats posed to the natural environment, recreational activities and commercial fishing activities by the transfer of oil, petroleum products and their byproducts between vessels and vessels and onshore facilities and vessels, parties responsible for oil spills, discharges and the escape of oil in the waters of the State shall be required to immediately remove such oil pollution to DNRECs satisfaction or the responsible parties shall be required to pay for the expenses incurred in the removal of such oil pollution. [7 Del.C. §6201]

5.19.2 Advisory Policies

- 5.19.2.1 When essential to the national interest, the construction, maintenance and improvement of transportation systems shall predominate over less essential interests.
- 5.19.2.2 Transportation planning programs shall provide for alternatives to continued reliance on private motor vehicles with their associated highway requirements.
- 5.19.2.3 The State shall undertake an accelerated program of highway maintenance, upgrading, and safety improvements.
- 5.19.2.4 The DCMP supports the maintenance of an adequate and efficient railroad network to serve industry and agriculture on the Delmarva Peninsula.
- 5.19.2.5 The DCMP supports the establishment and maintenance of efficient public transit systems in order to reduce impacts to air quality and natural resources of the State.
- 5.19.2.6 New or expanded ports which involve extensive and continual dredging and spoil disposal in order to keep them useable are discouraged unless it can clearly be demonstrated that such facilities can be developed in an environmentally sound manner and without imposing continuing maintenance costs on any level of government or the general public.

Response: The proposed activity is necessary to sustain vessel traffic to and commerce at the Port of Wilmington. No further port development or expansion is proposed.

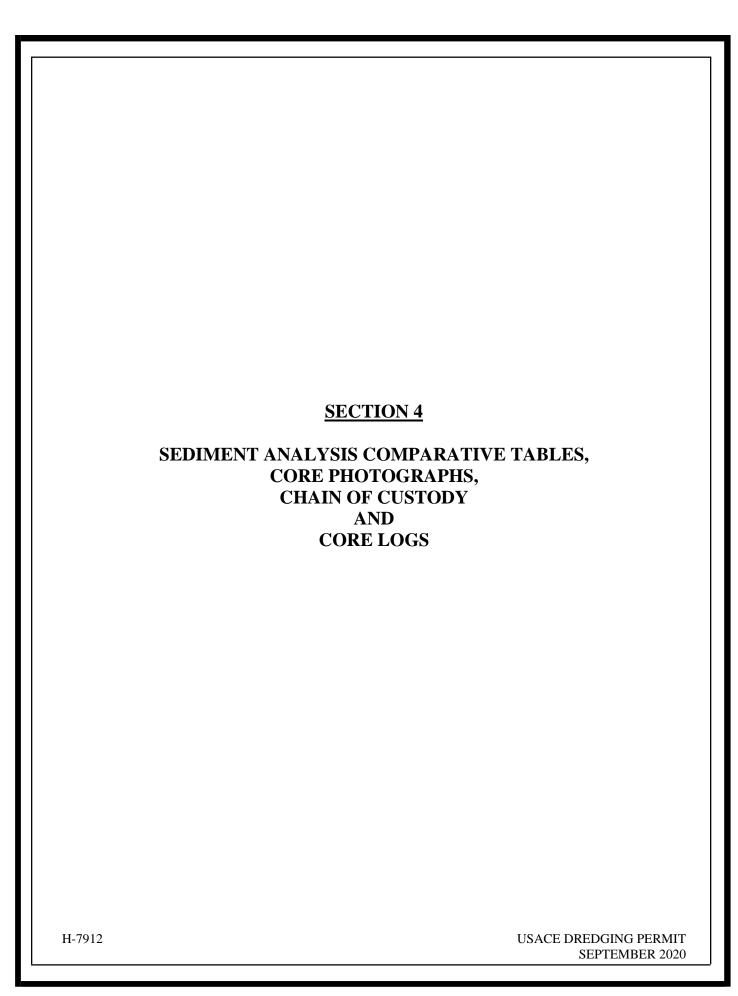
5.24 POLLUTION PREVENTION

5.24.1 General

5.24.1.1 Whenever possible, the generation of waste should be reduced or eliminated as expeditiously as possible, and that waste that is generated should be recovered, reused, recycled, treated or disposed of in a manner that

H-7912 SECTION 3 - 27 DNREC DREDGING PERMIT SEPTEMBER 2020

minimizes any present or future threats to human health or the environment. [7 Del.C. §7802(a)(1)]


Response: Not applicable. The project does not involve the generation of waste.

- 5.24.2 Advisory Policies
 - 5.24.2.1 Industries should review their proposed projects for the possible use of pollution prevention opportunities.
 - 5.24.2.2 Industries are encouraged to utilize the DNREC Pollution Prevention Program's services, including non-regulatory technical assistance and information, to ensure that the potential for degradation of the quality of air, land, and water is minimal.

Response: The applicant is already planning to employ known pollution prevention methods for a hydraulic dredging project. The DNREC Pollution Prevention Program services do not pertain to dredging projects.

H-7912

SECTION 3 - 28

T	А	В	С	D	E	F	G	Н	I
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	180-108765-1 C-1 7/21/2020 11:25 AM	180-108765-2 C-2 7/21/2020 11:06 AM	180-109048-1 C-3 7/29/2020 9:10 AM
2	Clay	N/A	%	Grain Size	MRL	Total	45.4	46.0	43.9
3	Coarse Sand	N/A	%	Grain Size	MRL	Total	0.0	0.0	0.0
4	Fine Sand	N/A	%	Grain Size	MRL	Total	4.3	5.2	3.5
5	Gravel	N/A	%	Grain Size	MRL	Total	0.0	0.0	0.0
6	Hydrometer Reading 1 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	87.3	80.3	83.5
7	Hydrometer Reading 2 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	74.4	71.7	68.5
8	Hydrometer Reading 3 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	61.5	58.8	59.0
9	Hydrometer Reading 4 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	53.5	51.7	53.5
10	Hydrometer Reading 5 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	45.4	46.0	43.9
11	Hydrometer Reading 6 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	35.7	34.5	34.4
12	Hydrometer Reading 7 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	26.1	24.5	23.4
13	Medium Sand	N/A	%	Grain Size	MRL	Total	0.5	2.7	1.3
14	Moisture Content	N/A	%	Water (Moisture) Content	MRL	Total	186.9	206.5	198.6
15	Percent Moisture	N/A	%	Percent Moisture	MRL	Total	65.6	64.6	65.2
16	Percent Solids	N/A	%	Percent Moisture	MRL	Total	34.4	35.4	34.8
17	Sand	N/A	%	Grain Size	MRL	Total	4.8	7.9	4.8
18	Sieve Size #10 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
19	Sieve Size #100 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	96.8	93.3	96.7
20	Sieve Size #20 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	99.5	99.4	99.2
21	Sieve Size #200 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	95.2	92.1	95.2
22	Sieve Size #4 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
23	Sieve Size #40 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	99.5	97.3	98.7
24	Sieve Size #60 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	98.7	95.9	98.2
25	Sieve Size #80 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	97.6	94.7	97.5
26	Sieve Size 0.375 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
27	Sieve Size 0.75 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
28	Sieve Size 1 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
29	Sieve Size 1.5 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
30	Sieve Size 2 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
31	Sieve Size 3 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
32	Silt	N/A	%	Grain Size	MRL	Total	49.8	46.1	51.3
33	Total Organic Carbon - Duplicates	7440-44-0	mg/Kg	Organic Carbon, Total (TOC)	MRL	Total	48000	44000	34000

	A	J	K	L	М	N	0	Р
		180-109048-2	180-109048-3	180-108765-3	180-109048-4	180-108765-4	180-108765-5	180-108765-6
		C-4	C-5	C-6	C-7	C-8	C-9	C-10
		7/29/2020	7/29/2020	7/21/2020	7/29/2020	7/21/2020	7/21/2020	7/21/2020
1	Analyte	9:52 AM		10:54 AM	10:40 AM	10:30 AM	10:02 AM	9:40 AM
2	Clay	40.4	42.1	39.5	41.6	33.8	34.4	34.7
3	Coarse Sand	0.5	0.0	0.1	0.2	0.2	1.3	1.4
4	Fine Sand	5.0	4.3	5.2	2.7	7.8	3.8	13.8
5	Gravel	0.0	0.0	0.4	0.0	0.0	26.6	3.9
6	Hydrometer Reading 1 - Percent Finer	74.4	78.9	80.3	73.6	75.3	66.1	67.7
7	Hydrometer Reading 2 - Percent Finer	67.1	68.9	64.6	65.6	60.9	58.8	58.1
8	Hydrometer Reading 3 - Percent Finer	55.0	55.5	55.2	56.2	51.4	47.8	48.4
9	Hydrometer Reading 4 - Percent Finer	48.9	45.4	48.9	48.2	43.4	40.5	41.6
10	Hydrometer Reading 5 - Percent Finer	40.4	42.1	39.5	41.6	33.8	34.4	34.7
11	Hydrometer Reading 6 - Percent Finer	30.6	32.1	30.1	32.2	25.8	27.1	27.8
12	Hydrometer Reading 7 - Percent Finer	20.9	23.7	22.2	20.2	19.4	18.5	19.5
13	Medium Sand	1.7	1.1	0.9	1.2	3.1	1.4	5.5
14	Moisture Content	159.6	155.6	183.3	163.9	179.7	165.4	144.9
15	Percent Moisture	61.9	60.4	62.7	62.9	63.3	58.4	57.6
16	Percent Solids	38.1	39.6	37.3	37.1	36.7	41.6	42.4
17	Sand	7.2	5.4	6.2	4.1	11.1	6.5	20.7
18	Sieve Size #10 - Percent Finer	99.5	100.0	99.5	99.8	99.8	72.1	94.7
19	Sieve Size #100 - Percent Finer	95.8	96.6	95.4	97.6	92.1	67.8	80.2
20	Sieve Size #20 - Percent Finer	98.3	99.3	98.8	98.8	98.9	71.3	92.8
21	Sieve Size #200 - Percent Finer	92.8	94.6	93.4	95.9	88.9	66.9	75.4
22	Sieve Size #4 - Percent Finer	100.0	100.0	99.6	100.0	100.0	73.4	96.1
23	Sieve Size #40 - Percent Finer	97.8	98.9	98.6	98.6	96.7	70.7	89.2
24	Sieve Size #60 - Percent Finer	and in the second	98.3	97.4	98.1	95.1	69.6	85.6
25	Sieve Size #80 - Percent Finer	96.3	97.4	96.3	97.9	93.7	68.6	82.5
26	Sieve Size 0.375 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	75.4	96.6
27	Sieve Size 0.75 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	79.5	100.0
28	Sieve Size 1 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
29	Sieve Size 1.5 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
30	Sieve Size 2 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Sieve Size 3 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
-	Silt			53.9	54.3	55.1	32.5	40.7
33	Total Organic Carbon - Duplicates	34000	30000	52000	32000	49000	36000	38000

	А	В	С	D	E	F	G
			:				
			•				
			:				
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
2	1,1'-Biphenyl	92-52-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	61000
3	1,1,1-Trichloroethane	71-55-6	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	160000000
4	1,1,2,2-Tetrachloroethane	79-34-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	1000
5	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
6	1,1,2-Trichloroethane	79-00-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
7	1,1-Dichloroethane	75-34-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	8000
8	1,1-Dichloroethene	75-35-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	11000
9	1,1-Dichloroethene	75-35-4	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
10	1,2,4-Trichlorobenzene	120-82-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	73000
11	1,2,4-Trichlorobenzene	120-82-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	73000
12	1,2-Dibromo-3-Chloropropane	96-12-8	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	80
13	1,2-Dibromoethane	106-93-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	8 ^a
14	1,2-Dichlorobenzene	95-50-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5300000
15	1,2-Dichlorobenzene	95-50-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	5300000
16	1,2-Dichloroethane	107-06-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	900
17	1,2-Dichloroethane	107-06-2	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
18	1,2-Dichloropropane	78-87-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
19	1,2-Diphenylhydrazine(as Azobenzene)	122-66-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700
20	1,3-Dichlorobenzene	541-73-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	5300000
21	1,3-Dichlorobenzene	541-73-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5300000
22	1,4-Dichlorobenzene	106-46-7	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
23	1,4-Dichlorobenzene	106-46-7	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	5000
24	1,4-Dichlorobenzene	106-46-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5000
25	1,4-Dioxane	123-91-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
26	2,4,5-Trichlorophenol	95-95-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6100000
27	2,4,5-Trichlorophenol	95-95-4	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
28	2,4,6-Trichlorophenol	88-06-2	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
29	2,4,6-Trichlorophenol	88-06-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	19000
30	2,4-Dichlorophenol	120-83-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	180000
31	2,4-Dimethylphenol	105-67-9	ug/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	1200000
32	2,4-Dinitrophenol	51-28-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	120000
33	2,4-Dinitrotoluene	121-14-2	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
34	2,4-Dinitrotoluene	121-14-2		,	MDL	Total	700
35	2,6-Dinitrotoluene	606-20-2	ug/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700
36	2-Butanone (MEK)	78-93-3		Volatile Organic Compounds by GC/MS	MDL	Total	3100000
37		78-93-3 78-93-3	ug/Kg		MDL	TCLP	n/a ^b
38	2-Butanone (MEK)	78-93-3 91-58-7	mg/L	Volatile Organic Compounds by GC/MS Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	il/ a
39	2-Chloronaphthalene	95-57-8	ug/Kg		MDL	Total	310000
	2-Chlorophenol	~~/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	~ ; ~~~~~	310000
40 41	2-Hexanone 2-Methylnaphthalene	591-78-6 91-57-6	ug/Kg	Volatile Organic Compounds by GC/MS	MRL	Total Total	230000
42	2-Methylphenol	95-48-7	ug/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	310000
		,				~~~~~~~~~~	,
43	2-Methylphenol	95-48-7	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a [™]

	А	Н	I	J	К	L	М
	Analyte	Reg 2	180-108764-1 SC-1 COMPOSITE [C- 9+C-10] 7/22/2020 1:00 PM	SC-2	SC-3	SC-4	180-108764-2 SC-5 COMPOSITE [C 1+C-2] 7/22/2020 1:30 PM
2	1,1'-Biphenyl	240000	3.3 J	ND	ND	ND	15 J
	1,1,1-Trichloroethane	\$	ND	ND	ND	ND	ND
- 6	1,1,2,2-Tetrachloroethane	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND	ND	ND	ND	ND
- 0	1,1,2-Trichloro-1,2,2-trifluoroethane		ND ND	ND ND	ND ND	ND ND	ND ND
	1,1,2-Trichloroethane			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	yoooooooooo	<i></i>
- 1	1,1-Dichloroethane		ND	ND	ND	ND	ND
	1,1-Dichloroethene		ND	ND	ND	ND	ND
- 1		\	<u></u>	ND	ND	ND	ND
- 1		·····	ND	ND	ND	ND	ND
- 1	~~~~	(ND	ND As	ND ND As	ND As	ND
	1,2-Dibromo-3-Chloropropane	200	ND	ND ^c	ND ^c	ND ^c	ND
	1,2-Dibromoethane		ND	ND	ND	ND	ND
	1,2-Dichlorobenzene	,	ND ND	ND ND	ND ND	ND	6.5 J ND
- 1	1,2-Dichlorobenzene 1,2-Dichloroethane	,	ND	ND ND	ND ND	ND ND	ND
F			<u> </u>	}	}	·	·
	1,2-Dichloroethane		ND ND	ND ND	ND ND	ND ND	ND ND
- 7	1,2-Dichloropropane 1.2-Diphenylhydrazine(as Azobenzene)	(ND ND	ND ND	ND ND	ND	ND
-	1,3-Diphenymydrazmetas Azobenzenej		ND	ND	ND ND	ND	ND
- 1	1,3-Dichlorobenzene	 	ND	ND	,	ND	4.2 J
- 1			ND	ND	ND	ND	ND
-	1,4-Dichlorobenzene 1,4-Dichlorobenzene		ND	ND ND	ND ND	ND	ND
- 1	1,4-Dichlorobenzene		ND	ND	ND ND	ND	10 J
	1,4-Dioxane			ND	ND	ND	ND
	2,4,5-Trichlorophenol	(ND	ND	ND	ND	ND
- F	2,4,5-Trichlorophenol	······	ND	ND	ND	ND	ND
		n/a ^b	ND	ND	ND	ND	ND
- 0	2,4,6-Trichlorophenol 2,4,6-Trichlorophenol	;······	ND	ND ND	ND ND	ND	ND
-	2,4-Dichlorophenol	(ND	ND ND	ND ND	ND ND	ND
	2,4-Dimethylphenol	<u> </u>	ND	ND	ND	ND	ND
	2,4-Dinitrophenol	(ND	ND	ND	ND	ND
	2,4-Dinitrotoluene	h.	ND	ND	ND	ND	ND
	2,4-Dinitrotoluene		ND	ND	ND	ND	ND
	2,6-Dinitrotoluene		ND	ND	ND	ND	ND
	2-Butanone (MEK)	44000000	ND	ND FL	ND	ND	ND
37	2-Butanone (MEK)	n/a ^b	ND ^c	22	ND	ND	ND ^c
	2-Chloronaphthalene		ND	ND	ND	ND	ND
	2-Chlorophenol		ND	ND	ND	ND	ND
- 1	2-Hexanone	·····	ND	ND	ND	ND	ND
41		(* * * * * * * * * * * * * * * * * * *	7.7 J	(i	14 J	23
-	2-Methylphenol	3400000	ND	ND	ND	ND	ND
- 1		,	ND	ND	;······		ND

	A	В	С	D	E	F	G
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
44	2-Nitroaniline	88-74-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	39000
45	2-Nitrophenol	88-75-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
46	3,3'-Dichlorobenzidine	91-94-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	1000
47	3-Nitroaniline	99-09-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
48	4,4'-DDD	72-54-8	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	3000
49	4,4'-DDE	72-55-9	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	2000
50	4,4'-DDT	50-29-3	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	2000
51	4,6-Dinitro-2-methylphenol	534-52-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6000
52	4-Bromophenyl phenyl ether	101-55-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
53	4-Chloro-3-methylphenol	59-50-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
54	4-Chloroaniline	106-47-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
55	4-Chlorophenyl phenyl ether	7005-72-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
56	4-Methyl-2-pentanone (MIBK)	108-10-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
57	4-Nitroaniline	100-01-6	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	:
58	4-Nitrophenol	100-02-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
59	Acenaphthene	83-32-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	3400000
60	Acenaphthylene	208-96-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	
61	Acetone	67-64-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	70000000
62	Acetophenone	98-86-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	2000
63	Aldrin	309-00-2	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	2000 40
64	alpha-BHC	319-84-6	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	100
65	Aluminum	7429-90-5	mg/Kg	Metals (ICP/MS)	MRL	Total	78000
66	Anthracene	120-12-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	17000000
67	Antimony	7440-36-0	mg/Kg	Metals (ICP/MS)	MRL	Total	31
68	Arsenic	7440-38-2	mg/L	Metals (ICP)	MRL	TCLP	n/a ^b
69	Arsenic	7440-38-2	mg/Kg	Metals (ICP/MS)	MRL	Total	19
70	Atrazine	1912-24-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	210000
71	Barium	7440-39-3	mg/L	Metals (ICP)	MRL	TCLP	n/a ^b
72	Barium	7440-39-3	mg/Kg	Metals (ICP/MS)	MRL	Total	16000
73	Benzaldehyde	100-52-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	6100000
74	Benzene	71-43-2	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
75	Benzene	71-43-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
76	Benzidine	92-87-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700
77	Benzo[a]anthracene	56-55-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	5000
78	Benzo[a]pyrene	50-32-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	500
79	Benzo[b]fluoranthene	205-99-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	5000
80	Benzo[g,h,i]perylene	191-24-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	380000000
81	Benzo[k]fluoranthene	207-08-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	45000
	Beryllium	7440-41-7	mg/Kg	Metals (ICP/MS)	MRL	Total	16
83	beta-BHC	319-85-7	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	400
84	bis (2-chloroisopropyl) ether	108-60-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	23000
85	Bis(2-chloroethoxy)methane	111-91-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	:
86	Bis(2-chloroethyl)ether	111-44-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	400

							M
1 🗚	\nalyte	Reg 2	7/22/2020	SC-2	SC-3 COMPOSITE [C- 5+C-6]	SC-4 COMPOSITE [C- 7+C-8] 7/30/2020	SC-5
44 2	-Nitroaniline	23000000	ND	ND	ND	ND	ND
45 2	-Nitrophenol		ND	ND	• · · · • · · · · · · · · · · · · · · ·	^	ND
100	,3'-Dichlorobenzidine	4000	ND	ND	(************************	ND
	-Nitroaniline		ND	ND	ND		ND
	,4'-DDD	13000		3.9	,		5.3 *H
49 4	,4'-DDE	9000	4.4 *H	5.2	4.5	4.5	8.3 *H
50 4	,4'-DDT	8000	4.5 *H	7.5	• · · · • · · · · · · · · · · · · · · ·		ND *H
	,6-Dinitro-2-methylphenol	68000	ND	ND	``	*********	ND
52 4	-Bromophenyl phenyl ether		ND	ND	ND	ND	ND
	-Chloro-3-methylphenol			ND			ND
54 4	-Chloroaniline		ND	ND *L	ND *L	ND *L	ND
55 4	-Chlorophenyl phenyl ether			ND	ND	ND	ND
56 4	-Methyl-2-pentanone (MIBK)		ND	ND	ND	ND	ND
57 4	-Nitroaniline		ND	ND	ND		ND
58 4	-Nitrophenol		ND	ND	ND	ND	ND
59 A	cenaphthene	37000000	5.5 J	ND	ND	ND	38
60 A	cenaphthylene	300000000	7.7 J	16 J	13 J	20 J	23
61 A	cetone		ND	65 ^c	ND ^c	ND ^c	8.6 J
62 A	cetophenone	5000	ND	ND	ND	ND	ND
63 A	ldrin	200	ND *H	ND	ND	0.18 J p	ND *H
64 a	lpha-BHC	500	ND *H	ND	ND	ND	ND *H
65 A	lluminum		19000 ^	17000 ^	15000 ^	15000 ^	19000 ^
66 A	nthracene	30000000	9.3 J	34 J	17 J	31 J	41
67 A	ntimony	450	0.38	0.37 FL	0.35	0.38	0.65 FL
68 A	ırsenic	n/a ^b	0.064 J	ND	ND	ND	0.061 J
69 A	ırsenic	19	14	15	13	12	14
70 A	trazine	2400000	ND	ND	ND	ND	ND
		n/a ^b	0.33 J	120	{		0.30 J
1000	arium	59000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.40 J	(<u> </u>	160
500	enzaldehyde	68000000		ND	Ç		15 J
m	enzene	n/a ^b		ND			ND
	enzene	5000		ND	 		ND
i in	enzidine	700		ND	\		ND
-		17000	26	(* * * * * * * * * * * * * * * * * * *	(86
1000	enzo[a]pyrene	2000	28	86		120	90
· ·	enzo[b]fluoranthene	17000		110	96	140	120
1.00	enzo[g,h,i]perylene	30000000		85	88	120	79
1000	enzo[k]fluoranthene	170000	13	28 J	35 J	58	40
5.00		140	1.2	1.2	(1.2
1000	eta-BHC	2000	ND *H	ND			ND *H
	is (2-chloroisopropyl) ether	67000	ND II	ND	<u> </u>		ND 11
	is (2-chloroethoxy)methane	07000		ND		\$	ND ND
600		2000	·	((<u> </u>	ND ND

	А	В	С	D	E	F	G
			į				
			•				
							_
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
87	Bis(2-ethylhexyl) phthalate	117-81-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	35000
88	Bromoform	75-25-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	81000
89	Bromomethane	74-83-9	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	25000
90	Butyl benzyl phthalate	85-68-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	1200000
91	Cadmium	7440-43-9	img/L	Metals (ICP)	MDL	TCLP	n/a ^b
92	Cadmium	7440-43-9	mg/Kg	Metals (ICP/MS)	MRL	Total	78
93	Calcium	7440-70-2	mg/Kg	Metals (ICP/MS)	MRL	Total	
94	Caprolactam	105-60-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	31000000
95	Carbazole	86-74-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	24000
96	Carbon disulfide	75-15-0	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	7800000
97	Carbon tetrachloride	56-23-5	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
98	Carbon tetrachloride	56-23-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
99	Chlordane (technical)	12789-03-6	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
100	Chlorobenzene	108-90-7	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	510000
101	Chlorobenzene	108-90-7	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
102	Chlorodibromomethane	124-48-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	3000
103	Chloroethane	75-00-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	220000
104	Chloroform	67-66-3	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
105	Chloroform	67-66-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	600
106	Chloromethane	74-87-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	4000
107	Chromium	7440-47-3	mg/Kg	Metals (ICP/MS)	MRL	Total	
108	Chromium	7440-47-3	mg/L	Metals (ICP)	MRL	TCLP	
109	Chrysene	218-01-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	450000
110	cis-1,2-Dichloroethene	156-59-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	230000
111	cis-1,3-Dichloropropene	10061-01-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
112	cis-Chlordane	5103-71-9	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	
113	Clay	N/A	% %	Grain Size	MRL	Total	<u>.</u>
114	Coarse Sand	N/A	%	Grain Size	MRL	Total	
115	Cobalt	7440-48-4	mg/Kg	Metals (ICP/MS)	MRL	Total	1600
	Copper	7440-50-8	mg/Kg	Metals (ICP/MS)	MRL	Total	3100
	Cr (III)	16065-83-1	ug/Kg	Chromium, Trivalent (Colorimetric)	MRL	Total	
	Cr (VI)	18540-29-9	ug/Kg	Chromium, Hexavalent	MDL	Total	
	Cresols, Total	1319-77-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
	Cyanide, Total	57-12-5	ug/Kg	Cyanide	MRL	Total	47000
	Cyclohexane	110-82-7	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
122		319-86-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	
123	Dibenz(a,h)anthracene	53-70-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	500
	Dibenzofuran	132-64-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	1000
125		75-27-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	1000
	Dichlorodifluoromethane	75-71-8	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	490000
	Dieldrin	60-57-1	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	40
	Diethyl phthalate	84-66-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	49000000
129	Dimethyl phthalate	131-11-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	<u> </u>

	А	Н	I	J	K	L	М
			180-108764-1	180-109049-1	180-109049-2	180-109049-3	180-108764-2
			SC-1	SC-2	SC-3	SC-4	SC-5
			COMPOSITE [C-	§	5	COMPOSITE [C-	
			9+C-10]	[C-3+C-4]	5+C-6]	7+C-8]	1+C-2]
			•	7/30/2020	5		7/22/2020
1	Analyte	Reg 2	1:00 PM	8:53 AM	9:40 AM	10:22 AM	1:30 PM
	Bis(2-ethylhexyl) phthalate	140000	ND	ND		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND
88	Bromoform	280000	ND	ND	ND	ND	ND
89	Bromomethane	59000	ND	ND	\$	ND	ND
90	Butyl benzyl phthalate	14000000	<u> </u>	ND	<u> </u>		ND
91		n/a ^b	ND	0.0035 J	0.0041 J	0.0051 J	ND
92	Cadmium	78	0.57	0.64	,		1.0
93	Calcium	,,,	4500	3900 FL	3700	3100	4300 FL
94	Caprolactam	340000000	ND	ND		ND	ND
95	Carbazole	96000		13 J		15 J	9.9 J
96	Carbon disulfide	110000000		ND *1		ND *1	ND
97		n/a ^b	ND	ND	ND	ND	ND
98	Carbon tetrachloride		ND	ND		.	ND
		n/a ^b	ND	ND			ND
	Chlorobenzene	7400000	ND	ND			ND
	l	n/a ^b	§	ND	}	•	ND ND
	Chlorodibromomethane	8000	ND	ND ND		i	ND ND
-	Chloroethane	1100000	Ç	ND ND	`	i	ND ND
		n/a ^b	<u> </u>	ND FL		·····	
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	andres and a second	ND ND	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		**********************	ND ND
	Chloroform	2000	`	ND ND	(
	Chloromethane Chromium	12000	ND 52	ND ND	}	ND ND	ND 55 FL
	Chromium			62			ND
	Chrysene	1700000	31	110			130
	cis-1,2-Dichloroethene		ND	ND	Vaccorrance concentration of the concentration of t	************************	ND
	cis-1,3-Dichloropropene		ND	ND	`	ND	ND
	cis-Chlordane		0.68 *H	0.45 J p	0.80	0.62 p	0.57 *H
	Clay		42.4	43.5	43.9	45.5	38.8
	Coarse Sand		0.0	0.8	§	0.2	0.6
	Cobalt	590	17	17	Granden and a series and a seri	;·····	17
116	Copper	45000	32	37	33	33	49 ^
117	Cr (III)		52000	62000	55000	52000	55000
118	Cr (VI)		ND	ND	ND	ND	680 J
119	Cresols, Total		ND	ND	*	,	ND
120	Cyanide, Total	680000	360 J	190 J	190 J	ND	370 J
	Cyclohexane		ND	ND	2	ND	ND
	delta-BHC		ND *H	ND	ND	ND	ND *H
	Dibenz(a,h)anthracene	2000		ND	ND	<u> </u>	31
	Dibenzofuran		4.2 J	9.1 J	\$0000000000000000000000000000000000000	5 000000000000000000000000000000000000	14 J
	Dichlorobromomethane	3000	ND	ND	``		ND
	Dichlorodifluoromethane	230000000	ND *H	ND		ND	ND *H
	Dieldrin	200		ND		ND	ND *H
	Diethyl phthalate	550000000	•	ND	····	,	ND
129	Dimethyl phthalate		ND	ND	ND	ND	ND

A	A B C		D	E	E F		
		:				:	
1 Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1	
130 Di-n-butyl phthalate	84-74-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6100000	
131 Di-n-octyl phthalate	117-84-0	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	2400000	
132 Endosulfan I	959-98-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total		
133 Endosulfan II	33213-65-9	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total		
134 Endosulfan sulfate	1031-07-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	470000	
135 Endrin	72-20-8	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	23000 n/a ^b	
136 Endrin	72-20-8	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b	
137 Endrin aldehyde	7421-93-4	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total		
138 Endrin ketone	53494-70-5	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total		
139 Ethylbenzene	100-41-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	7800000	
140 Fine Sand	N/A	%	Grain Size	MRL	Total		
141 Fluoranthene	206-44-0	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	2300000	
142 Fluorene	86-73-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	2300000	
143 gamma-BHC (Lindane)	58-89-9	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	400	
144 gamma-BHC (Lindane)	58-89-9	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b	
145 Gravel	N/A	%	Grain Size	MRL	Total		
146 Heptachlor	76-44-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	100	
147 Heptachlor	76-44-8	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b	
148 Heptachlor epoxide	1024-57-3	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	70	
149 Heptachlor epoxide	1024-57-3	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b	
150 Hexachlorobenzene	118-74-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	300	
151 Hexachlorobenzene	118-74-1	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b	
152 Hexachlorobutadiene	87-68-3	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b	
153 Hexachlorobutadiene	87-68-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6000	
154 Hexachlorocyclopentadiene	77-47-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	45000	
		. ,			TCLP	n/a ^b	
155 Hexachloroethane	67-72-1 67-72-1	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL			
156 Hexachloroethane	6/-/2-1 N/A	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	12000	
157 Hydrometer Reading 1 - Percent Finer 158 Hydrometer Reading 2 - Percent Finer	N/A N/A	% Passing	Grain Size Grain Size	MRL MRL	Total	-	
159 Hydrometer Reading 3 - Percent Finer	N/A N/A	% Passing	Grain Size	MRL	Total Total		
160 Hydrometer Reading 4 - Percent Finer	N/A N/A	% Passing % Passing	Grain Size	MRL	Total		
161 Hydrometer Reading 5 - Percent Finer	N/A N/A	% Passing	Grain Size	MRL	Total		
162 Hydrometer Reading 6 - Percent Finer	N/A N/A		Grain Size	MRL			
163 Hydrometer Reading 7 - Percent Finer	N/A N/A	% Passing % Passing	Grain Size	MRL	Total Total	 	
164 Indeno[1,2,3-cd]pyrene	193-39-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	5000	
165 Iron	7439-89-6	mg/Kg	Metals (ICP/MS)	MRL	Total	.5000	
166 Isophorone	78-59-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	510000	
167 Isopropylbenzene	98-82-8	ug/Kg ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	310000	
	7439-92-1				~ <u>,~~~~~~~</u>	n/a ^b	
168 Lead 169 Lead	7439-92-1 7439-92-1	mg/L	Metals (ICP)	MDL MBI	TCLP		
	7439-92-1	mg/Kg	Metals (ICP/MS)	MRL	Total	400	
170 Magnesium 171 Manganese	7439-95-4	mg/Kg	Metals (ICP/MS) Metals (ICP/MS)	MRL MRL	Total	11000	
T \ T linia i Raile 26	/433-30-3	mg/Kg	ivietais (ICF/IVIS)	IVINL	Total	11000	

	А	Н	I	J	К	L	M
	Analyte	Reg 2	180-108764-1 SC-1 COMPOSITE [C- 9+C-10] 7/22/2020 1:00 PM	SC-2	SC-3 COMPOSITE [C- 5+C-6]	SC-4	180-108764-2 SC-5 COMPOSITE [C- 1+C-2] 7/22/2020 1:30 PM
130	Di-n-butyl phthalate	68000000	ND	ND	ND	ND	ND
131	Di-n-octyl phthalate	27000000	ND	ND	ND	ND	ND
132	Endosulfan I		ND *H	ND	ND	ND	ND *H
133	Endosulfan II		ND *H	ND	ND	ND	ND *H
134	Endosulfan sulfate	6800000	ND *H	ND	ND	ND	ND *H
135	Endrin	340000	0.57 J p*H	ND	ND	ND	1.5 p*H
136	Endrin	n/a ^b	ND	0.66 p	0.62 p	1.1	ND
137	Endrin aldehyde		ND B *H	ND	<	ND	ND B *H
138	Endrin ketone		ND *H	ND	ND	ND	ND *H
139	Ethylbenzene	110000000	ND	ND	ND	ND	ND
140	Fine Sand		5.0	4.3	3.6	4.4	10.4
141	Fluoranthene	24000000	44	150	130	210	190
142	Fluorene	24000000	44 5.5 J	14 J	11 J	ND	32
143	gamma-BHC (Lindane)	2000	ND *H	ND	ND	ND	ND *H
144	gamma-BHC (Lindane)	n/a ^b	ND	ND	ND	ND	ND
145	Gravel	}	0.0	0.0	0.0	0.0	4.8
146	Heptachlor	700	ND *H	ND	ND	ND	ND *H
	Heptachlor	n/a ^b	ND	ND	ND	ND	ND
	Heptachlor epoxide	300	ND *H	ND		ND	ND *H
	Heptachlor epoxide	n/a ^b	ND	ND	y	ND	ND
	Hexachlorobenzene	1000	ND	ND	}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND	ND
	Hexachlorobenzene	n/a ^b	ND	ND	ND	ND	ND
-	Hexachlorobutadiene	n/a ^b		{	§	§	
		<u> </u>	ND	ND	<	4	ND
	Hexachlorobutadiene	25000	ND ND	ND ND)	ND	ND ND
	Hexachlorocyclopentadiene	110000 n/a ^b	····	£		on the second of	çuuuuuuuuuuuu
	Hexachloroethane	fariaren	ND	ND			ND
	Hexachloroethane	48000	ND	ND	₹	i	ND
	Hydrometer Reading 1 - Percent Finer	}	73.1	77.8	75.6	74.7	78.7
	Hydrometer Reading 2 - Percent Finer		65.0	67.7 53.7	63.5 56.0	68.9 63.0	64.6 54.3
159	Hydrometer Reading 3 - Percent Finer	}	56.9 50.5	53.7 49.8	<u>Annienieren meneralen a</u>	57.2	54.3 46.5
160	Hydrometer Reading 4 - Percent Finer	ļ	42.4	49.8 43.5	43.9	45.5	46.5 38.8
101	Hydrometer Reading 5 - Percent Finer	<u></u>	32.7	43.5 34.6	33.4	45.5 33.8	38.8 31.1
162	Hydrometer Reading 6 - Percent Finer Hydrometer Reading 7 - Percent Finer	<u> </u>	24.6	34.6 24.4	33.4 24.4	23.6	31.1 22.1
	Indeno[1,2,3-cd]pyrene	17000	21	69	57	90	65
	Iron	17000	32000	31000	28000	27000	30000
	Isophorone	2000000	ND	}	dan and an annual and an annual and an annual and an an annual and an an annual and an an annual and an an an		ND
	Isopropylbenzene	200000	ND	ND	ND ND	ND	ND ND
		n/a ^b	ND	}	January	\$	ND
	Lead Lead	n/a 800	. ND 47	53 ND	ND	45 ND	73 ^
		000	6900	6200 FL	5500	5300	5900
	Magnesium	5900	····	1500 FL	1400	1200	1200
1/1	Manganese	ンガUU	1500	1000	1400	1200	1400

	A	ВС		D	E	F	G	
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1	
172	Medium Sand	N/A	%	Grain Size	MRL	Total		
L73	Mercury	7439-97-6	mg/Kg	Mercury (CVAA)	MRL	Total	23	
74	Mercury	7439-97-6	mg/L	Mercury (CVAA)	MDL	TCLP	n/a ^b	
.75	Methoxychlor	72-43-5	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	390000	
76	Methoxychlor	72-43-5	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b	
.77	Methyl acetate	79-20-9	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	78000000	
.78	Methyl tert-butyl ether	1634-04-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	110000	
	Methylcyclohexane	108-87-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	:	
	Methylene Chloride	75-09-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	46000	
181	Methylphenol, 3 & 4	106-44-5	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b	
	Methylphenol, 3 & 4	106-44-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	31000	
	Mirex	2385-85-5	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total		
	Moisture Content	N/A	%	Water (Moisture) Content	MRL	Total		
	Naphthalene	91-20-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	6000	
86	Nickel	7440-02-0	mg/Kg	Metals (ICP/MS)	MRL	Total	1600	
- 1	Nitrobenzene	98-95-3	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b	
	Nitrobenzene	98-95-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5000	
	N-Nitrosodimethylamine	62-75-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700	
- 1	N-Nitrosodi-n-propylamine	621-64-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	200	
	N-Nitrosodiphenylamine	86-30-6	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	99000	
	PCB-1016	12674-11-2	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total		
	PCB-1221	11104-28-2	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total		
_	PCB-1232	11141-16-5	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total		
	PCB-1242	53469-21-9	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total		
	PCB-1248	12672-29-6	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total		
	PCB-1254	11097-69-1	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MRL	Total		
	PCB-1260	11096-82-5	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total		
- 1	Pentachlorophenol	87-86-5	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b	
	Pentachlorophenol	87-86-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	900	
	Percent Moisture	N/A	%	Percent Moisture	MRL	Total		
	Percent Solids	N/A	% %	Percent Moisture	MRL	Total		
	Phenanthrene	85-01-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total		
	Phenol	108-95-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	18000000	
	Polychlorinated biphenyls, Total	1336-36-3	ug/Kg	Total PCB Calculation	MRL	Total	200	
_	Potassium	7440-09-7	mg/Kg	Metals (ICP/MS)	MRL	Total		
	Pyrene	129-00-0	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	1700000	
	Pyridine	110-86-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total		
-	Pyridine	110-86-1	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP		
	Sand	N/A	%	Grain Size	MRL	Total		
- 6	Selenium	7782-49-2	mg/L	Metals (ICP)	MDL	TCLP	n/a ^b	
_	Selenium	7782-49-2	mg/Kg	Metals (ICP/MS)	MRL	Total	390	
	Sieve Size #10 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	330	

	А	Н	I	J	К	L	M
	Analyte	Reg 2	180-108764-1 SC-1 COMPOSITE [C- 9+C-10] 7/22/2020 1:00 PM	SC-2 COMPOSITE [C-3+C-4] 7/30/2020 8:53 AM	SC-3 COMPOSITE [C- 5+C-6] 7/30/2020 9:40 AM	SC-4 COMPOSITE [C 7+C-8] 7/30/2020 10:22 AM	SC-5 COMPOSITE [C- 1+C-2] 7/22/2020 1:30 PM
	Medium Sand						3.1
	Mercury	65	0.19	0.18	0.20	0.20	0.26
174	Mercury	n/a ^b	ND	ND	ND	ND	ND
175	Methoxychlor	5700000	ND *H	ND	ND	ND	ND *H
176	Methoxychlor	n/a ^b	ND	ND	ND	ND	ND
177	Methyl acetate		ND	ND	ND		ND
	Methyl tert-butyl ether	320000	ND	;·····		ND	ND
	Methylcyclohexane		ND	ND	ND	ND	ND
180	Methylene Chloride	230000	ND ^c	ND	ND	ND	ND ^c
	Methylphenol, 3 & 4	n/a ^b	ND	ND	4	ND	ND
182	Methylphenol, 3 & 4	340000	ND	ND	ND	ND	ND
	Mirex		ND *H	ND	ND	ND	ND *H
	Moisture Content		189.9	171.4	167.3		152.2
	Naphthalene	17000	11	}	23 J	27 J	55
	Nickel	23000	33	33	29	28	29 FL
-	Nitrobenzene	n/a ^b	ND	ND	₹		ND
	Nitrobenzene	14000	ND	ND	ND	ND	ND
	N-Nitrosodimethylamine	700	ND ^c		<u> </u>		ND ^c
	N-Nitrosodi-n-propylamine	300	ND	ND	ND	ND	ND
	N-Nitrosodiphenylamine	390000	ND	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND	ND	ND
	PCB-1016		ND	∲	<u> </u>	ND	ND
	PCB-1221						ND
	PCB-1232		ND	ND	ND	ND	ND
	PCB-1242		ND	ND	**********	ND	ND
	PCB-1248		ND		Å	Å	ND 18
-	PCB-1254		12	٠	6.4	7.6	i
	PCB-1260	, b	ND	}	<i></i>	<u> </u>	ND
		n/a ^b	ND	\$~~~~~~~~~~	Å0000000000000000000000000000000000000	************	ND
	Pentachlorophenol	3000	ND	,	<u> </u>	<u> </u>	ND
	Percent Moisture		66.3	65.4	63.9	65.1 34.9	63.2
	Percent Solids Phenanthrene	300000000	33.7 22	34.6 69	36.1 57	34.9 84	36.8 100
	Phenol	2100000000	ND	ND	ND	ND	ND
	Prienoi Polychlorinated biphenyls, Total	1000	12	26			18
	Potassium	1000	2800	2600 FL	2300	2200	2600
	Pyrene	18000000	48	120	100	170	180
	Pyridine		ND	ND			ND
	Pyridine		ND	ND			ND
	Sand		6.5	6.5		5.6	14.1
	Selenium	n/a ^b	ND B	ND	ND	ND	ND B
	Selenium	5700	0.73	0.73	\$	0.62 J	0.71 FL
	Sieve Size #10 - Percent Finer	5,00	100.0	<	100.0		94.6

size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	Units % Passing	Specific Method Grain Size Grain Size Grain Size Grain Size Grain Size	Reports To MRL MRL MRL	Basis Total Total Total	Reg 1
size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size Grain Size Grain Size	MRL MRL MRL	Total Total	Reg 1
size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size Grain Size Grain Size	MRL MRL MRL	Total Total	Reg 1
size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size Grain Size Grain Size	MRL MRL MRL	Total Total	Reg 1
size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size Grain Size Grain Size	MRL MRL MRL	Total Total	Reg 1
size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size Grain Size Grain Size	MRL MRL MRL	Total Total	Reg 1
size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size Grain Size Grain Size	MRL MRL MRL	Total Total	Reg 1
size #100 - Percent Finer size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size Grain Size Grain Size	MRL MRL MRL	Total Total	Reg 1
size #20 - Percent Finer size #200 - Percent Finer size #4 - Percent Finer size #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer size 0.375 inch - Percent Finer	N/A N/A N/A N/A N/A N/A	% Passing % Passing % Passing % Passing	Grain Size Grain Size Grain Size	MRL MRL	Total	
ize #200 - Percent Finer lize #4 - Percent Finer lize #40 - Percent Finer lize #60 - Percent Finer lize #80 - Percent Finer lize 0.375 inch - Percent Finer lize 0.75 inch - Percent Finer	N/A N/A N/A N/A N/A	% Passing % Passing % Passing	Grain Size Grain Size	MRL	<u> </u>	
ize #4 - Percent Finer lize #40 - Percent Finer lize #60 - Percent Finer lize #80 - Percent Finer lize 0.375 inch - Percent Finer lize 0.75 inch - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size		Total	
ize #40 - Percent Finer size #60 - Percent Finer size #80 - Percent Finer size 0.375 inch - Percent Finer size 0.75 inch - Percent Finer	N/A N/A N/A	% Passing	<u> </u>			<u> </u>
ize #60 - Percent Finer lize #80 - Percent Finer lize 0.375 inch - Percent Finer lize 0.75 inch - Percent Finer	N/A N/A		Crain Sizo		Total	
iize #80 - Percent Finer size 0.375 inch - Percent Finer size 0.75 inch - Percent Finer	N/A	% Passing	Grain Size		Total	
Size 0.375 inch - Percent Finer Size 0.75 inch - Percent Finer	N/A N/A		Grain Size	MRL	Total	<u> </u>
Size 0.75 inch - Percent Finer	N/A		Grain Size		Total	
			Grain Size	MRL	Total	<u> </u>
Size 1 inch - Percent Finer			Grain Size		Total	
······································			Grain Size	MRL	Total	<u> </u>
		% Passing	Grain Size	MRL	Total	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		% Passing	Grain Size	MRL	Total	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		% Passing	Grain Size	MRL	Total	
	N/A	%	Grain Size	MRL	Total	
	7440-22-4	mg/L	Metals (ICP)	MDL	TCLP	n/a ^b
	7440-22-4		Metals (ICP/MS)	MRL	Total	390
n	7440-23-5	mg/Kg	Metals (ICP/MS)	MRL	Total	
е	100-42-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	90000
hloroethene	127-18-4	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
hloroethene	127-18-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	43000
m			Metals (ICP/MS)	MRL	Total	
e			Volatile Organic Compounds by GC/MS			6300000
Organic Carbon - Duplicates	7440-44-0	mg/Kg	Organic Carbon, Total (TOC)	MRL	Total	
nene	8001-35-2	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	600
nene	8001-35-2	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
				MDL	Total	300000
			,	MDL	Total	
Chlordane	5103-74-2	ug/Kg	Organochlorine Pesticides (GC)		***********************	<u> </u>
roethene	79-01-6	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	3000
	····		·	·,·····	<u> </u>	n/a ^b
					*************************	23000000
			<u> </u>	. 5	·····	78
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*************************	<u>, processor a conferencia de contractor a c</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·	700
······	,		<u> </u>	<i></i>	<u> </u>	n/a ^b
			4	diamental de la constantidad de		12000000
			<	. ﴿		23000
E	n e e e e e e e e e e e e e e e e e e e	7440-22-4 7440-22-4 7440-23-5 e 100-42-5 nloroethene 127-18-4 mloroethene 127-18-4 m 7440-28-0 e 108-88-3 Organic Carbon - Duplicates 7440-44-0 ene 8001-35-2 enee 8001-35-2 -,2-Dichloroethene 156-60-5 -,3-Dichloropropene 10061-02-6 chlordane 5103-74-2 roethene 79-01-6 roethene 79-01-6 rofluoromethane 75-69-4 ium 7440-62-2 hloride 75-01-4 hloride 75-01-4 s, Total 1330-20-7	7440-22-4 mg/Kg	7440-22-4 mg/Kg Metals (ICP) 7440-22-4 mg/Kg Metals (ICP/MS) n 7440-23-5 mg/Kg Metals (ICP/MS) n 7440-23-5 mg/Kg Metals (ICP/MS) n 7440-23-5 mg/Kg Metals (ICP/MS) n 100-42-5 Ug/Kg Volatile Organic Compounds by GC/MS nloroethene 127-18-4 mg/L Volatile Organic Compounds by GC/MS nloroethene 127-18-4 mg/L Volatile Organic Compounds by GC/MS m 7440-28-0 mg/Kg Metals (ICP/MS) e 108-88-3 Ug/Kg Volatile Organic Compounds by GC/MS organic Carbon - Duplicates 7440-44-0 mg/Kg Organic Carbon, Total (TOC) nene 8001-35-2 Ug/Kg Organic Carbon, Total (TOC) nene 8001-35-2 mg/L Organochlorine Pesticides (GC) n-2-Dichloroethene 156-60-5 Ug/Kg Volatile Organic Compounds by GC/MS n-3-Dichloropropene 10061-02-6 Ug/Kg Volatile Organic Compounds by GC/MS hlordane 5103-74-2 Ug/Kg Organochlorine Pesticides (GC) roethene 79-01-6 Ug/Kg Volatile Organic Compounds by GC/MS roethene 79-01-6 Ug/Kg Volatile Organic Compounds by GC/MS rofluoromethane 75-69-4 Ug/Kg Volatile Organic Compounds by GC/MS nordium 7440-62-2 mg/Kg Volatile Organic Compounds by GC/MS hloride 75-01-4 Ug/Kg Volatile Organic Compounds by GC/MS		

	A	Н	I	J	К	L	М
			180-108764-1 SC-1	180-109049-1 SC-2	180-109049-2 SC-3	180-109049-3 SC-4	180-108764-2 SC-5
			COMPOSITE [C-	,	3		COMPOSITE [C-
			9+C-10]	8	5	7+C-8]	1+C-2]
				[C-3+C-4]	{ -		: -
	Analista	Do = 2	7/22/2020	7/30/2020	?		7/22/2020
	Analyte Sieve Size #100 - Percent Finer	Reg 2	1:00 PM 95.0	8:53 AM 95.6	9:40 AM 96.9	10:22 AM 96.7	1:30 PM 84.7
	[·····		{	98.9	\$ • · · • · • · · • · · · · · · · · · ·	93.4
	Sieve Size #20 - Percent Finer	ļ	98.6	98.4	3	99.2	
	Sieve Size #200 - Percent Finer	ļ	93.5	93.5 100.0	95.0	94.4 100.0	81.1
	Sieve Size #4 - Percent Finer		100.0	3 	100.0		95.2
	Sieve Size #40 - Percent Finer		98.5	97.8	98.6	98.8	91.5
	Sieve Size #60 - Percent Finer		97.3	97.2	97.8	98.2	89.0
	Sieve Size #80 - Percent Finer		96.1	96.4	97.3	97.4	86.7
	Sieve Size 0.375 inch - Percent Finer	}	100.0	100.0	100.0	100.0	97.1
	Sieve Size 0.75 inch - Percent Finer		100.0	100.0	100.0	100.0	100.0
	Sieve Size 1 inch - Percent Finer		100.0	100.0	100.0	100.0	100.0
	Sieve Size 1.5 inch - Percent Finer		100.0	100.0	100.0	100.0	100.0
	Sieve Size 2 inch - Percent Finer	ļ	100.0	100.0	100.0	100.0	100.0
	Sieve Size 3 inch - Percent Finer	<u> </u>	100.0	100.0	100.0	100.0	100.0
227	Silt		51.1	50.0	51.1	48.9	42.3
228	Silver	n/a ^b	ND	ND	ND	ND	ND
229	Silver	5700	0.29	0.27	0.25	0.20	0.45
230	Sodium		880	780 FL	710	770	780 FL
231	Styrene	260000	ND	ND	ND	ND	ND
232	Tetrachloroethene	n/a ^b	ND	ND	ND	ND	ND
233	Tetrachloroethene	1500000	ND	ND	ND	ND	ND
234	Thallium		0.34	0.23	0.28	0.25	0.31
235	Toluene	91000000	ND	ND	ND	ND	ND
236	Total Organic Carbon - Duplicates		36000	44000	30000	45000	44000 ^
237	Toxaphene	3000	ND *H	ND	ND	ND	ND *H
238	Toxaphene	n/a ^b	ND	ND	ND	ND	ND
	trans-1,2-Dichloroethene	720000	ND	ND	ND	ND	ND
	trans-1,3-Dichloropropene		ND	ND	ND	ND	ND
	trans-Chlordane	<u> </u>	1.7 *H	1.3	\$	1.6	2.2 *H
	Trichloroethene	10000	ND	ND	ND	ND	ND
	Trichloroethene	n/a ^b	ND	ND FL	ND	ND	ND
-	Trichlorofluoromethane	340000000	ND ^c	ND ^c	ND ^c	ND ^c	ND ^c
	Vanadium	1100	47	48	43	41	55
	Vinyl chloride	2000	ND	ND	ND	ND	ND
		n/a ^b		}		······	
	Vinyl chloride	·/·····	ND:	ND	ND	ND	ND
	Xylenes, Total	170000000	ND	ND	ND	ND	ND
249	Zinc	110000	200	190	170	170	330 ^

	A	В	С	D	E	F	G	Н	I	J	K	L	М
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1		SC-1 MODIFIED ELUTRIATE [C- 1+C-2]	SC-2 MODIFIED ELUTRIATE [C- 3+C-4] 7/30/2020	SC- 3 MODIFIED	SC- 4 MODIFIED	180-108767-5 SC- 5 MODIFIED ELUTRIATE [C- 9+C-10] 7/21/2020 12:00 AM
		N/A	Li		MRL	Total			150	150	150	150	150
3	Elutriate Generated	N/A	g/L	Modified Elutriate Test Technique, Dissolved	MRL	Dissolved		}	150	150	150	150	150
4	Percent Moisture	N/A	%	Percent Moisture	MRL	Total			67.7	64.3	63.6	66.1	63.7
		N/A	%	Percent Moisture	MRL	Total			32.3	35.7	36.4	33.9	36.3

PHOTO No. 1: C-1

PHOTO No. 2: C-1 CORE

PHOTO No. 3: C-1 CORE

PHOTO No. 4: C-2

PHOTO No. 5: C-2 CORE, TOP

PHOTO No. 6: C-2 CORE, CENTER

PHOTO No. 7: C-2 CORE, BOTTOM

PHOTO No. 8: C-3

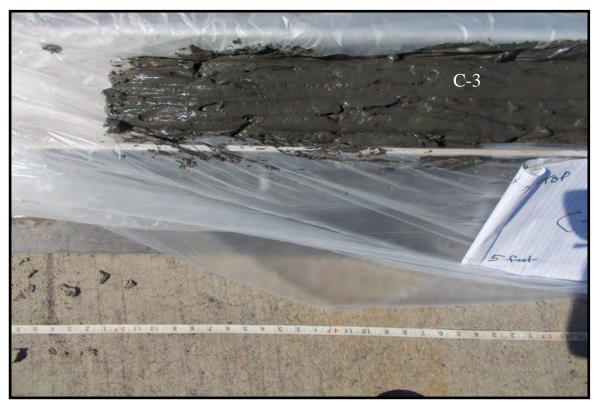

PHOTO No. 9: C-3 CORE

PHOTO No. 10: C-3, BOTTOM

PHOTO No. 11: C-3, CENTER

PHOTO No. 12: C-3, TOP

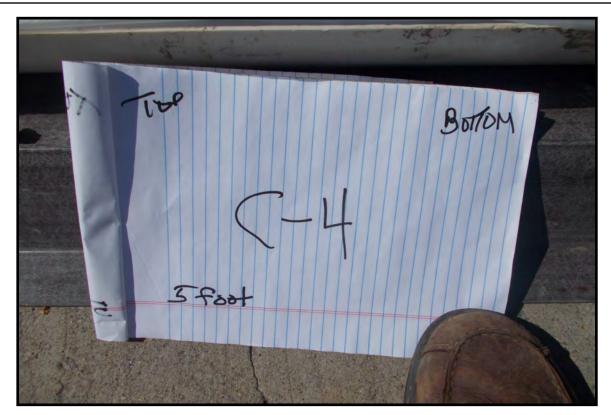


PHOTO No. 13: C-4

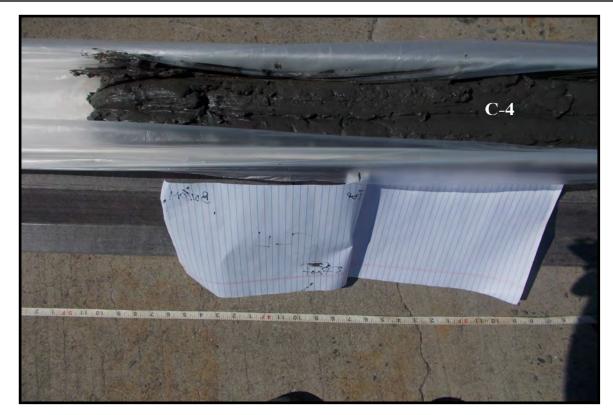

PHOTO No. 14: C-4 CORE

PHOTO No. 15: C-4, BOTTOM

PHOTO No. 16: C-4, CENTER

PHOTO No. 17: C-4, TOP

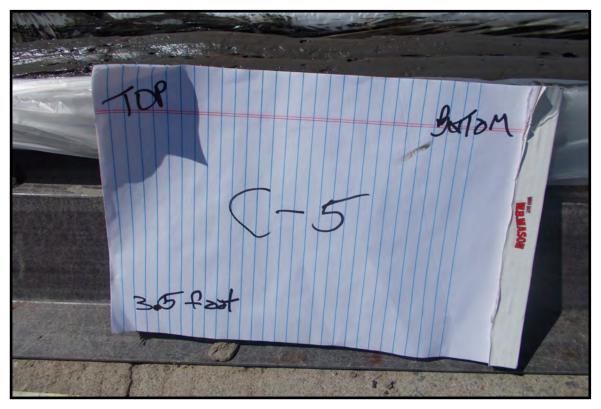


PHOTO No. 18: C-5

PHOTO No. 19:

PHOTO No. 23: C-5, CENTER

PHOTO No. 24: C-5, TOP

PHOTO No. 25: C-6

PHOTO No. 26: C-6, TOP

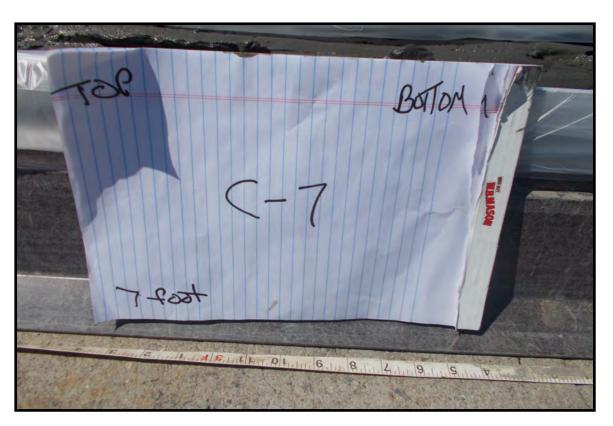

PHOTO No. 27: C-6, TOP-CENTER

PHOTO No. 28: C-6, BOTTOM-CENTER

PHOTO No. 28: C-6, BOTTOM

PHOTO No. 29: C-7

PHOTO No. 30: C-7 CORE

<u>PHOTO No. 31:</u> C-7, BOTTOM

PHOTO No. 32: C-7, CENTER

PHOTO No. 33: C-7, BOTTOM-CENTER


PHOTO No. 34: C-7, BOTTOM

PHOTO No. 35: C-8

PHOTO No. 36: C-8 CORE

PHOTO No. 37: C-9

PHOTO No. 38: C-9 CORE

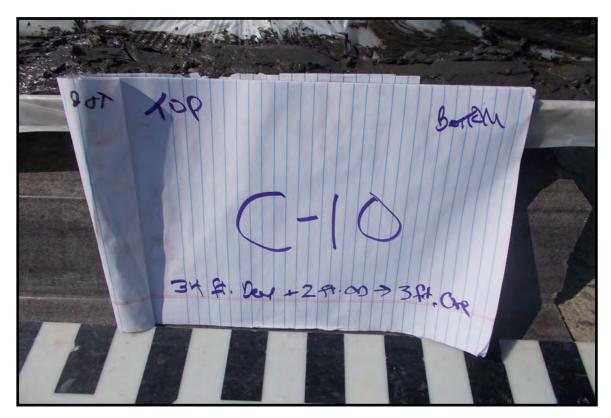


PHOTO No. 39: C-10

<u>PHOTO No. 40:</u> C-10 CORE

eurofins		CHAIN OF CU Page of		Lab LIMS No:	MATRIX CODES
QC	Bill to/Report to (if diffe	erent)		LAB LICE ONLY	
				LAB USE ONLY:	DW: DRINKING WATER
702 Electronic Drive Phone: 215-355-3900				# Ascorbic/HCL Vials # HCl Vials	GW: GROUND WATER
Horsham, PA 19044 Fax: 215-392-0626	Sampling Site Address	(if different) Include State)	# Na ₂ S ₂ O ₃	WW: WASTEWATER
Client/Acct. No.	1 Hause	Rond		# Na OH/Zn acetate pH	SO: SOIL
Address S.T. Hudson Engineers	Luimingto	n, DE 1980	1	# HNO ₃ pH	SL: SLUDGE
900 andley And	J	7		# H ₂ SO ₄ pH	OIL: OIL
City/State/Zip Charay Hill NJ 08002	P.O. No.	PWS	ID #:	# NaOH pH	SOL: NON SOIL SOLID
Phone/Fax 856-342-6600	Quote #			# Unpreserved	MI: MISCELLANEOUS
Client Contact: Paul Ferry		Fosthe. com		#HCI #NH4CI #MeOH	X: OTHER
PROJECT	Collection	GC	Number of Containers	# DI Water	
FIELD ID	Date Military Time	R O Matrix A M Code B P	al B	ANALYSIS REQUESTED	Field pH, Temp (°C), DO, Cl2, Cond. etc.
U C-1	7/21 1125				
s (-2	7/21 1106	9/4			
E C-6	7/21 1054				
(-8	7/21 030				
(-9	7/21 1002				
(-1)	7/21 0940				
Y	11/21 0110				
SAMPLED BY: (Name/Company) TAT: STAN	DARD (10 DAY)	Poport Format:	tandard DNJ-RDD SRF	P-RDD Field Parameters Analyz	ed Bv:
or DUE DATE		☐ Standard + QC			Date/Time:
			nd for all but standard reporting form	nat.	
SAMPLE CUSTODY EXCHANGES MUST BE DO			AL SIGNATURE, DATE AN	D MILITARY TIME (24 HOUR CLOCK, I.E. 8AM IS 0	800, 4 PM IS 1600)
RELINQUISHED BY SAMPLER 1 DATE 1 122	TIME RECEIVED	: Your kerly			Custody Seal Number
RELINQUISHED BY DATE 2.	TIME RECEIVED 2.	DBY O	DATE	Rec'd Temp.: Initials: Ic	e Y / N Location:
RELINQUISHED BY DATE 3.	TIME RECEIVED) BY	DATE	TIME COMMENTS:	
RELINQUISHED BY DATE 4.	TIME RECEIVED) BY	DATE	TIME	
RELINQUISHED BY DATE 5.	TIME RECEIVED) BY	DATE	TIME Hazardous: yes / no	

eurofins		CHAIN OF CUSTODY Page of Bill to/Report to (if different) Security Williams								Lab LIM	IS No:	MATRIX CODES				
	JC	Bill to/Repor	t to (if different	ent)	5	ody	WI	llia	m	5				LAB US	E ONLY:	
															E OIVET.	DW: DRINKING WATER
702 Electronic Drive Phone: 21	5-355-3900									R S	DY V	11	The same	# A	Ascorbic/HCL Vials # HCl Vials	GW: GROUND WATER
Horsham, PA 19044 Fax: 21	5-392-0626	Sampling Si	te Address ((if diffe	erent)	Include S	State		FALL						Na ₂ S ₂ O ₃	WW: WASTEWATER
Client/Acct. No.		1110	ush	Ro	ad	1		1	JAR V				1	# N	Na OH/Zn acetate pH	SO: SOIL
Address 906 and les	we.	Wilm	The second second	-	- 1	DE	NET :				reg av	- Allerin			HNO ₃ pH	SL: SLUDGE
The state of the s			9 10	1		TIME	767				-		1850		H ₂ SO ₄ pH	OIL: OIL
City/State/Zip	1007	P.O. No.	W. P. Fig.	Whi	HA.	P	WSID	#:	AL						NaOH pH	SOL: NON SOIL SOLID
Phone/Fax (356) 342-66	00	Quote #			1	1						Mary I		#	Unpreserved	MI: MISCELLANEOUS
Client Contact: PAUL FERRY		e-mail:	Herry.	8	5+	ne.	m	1		M				# H	HCI #NH4CI #MeOH	X: OTHER
PROJECT		Colle	ction /	G	C			N			ontaine		YE IV		# DI Water	and the same of th
A			Military	R	OM	Matrix Code		2 5	Ci	H N O 3	a n	U B A P C T				F: 11 11 T (60)
FIELD ID		Date	Time		P	Code	Total	S O 4	a s	3	Hc	RE			ANALYSIS REQUESTED	Field pH, Temp (°C), DO, Cl2, Cond. etc.
u Ticld Blank		1/29	1907			and the	A A			97.° /					1112 960	
s		17/29	1820										N'E	TAL	- Metal , PLD),	
= Site Water		7/29	1151											ndi	Mes Jotto 2	
		7/29	1155	Link				-2,7		1		Ne Cu		KOT		
1-4		7/19	10957	200			417			100		191	-	TOC	-, Grain SID	
1.5		1/29	8917		1		7 7 7					Tal / T		111	1.108	
V C		1100	2000			Supplied	T INVA	126	100	100		80 840	100	DAC		
		110	1020	1936			B. 194	N. i	2 46	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
C- /		1121	1040			Date of the second	1,33					100				
			Marine.	300									1			
				VIII.			Fig									
SAMPLED BY: (Name/Company)	AT: STANI	DARD (10 DA	AY)	Re	port F	ormat: [☐ Stan	dard		NJ-R	RDD	□ SR	P-RD	D.	Field Parameters Ana	lyzed By:
01	r DUE DATE	1			Stan	dard + Q		Form	s [ED	D	生源	A P		Initials	Date/Time:
	lease call for pr															
SAMPLE CUSTODY EXCHANGES MI	UST BE DO		ED BELO RECEIVED		USE	FULL L	EGAL	SIG	IAN	URE	E, DA	IE AN	D M	ILITARY		
1 Thus Terry	DATE 7/29	TIME	1.	CAN	or	ZLON	Un	1			7/29	Vers	1/2	HE HLO	DELIVERY: □ EQC COURIER □ CLIENT □ UPS □ FEDEX □ OTHER	Custody Seal Number
RELINQUISHED BY	DATE	TIME	RECEIVED	BY					KY		DATE	385	TIN			() GA
2. RELINQUISHED BY	DATE		2. RECEIVED	DV	- 1	- Vince	1/4/2/	142		1 5	DATE		TIN	4E	Rec'd Temp.: 3.2 C Initials:	Ice Y/N Location:
3.	DATE		3.	DI							DATE		TIN	AL.	COMMENTS:	
RELINQUISHED BY	DATE	TIME	RECEIVED	BY		H 11/11			18		DATE		TIN	ΛE		
4. RELINQUISHED BY	DATE		4. RECEIVED	BY	THE STATE OF	13 16	A SE		SILVANO.		DATE		TIN	ИE		
5.		3.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	5.											VIII	Hazardous: yes / no	
				THE WAY	-		100	187970	RUF			PARTY.		NAME OF STREET	Trial and out of the	

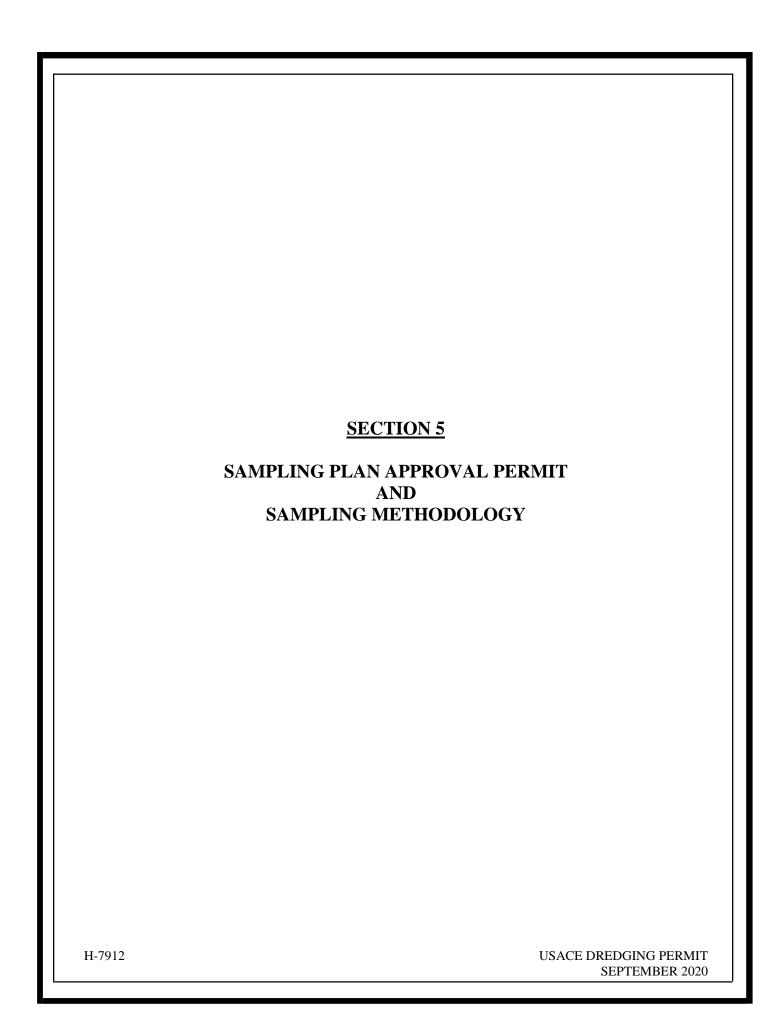
S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington LLC Project: Port of Wilmington Logger: Paul Ferry Maintenance Dredging Date: 7-21-2020 Time:1/25 Job #: H-7912 Coordinates: 323063.24 201003.37 Datum: MLLy = D **CORE** #: C-1 Core Penetration Length (ft.): 10 ft. x 2 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Existing Depth @ MLW: -37 ft. Recovered Core Length (ft.): 1/D-ft. v Z Required Sample Core Length: 3 ft. Sample Length Retained (ft.): 34 Core Volume Retained (ft³): Collected to Project Depth: Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

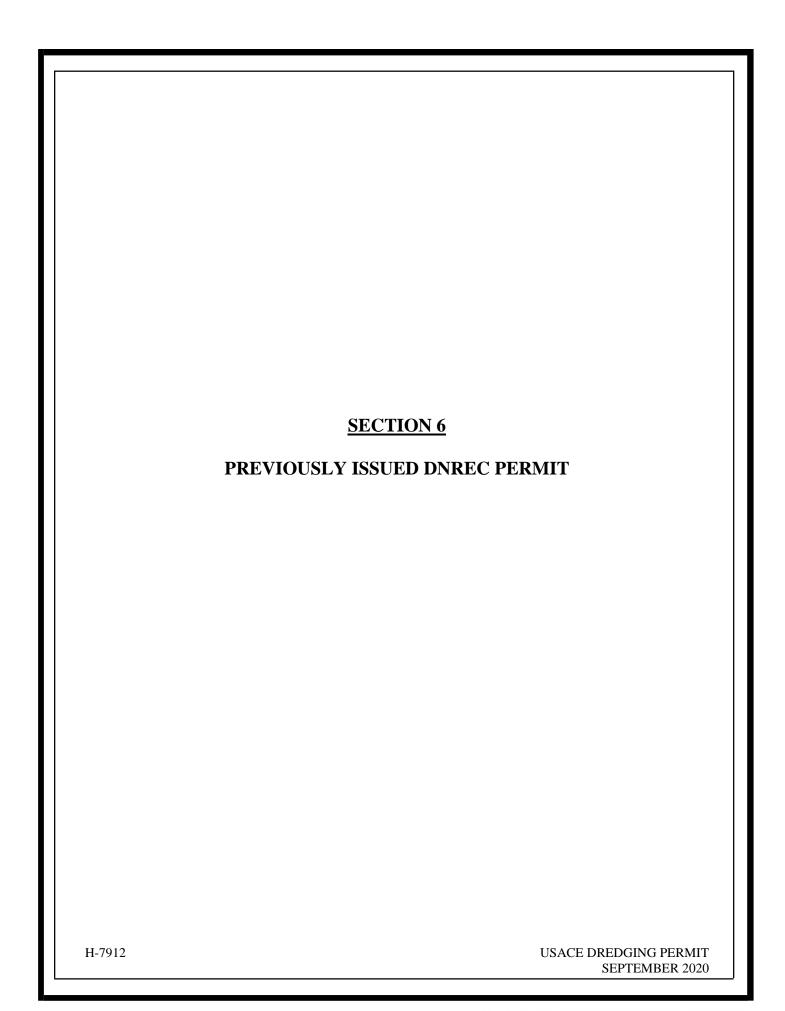
S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Date: 7-21-2020 Time: 1106 206 H14 46 Coordinates: 323274.91 **CORE** #: C-2 Datum: MIW=0 Core Penetration Length (ft.): 10 ft. v 1 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Recovered Core Length (ft.): 10 ft. x 1 Existing Depth @ MLW: -31 ft. Required Sample Core Length: 9 ft. Sample Length Retained (ft.): 9 # Core Volume Retained (ft³): Collected to Project Depth Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Date: 7-29-2020 Time: 0910 Job #: H-7912 205994.35 Coordinates: 323449 370 Datum: MLW = Off. **CORE** #: C-3 Core Penetration Length (ft.): Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Existing Depth @ MLW: -35 ft. Recovered Core Length (ft.): / Required Sample Core Length: 5 ft. Sample Length Retained (ft.): 5 Core Volume Retained (ft³): Collected to Project Depth. Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

S. T. HUDSON ENGINEERS, INC.						
	SEDIMEN	NT CORE LOG				
Client: GT USA Wilmington	Project: Por	t of Wilmington	Logger: Paul Ferry			
LLC	Maintenance	Dredging				
	Date: 7-29-20		Time: 0952_			
Coordinates: 323757, 66	265 375		~ !			
CORE #: C-4		Datum: MW=D'				
Project Depth: -38 ft.		Core Penetration Length (ft.):				
(inc. ft. overdredge): -40 ft.		D 10 1 10 10 10 10				
Existing Depth @ MLW: -35 ft. Required Sample Core Length:5 ft.		Recovered Core Length (ft.): 10 ft, x 1 Sample Length Retained (ft.): 5 ft, x 1				
Required Sample Core Length.5 It.		Core Volume Retai				
		Collected to Project				
		Conceiled to 1 Tojec	t Deput. 1			
All Len	gth Measure	ments are in Decim	al Feet			
Sample Interval (ft.)		Desc	ription			
TOP						
	Unit	DIM				
	Com.	ish-box)n			
	Grad	Jun sin				
	Fine-grained					
	Slick					
		· · · · ·	0			
	Poto	ains Shape				
ВОТТОМ						
Comments:						

S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Time: 17)20 Date: 7-29-2020 Coordinates: 323966.31, 205740.65 **CORE** #: C-5 Datum: MLW=D' Core Penetration Length (ft.): 10 ft. x 2 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Recovered Core Length (ft.): 10 H. x 7 Existing Depth @ MLW: -36.5 ft. Required Sample Core Length: 3.5 ft. Sample Length Retained (ft.): 3.54 Core Volume Retained (ft³): Collected to Project Depth, Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:


S. T.	Hudson	ENGINEERS	, INC.				
	SEDIMEN	NT CORE LOG					
Client: GT USA Wilmington	Project: Por	t of Wilmington	Logger: Paul Ferry				
LLC	Maintenance						
Job #: H-7912	Date: 7-21-20		Time: 1054				
Coordinates: 324069.15	204669.6	5					
CORE #: C-6		Datum: MW =	D'				
Project Depth: -38 ft.		Core Penetration Length (ft.): 10 ff. x 1					
(inc. ft. overdredge): -40 ft.		B 10 1 1 (0) 10 11 1					
Existing Depth @ MLW: -30.5 ft		Recovered Core Length (ft.): 10 + 1 + 1 Sample Length Retained (ft.): 9.5 + 1 X 2					
Required Sample Core Length: 9.	3 11.	Core Volume Reta					
		Collected to Project	t Depth. 1				
All Le	ngth Measure	ments are in Decim	aal Feet				
Sample Interval (ft.)		Desc	eription				
TOP							
	Maif						
	MILL						
	the-grained						
	n in						
	13. anish gray						
	Slike	· modora	tely moist				
	Ai	- 11 word the					
	Ketall	ns shope	Semi-consolidated				
	,	4					
♦ BOTTOM							
DOLLOW							
Comments:							
A Section of the Control of the Cont							
			-				


S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Date: 7-29-2020 Time: DHD Coordinates: 324319.70, 204178.73 Datum: May = D **CORE** #: C-7 Core Penetration Length (ft.): 10 ft, x 1 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Existing Depth @ MLW: -33 ft. Recovered Core Length (ft.): 10 Required Sample Core Length: 7 ft. Sample Length Retained (ft.): Core Volume Retained (ft³): Collected to Project Depth: Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Time: \ 03 D Job #: H-7912 Date: 7-21-2020 Coordinates: 324 521.64 203645.56 Datum: MU1)-**CORE** #: C-8 Core Penetration Length (ft.): Project Depth: -35 ft. (inc. ft. overdredge): -37 ft. Existing Depth @ MLW: -31.5 ft. Recovered Core Length (ft.): Required Sample Core Length: 5.5 ft. Sample Length Retained (ft.): 5.5 Core Volume Retained (ft³): Collected to Project Depth. Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

S. T.	Hubson	ENGINEERS, INC.						
	SEDIME	NT CORE LOG						
Client: GT USA Wilmington LLC	Maintenance							
Job #: H-7912	Date: 7-21-20							
Coordinates: 324 706.93	203123.	36						
CORE #: C-9		Datum: $ML_{W} = O'$						
Project Depth: -35 ft. (inc. ft. overdredge): -37 ft.		Core Penetration Length (ft.): 10 ft, x 2						
Existing Depth @ MLW: -33 ft.		Recovered Core Length (ft.): 17 + 2						
Required Sample Core Length: 4	ft.	Sample Length Retained (ft.): 40 × 2						
		Core Volume Retained (ft ³):						
		Collected to Project Depth: Y N						
All Le	ngth Measure	ements are in Decimal Feet						
Sample Interval (ft.)		Description						
TOP								
	1100	- 4720						
	MAHOI	m						
	Funo -	me-grained throughout						
	LIVIL							
	Brown - gray							
	Myderate moisture, consolidation							
	1900	grade Missiwe, Consollar	tibl					
	. 00	/						
	4							
			_					
воттом								
Comments:								
			-					
			_					

S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Date: 7-21-2020 Time: Coordinates: 324902.13 202728:66 **CORE** #: C-10 Datum: MLL) = D+ Core Penetration Length (ft.): 10 ff. x 2 Project Depth: -35 ft. (inc. ft. overdredge): -37 ft. Recovered Core Length (ft.): 10ft. x2 Existing Depth @ MLW: -34 ft. Sample Length Retained (ft.): 34+ Required Sample Core Length: 3 ft. Core Volume Retained (ft³): Collected to Project Depth: Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF WATER 89 KINGS HIGHWAY DOVER, DELAWARE 19901

WETLANDS & SUBAQUEOUS LANDS SECTION

APR - 4 2012

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. Anthony J. DePasquale U.S. Army Corps of Engineers Wanamaker Building – 100 Penn Square East Operations Division – 6th Floor Philadelphia, PA 19107-3390

Re: Supplemental Approval: SU-028/12

Original Permit - Water Quality Certification No.: WQ-521/07 Associated Permit: - Supplemental Approval No.: SU-051/11

Dear Mr. DePasquale:

Enclosed is the Supplemental Approval granted by the State of Delaware to allow use of the Wilmington Harbor North confined disposal facility. The permittee is responsible to ensure that all the conditions, responsibilities and requirements of the Supplemental Approval are strictly observed. Additionally, the permittee is required to observe all the conditions in the original Water Quality Certification, except those revised by this Supplemental Approval.

The Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) is a State and federally listed endangered species. Coordination with the National Marine Fisheries Service and the State of Delaware Division of Fish and Wildlife Fisheries Section is required to identify any impacts and/or mitigating efforts required to protect the sturgeon. The Wetlands and Subaqueous Lands Section contacted the DNREC Fisheries Section on your behalf and there are currently no additional restrictions on the permit for this upcoming dredging event. However, future coordination for subsequent dredging events is the responsibility of the permittee.

If you have any questions, please feel free to contact Joanne Lee of my staff at (302) 739-9943.

Sincerely.

Laura M. Herr

Section Manager

Wetlands & Subaqueous

Lands Section

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF WATER 89 KINGS HIGHWAY DOVER, DELAWARE 19901

WETLANDS & SUBAQUEOUS LANDS SECTION

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. Anthony J. DePasquale
U.S. Army Corps of Engineers
Wanamaker Building – 100 Penn Square East
Operations Division – 6th Floor
Philadelphia, PA 19107-3390

Supplemental Approval: SU-028/12 Date of Issuance: リーリーション

Original Permit:

- Water Quality Certification No.: WQ-521/07 Associated Permit:

- Supplemental Approval No.: SU-051/11 Construction Expiration Date: 11/3/2018

SUPPLEMENTAL APPROVAL

GRANTED TO THE U.S. ARMY CORPS OF ENGINEERS PHILADELPHIA DISTRICT TO MODIFY THE EXISTING WATER QUALITY CERTIFICATION WQ-521/07, ISSUED TO MAINTENANCE DREDGE THE CHRISTINA RIVER AT THE PORT OF WILMINGTON, WILMINGTON, NEW CASTLE COUNTY, DELAWARE TO INCLUDE THE USE OF THE WILMINGTON HARBOR NORTH CONFINED DISPOSAL FACILITY, LOCATED ON THE NORTHERN SIDE OF THE CHRISTINA RIVER IN WILMINGTON, DELAWARE, FOR DISPOSAL OF DREDGED MATERIAL GENERATED BY THE AUTHORIZED DREDGING IN THE CHRISTINA RIVER

Pursuant to the provisions of 7 Del. C., §6003, the Department's Regulations Governing the Control of Water Pollution and Section 401 of the Clean Water Act, permission is hereby granted on this \(\frac{\partial}{\partial}\) day of \(\frac{\partial}{\partial}\) A.D. 2012 to perform the above referenced project in accordance with the approved plans for this Supplemental Approval (Certification) (2 Sheets), as approved on April 2, 2012; and the application dated January 25, 2012 and received by this Division on January 27, 2012.

Whereas, pursuant to the provisions of Section 401 of the <u>Clean Water Act.</u> 33 <u>U.S.C.</u> Section 1341, and 7 <u>Del. C.</u>, Chapter 60, the State of Delaware, by and through the Department of Natural Resources and Environmental Control, certifies that the permitted activity will be conducted in a manner which will not violate the applicable water quality standards of the State of Delaware, subject to the terms and conditions of this approval.

This Supplemental Approval is an addendum to Water Quality Certification No. WQ-521/07 granted to the U.S. Army Corps of Engineers. This Supplemental Approval shall be attached thereto and made a part thereof.

Dolaman's unad naturn dolands are mant

Supplemental Approval No.: SU-028/12

Original Permit: Water Quality Certification No: WQ-521/07

Associated Supplemental Approval: SU-051/11

7. The work authorized herein shall be completed in accordance with the terms and conditions of all State permits and certifications.

8. Failure to comply with any of the terms or conditions of this Supplemental Approval may result in enforcement action, which could include the revocation of this Approval.

IN WITNESS WHEREOF,	I, Laura M. Herr, th	ne duly authorized representa	tive of Collin
P. O'Mara, Secretary of the Depart	ment of Natural Res	sources and Environmental	Control, have
hereunto set my hand this	th day of		. 2012.

By Laura M. Herr, the duly authorized representative of the Secretary of the

Department of Natural Resources and

Page 3 of 3

Environmental Control

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL OFFICE OF THE SECRETARY

DELAWARE COASTAL
MANAGEMENT PROGRAM

5 E. Reed Street, Suite 201 Dover, Delaware 19901 Phone: (302) 739-9283 Fax: (302) 739-2048

June 7, 2011

Mark Eberle
Department of the Army
Philadelphia District, Corps of Engineers
Wannamaker Building
100 Penn Square East
Philadelphia, Pennsylvania 19107-3390

RE: Delaware Coastal Management Program Federal Consistency Determination Modification Wilmington Harbor Maintenance Dredging (FC 2011.0080)

Dear Mr. Eberle:

The Delaware Coastal Management Program (DCMP) has reviewed your request for a modification of the consistency determination issued on May 27, 2011 for the above mentioned project. The modification is based upon a refinement of the area to be dredged and time-of-year and method of placement for the hydraulic pipeline to be utilized during the course of the proposed action. Based upon our review and pursuant to National Oceanic & Atmospheric Administration regulations (15 CFR 930), the DCMP concurs with your request for the modification of the consistency determination for the proposed maintenance plan to dredge 650,000 cubic yards of material annually from the Christina River at the Port of Wilmington, New Castle County, Delaware.

As a result of this modification, all dredging activity should be scheduled to avoid migratory and spawning activity of fisheries of concern and should not be conducted from April 1 to June 15 (DCMP Policies 5.11.1.1, 5.11.2.1, 5.11.3.1, and 5.11.3.2). All previously issued conditions, including conducting dredging and material disposal in manner such that Delaware Surface Water Quality Standards will not be violated (DCMP Policies 5.3.1.4, 5.3.1.6, and 5.3.2.7) and receiving and adhering to all necessary permits and their conditions remain in effect.

If you have any questions, please contact me or Bonnie Arvay of my staff at (302) 739-9283.

Sincerely,

Sarah W. Cooksey, Administrator

Delaware Coasta Management Program

cc: File 2011.0080 Joanne Lee - DNREC/DW

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF WATER 89 KINGS HIGHWAY DOVER, DELAWARE 19901

WETLANDS & SUBAQUEOUS LANDS SECTION

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. Anthony J. DePasquale U.S. Army Corps of Engineers Wanamaker Building – 100 Penn Square East Operations Division – 6th Floor Philadelphia, PA 19107-3390 Supplemental Approval: SU-051/11 Original Permit:

- Water Quality Certification No.: WQ-521/07

Date of Issuance: 5/27/2011

Construction Expiration Date: November 3,

2018

WATER QUALITY CERTIFICATION GRANTED TO THE U.S. ARMY CORPS OF ENGINEERS PHILADELPHIA DISTRICT TO MODIFY EXISTING WATER QUALITY CERTIFICATION WQ-521/07 TO INCLUDE THE FOLLOWING:

- To authorize an additional disposal site, the Pedricktown South disposal facility in Pedricktown, New Jersey, for disposal of dredged material from the Christina River at the Port of Wilmington, Wilmington, New Castle County, Delaware; and
- To place, use and remove a 24-inch to 27-inch diameter steel pipeline for the conveyance of dredged material, extending from the Christina River and across the Delaware River to the Pedricktown South confined disposal facility in Pedricktown, New Jersey.

Pursuant to the provisions of 7 Del. C., §6003, the Department's Regulations Governing the Control of Water Pollution and Section 401 of the Clean Water Act, permission is hereby granted on this day of A.D. 2011 to perform the above referenced project in accordance with the approved plans for this Water Quality Certification (Certification) (3 Sheets), as approved on May 27, 2011; and the application dated February 14, 2011 and received by this Division on February 15, 2001.

Whereas, pursuant to the provisions of Section 401 of the <u>Clean Water Act</u>, 33 <u>U.S.C</u> Section 1341, and 7 <u>Del. C.</u>, Chapter 60, the State of Delaware, by and through the Department of Natural Resources and Environmental Control, certifies that the permitted activity will be conducted in a manner which will not violate the applicable water quality standards of the State of Delaware, subject to the terms and conditions of this approval.

This Supplemental Approval is an addendum to Water Quality Certification No. WQ-521/07 granted to the U.S. Army Corps of Engineers. This Supplemental Approval shall be attached thereto and made a part thereof.

The and and admin date of a sent

Original Permit: Water Quality Certification WQ-521/07

This Supplemental Approval is issued subject to the following conditions:

PERMIT CONDITIONS

1. This Supplemental Approval is an addendum to Water Quality Certification WQ-521/07 granted to U.S. Army Corps of Engineers on November 3, 2008. All work shall be completed in accordance with the Terms and Conditions of the originally authorized Certification, which shall remain in full force and effect, except as indicated herein.

Page 2 of 2

- 2. Special Condition 5 of the original Certification, which required disposal of dredged material at Wilmington Harbor South disposal area and the Delaware portion of the Killcohook disposal area, is modified by this Approval. By this Approval, the WSLS authorizes the use of the Pedricktown South disposal site as an additional disposal facility for the authorized dredging at the Port of Wilmington. Dredge spoil disposal shall occur only in these designated, approved disposal areas.
- 3. The placement, use, and removal of the pipelines are not subject to the time of year dredging restrictions identified in Special Condition 8 of the original Certification. The time of year restrictions in Special Condition 8 for dredging in Delaware subaqueous lands remain in full force.
- 4. A copy of this Supplemental Approval and the originally authorized Certification must be available on site during all phases of the dredging.
- 5. The work authorized herein shall be completed in accordance with the terms and conditions of all state permits and certifications.

By/Laura M. Herr, the duly authorized

representative of the Secretary of the

Department of Natural Resources and

Environmental Control

DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL OFFICE OF THE SECRETARY

DELAWARE COASTAL MANAGEMENT PROGRAM

5 E. REED STREET, SUITE 201 DOVER, DELAWARE 19901 Phone: (302) 739-9283 Fax: (302) 739-2048

May 27, 2011

Mark Eberle
Department of the Army
Philadelphia District, Corps of Engineers
Wannamaker Building
100 Penn Square East
Philadelphia, Pennsylvania 19107-3390

RE: Delaware Coastal Management Program Federal Consistency Determination Wilmington Harbor Maintenance Dredging (FC 2011.0080)

Dear Mr. Eberle:

The Delaware Coastal Management Program (DCMP) has reviewed your consistency determination request for the above mentioned project. Based upon our review and pursuant to National Oceanic & Atmospheric Administration regulations (15 CFR 930), the DCMP concurs with your consistency determination for the proposed dredging maintenance plan for the federal channel located within the berthing area of Wilmington Harbor.

This concurrence is conditioned upon the following:

- 1) Dredging Restrictions: The proposed activity is in an area utilized by important resident, migratory, and commercially important fish species [including American shad (Alosa sapidissima), blueback herring (Alosa aestivalis), alewife (Alosa pseudoharengus), and striped bass (Morone saxatilis)]. These species, along with Atlantic sturgeon (Acipenser oxyrinchus), a species of local and regional concern and the federally endangered short-nosed sturgeon (Acipenser brevirostrum), utilize the Delaware River during upstream migrations. Additionally, atriped bass spawn in this area of the Delaware River from April-June. The protection of spawning areas, nursery habitats, and migratory corridors during the spawning season is important in maintaining and protecting these fisheries resources. As such, all dredging activity should be scheduled to avoid migratory and spawning activity and should not be conducted from March 15 to June 30. (DCMP Policies 5.11.1.1, 5.11.2.1, 5.11.3.1, and 5.11.3.2);
- 2) Water Quality: Dredging and dewatering shall be conducted in a manner such that Delaware Surface Water Quality Standards will not be violated, excluding whatever temporary and minimal turbidity is unavoidable when using sound dredging and dewatering practices. (DCMP Policies 5.3.1.4, 5.3.1.6, and 5.3.2.7); and

Delaware's good nature depends on you!

3) The issuance of all required permits, including but not limited to a Delaware Subaqueous Lands Permit, and adherence to the restrictions and/or conditions placed on any and all permits issued to the applicant for this project.

If you have any questions, please contact me or Bonnie Arvay of my staff at (302) 739-9283.

Sincerely,

Sarah W. Cooksey, Administrator

Delaware Coastal Management Program

cc: File 2011,0080 Joanne Lee - DNREC/DW

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF SOIL AND WATER CONSERVATION

DELAWARE COASTAL
MANAGEMENT PROGRAM

,

89 KINGS HIGHWAY DOVER, DELAWARE 19901

TELEPHONE: (302) 739-9283

Fax: (302) 739-2048

January 29, 2009

Minas M. Arabatzis Philadelphia District, Corps of Engineers Wannamaker Building, 100 Penn Square East Philadelphia, Pennsylvania 19107-3390

KE: Delaware Coastal Management Federal Consistency Determination Wilmington Harbor Operation and Maintenance Project (08.103)

Dear Mr. Arabatzis:

The Delaware Coastal Management Program (DCMP) has received your consistency determination request for the above mentioned project. Based upon our review and pursuant to National Oceanic & Atmospheric Administration regulations (15 CFR 930), the DCMP concurs with your consistency determination for the mechanical dredging of approximately 650,000 cubic yards of sediment from the federal channel, turning basin, and the private berthing area by the Diamond State Port Corporation with disposal at Wilmington Harbor South CDF and Killcohook CDF for the 2009 – 2018 dredging cycles.

This concurrence is conditioned the following:

- 1) Submission of an annual report to the DCMP prior to each dredging cycle detailing the proposed work to be completed during that cycle and the actual work that was completed during the previous cycle. This report should include the amounts of sediment dredged or to be dredged and the disposal facility(ies) utilized. If more than one disposal site is used during a dredging cycle, indicate the amount of sediment disposed in each.
- 2) No dredging activities shall occur from April 1 June 15 of each year,
- 3) The submission of the fate analysis of PCB's as conditioned by the Division of Water Resources and adherence to any additional water quality monitoring requirements resulting from said analysis;
- 4) Adherence to any Coast Guard restrictions issued when pipeline is to cross the navigation channel to reduce impacts to navigation; and
- 5) The issuance of all required permits and adherence to the restrictions and/or conditions placed on any and all permits issued to you and/or your client for this project.

If you have any questions please do not hesitate to contact me or Bonnie Arvay at (302) 739-9283.

Sincerely,

Sarah W. Cooksey, Administrator

Delaware Coastal Management Program

cc: File 08.103
John Brundage – USACE/Dover Office
Joanne Lee – DNREC/DWR

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL

DIVISION OF WATER RESOURCES

WETLANDS & SUBAQUEOUS LANDS SECTION

89 Kings Highway DOVER, DELAWARE 19901

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. David Olsen
U.S. Army Corps of Engineers
Wanamaker Building
100 Penn Square East
Operations Division – 6th Floor
Philadelphia, PA 19107

NOV 3 - 2008

Dear Mr. Olsen:

Enclosed is the Water Quality Certification granted by the State of Delaware. Please read carefully all the Special and General Conditions contained within the Certification. The permittee is responsible to ensure that all conditions of the Certification are strictly observed.

Also enclosed is a copy of the Contractor's Post-Construction Completion Report. Within ten days of the completion of the project, the contractor must mail a completed and signed Post-Construction form to this office.

If you have any questions, please feel free to contact this office.

Sincerely,

Laura M. Herr Section Manager

Wetlands & Subaqueous

Lands Section

Enclosures

Cc: Charles Myers, U.S. Army Corps of Engineers

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL

WETLANDS & SUBAQUEOUS LANDS SECTION

DIVISION OF WATER RESOURCES
89 Kings Highway
DOVER, DELAWARE 19901

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. David Olsen
U.S. Army Corps of Engineers
Wanamaker Building
100 Penn Square East
Operations Division – 6th Floor
Philadelphia, PA 19107-3390

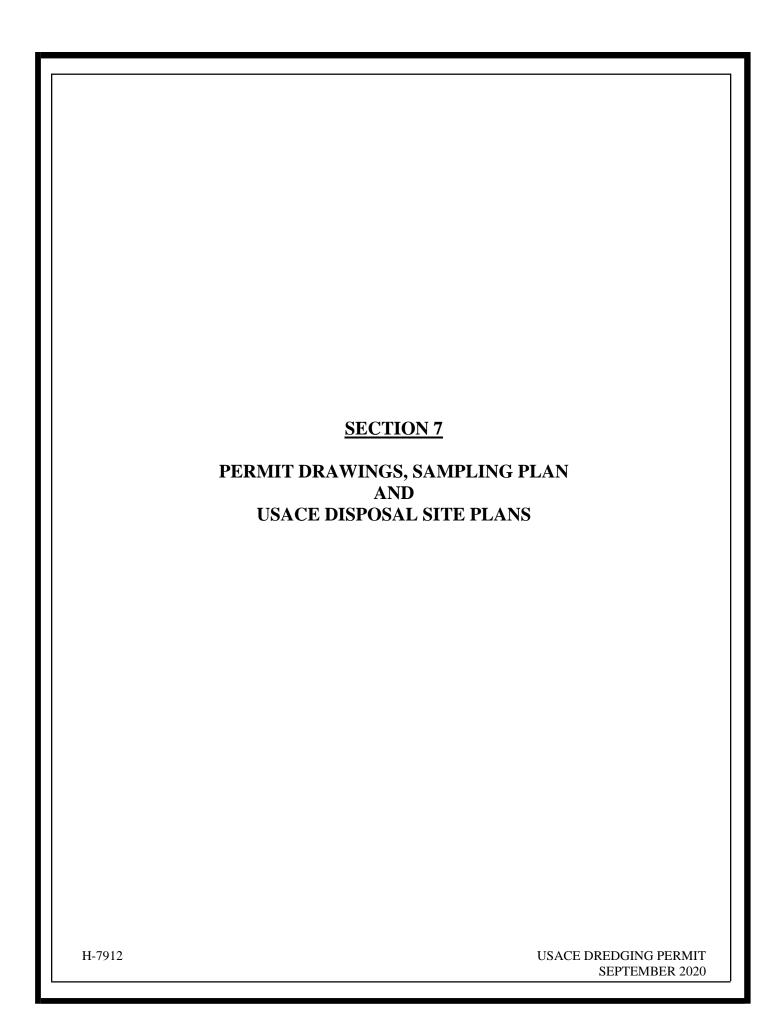
Water Quality Certification: WQ-521/07 Date of Issuance: ハトラトランド Expiration Date: ハトラトランド Amended Date:

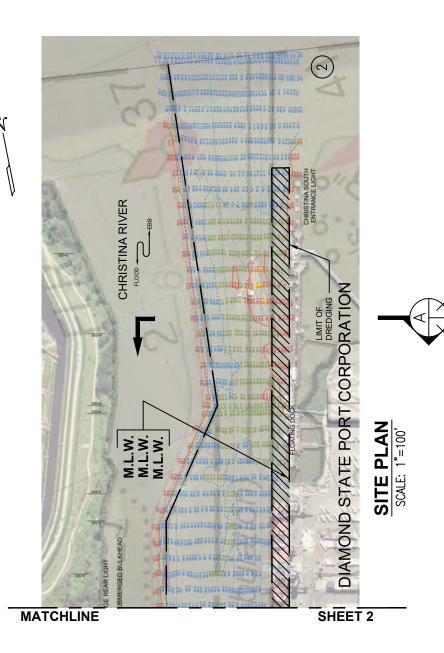
WATER QUALITY CERTIFICATION
GRANTED TO THE U.S. ARMY CORPS OF ENGINEERS
TO MAINTENANCE DREDGE THE CHRISTINA RIVER
TO DEPTHS RANGING FROM 35 FEET BELOW MEAN LOW WATER
TO 40 FEET BELOW MEAN LOW WATER,
DREDGING UP TO 650,000 CUBIC YARDS OF MATERIAL ANNUALLY,
AT THE PORT OF WILMINGTON, 1 HAUSEL ROAD,
WILMINGTON, NEW CASTLE COUNTY, DELAWARE

Pursuant to the provisions of 7 <u>Del. C.</u>, Section 6003, the Department's Regulations Governing the Control of Water Pollution and Section 401 of the <u>Clean Water Act</u>, permission is hereby granted on this <u>Srd</u> day of <u>Worker</u> A.D. 2008 to perform the above referenced project in accordance with the approved plans for this Certification (7 Sheets), as approved on October 30, 2008; and the application dated November 29, 2007 and received by this Division on December 3, 2007, with additional information received January 22, 2008 and September 19, 2008.

Whereas, in accordance with the provisions of Section 401 of the <u>Clean Water Act</u>, 33 U.S.C. Section 1341 and <u>7 Del. C.</u>, Chapter 60, the State of Delaware, by and through the Department of Natural Resources and Environmental Control, certifies that the permitted activity will be conducted in a manner which will not violate the applicable water quality standards of the State of Delaware, subject to the terms and conditions of this approval.

This Certification is issued subject to the following conditions:


SPECIAL CONDITIONS


- The conditions contained herein shall be included as part of the main body of the construction contract and other ancillary documents associated with earth disturbance and any other activities directly or indirectly associated with construction which may impact subaqueous lands associated with this project. The permittee is responsible for ensuring that the contractor and/or workers executing the activities authorized by this Certification have full knowledge of the terms and conditions of this Certification.
- 2. Dredging shall be conducted so as not to violate the State of Delaware Department of Natural Resources and Environmental Control <u>Surface Water Quality Standards</u> dated July 2004.
- 3. Dredging shall be conducted in a manner that minimizes the suspension of solids in the water column.
- 4. The permittee shall perform additional analysis to evaluate the fate of polychlorinated biphenyls in the sediments to be disturbed during the dredging operation and the effect of this contaminant on water quality. The analytical results shall be submitted to the WSLS at least 30 days prior to the first dredging event. If these results indicate that Water Quality Standards may be exceeded, the WSLS may require the permittee to conduct water column sampling during dredging operations and may also require the permittee to create and implement a plan that further minimizes the suspension of sediments and pollutants during dredging operations.
- 5. The WSLS authorizes the use of the Wilmington Harbor South disposal area and the Delaware portion of the Killcohook disposal areas as confined disposal facilities for the dredging authorized by this Certification. Dredge spoil disposal shall occur only in these designated, approved disposal areas.
- 6. The effluent shall be detained in the detention basin for sufficient time to allow for the maximum feasible settling of the sediments suspended in the dredge spoil effluent. The concentration of suspended solids in the water leaving the disposal site shall not exceed the concentration of the suspended solids in the receiving water body by more than 4 grams per liter.
- 7. Monitoring of the discharge from the disposal site shall be conducted during each dredging event. This data shall be submitted to the WSLS within 30 days of the completion of the dredging. Corrective action shall be taken and the WSLS shall be contacted within 24 hours if concentrations of suspended sediments exceed background condition by more than 4 grams per liter. The minimum monitoring shall include the following:
 - One composite sample of the effluent discharge water shall be collected daily and analyzed for Total Suspended Solids.
 - The effluent flow rate from the disposal site shall be recorded daily.
 - One water sample shall be collected daily from a background site on the Delaware River and analyzed for Total Suspended Solids. However, if the effluent discharge is managed so that no more than four grams of sediment per liter of water is discharged, background sampling is not required.

- 8. The schedule for the dredging shall be arranged so as to minimize the impact on anadromous fish passage. Specifically, no dredging shall be untaken between April 1 and June 15 annually.
- 9. All dredging and filling is to be conducted in a manner consistent with sound conservation and water pollution practices.
- 10. All pipelines shall be kept in good conditions at all times and any leaks or breaks shall be promptly and properly repaired
- 11. The submerged pipeline shall be placed in a manner that avoids impacts to navigation. The pipeline, when crossing the Delaware River navigation channel, shall be at a depth authorized by the U.S. Coast Guard.
- 12. The disposal areas shall be inspected prior to dredging and effectively managed and maintained in a manner that prevents the entrance of dredged materials into any waters or wetlands.
- 13. Prior to the commencement of each dredging event, the permittee shall notify the WSLS of the location of the proposed disposal area.
- 14. A minimum freeboard of two (2) feet, measured vertically between the retained material and water and the top of the adjacent confining embankment, shall be maintained at all times.
- 15. The Department reserves the right to modify the sampling parameters and other conditions for subsequent dredging events. The applicant shall contact the Wetlands and Subaqueous Lands Section prior to the commencement of subsequent dredging events so that specific details of the monitoring plans can be determined.
- 16. This Certification replaces the previously authorized Water Quality Certification WQ-250/04. All special and general conditions contained in this Certification shall supersede conditions set forth in WQ-250/04 which has become null and void.
- 17. Erosion and sediment control measures shall be implemented in accordance with the specifications and criteria in the current <u>Delaware Erosion and Sediment Control Handbook</u>, so as to minimize entry and dispersal of sediment and other contaminants in surface waters.
- 18. A copy of this Certification must be available on site during all phases of construction activity.
- 19. This Certification shall be valid for ten (10) years and authorizes a total of 10 dredging events, as depicted in the permit application and drawings. This Certification authorizes the dredging of 650,000 cubic yards of material during each dredge event.

GENERAL CONDITIONS

- 1. The project is to be undertaken in accordance with the plans submitted and attached hereto. Any activities not specifically authorized herein may require a supplemental approval from this office prior to the initiation of construction. A determination on the need for a supplemental approval will be made by this office pursuant to the permittee submitting written notification and revised plans indicating project changes to this office.
- 2. Representatives of the Department of Natural Resources and Environmental Control may inspect such work during any phase of the construction and may collect any samples or conduct any tests that are deemed necessary.
- 3. This Certification does not cover the structural stability of the project units.
- 4. Any actions, operations or installations which are considered by the Department to be contrary to the best interests of the public shall constitute reason for the discontinuance and/or removal of said action, operation or installation.
- 5. The issuance of this Certification does not imply approval of any other part, phase, or portion of any overall project the permittee may be contemplating.
- 6. This Certification is subject to the terms and conditions contained in any easement, license or lease that may have been granted by the State or any political subdivision, board, commission or agency of the State in the vicinity of the project.
- 7. This Certification and authorization are granted for the purposes as stated herein. Any other use without prior approval may constitute reason for this Certification being revoked.
- 8. The permittee shall notify the Department of Natural Resources and Environmental Control within ten (10) days of the date work will be commenced, for each dredging event.
- 9. The permittee shall at all times comply with all applicable laws and regulations of the Department of Natural Resources and Environmental Control.
- 10. The issuance of this Certification does not constitute approval for any of the activities as may be required by any other local, state or federal governmental agency.

ADJACENT PROPERTY OWNERS:

- **ALMA PROPERTIES LLC.**
- **NONE (DELAWARE RIVER)**

AREA TO BE DREDGED **476,150 SQUARE FEET**

DREDGE QUANTITY

ESTIMATED 75,000 CUBIC YARDS PENDING PRE-DREDGE SURVEY

DATUM CHART:

HIGH TIDE LINE (H.T.L.)+6.42

MEAN HIGH WATER (M.H.W.)+5.21

5.21 MEAN LOW WATER (M.L.W.) 0.0

NOTE: FINAL DESIGN REQUIRED FOR CONSTRUCTION. THIS DRAWING IS FOR PERMITTING PURPOSES ONLY.

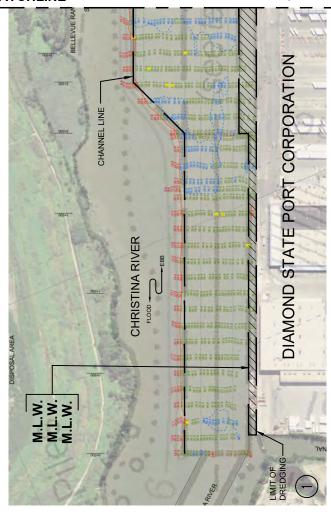
S.T. HUDSON ENGINEERS, INC.

PROFESSIONAL ENGINEERS & CONSULTANTS

900 Dudley Avenue Cherry Hill, NJ 08002 Phone 856-342-6600 Fax No. 856-342-8323

REFERENCE DRAWING:

1. PLAN TITLE: " WILMINGTON HARBOR, STA 0+00 TO STA 6+236.8 EXAMINATION+ BY: U.S. ARMY CORPS OF ENGINEERS FILE No.: E-WH-08


FILE No. G-2138 CONTRACT No. H-7912 DATE 9/29/2020

SHEET No. 1 of 3

MAINTENANCE DREDGING PROPOSED: PORT OF WILMINGTON AT: WILMINGTON COUNTY OF: DIAMOND STATE APPLICATION BY: PORT CORPORATION

MATCHLINE

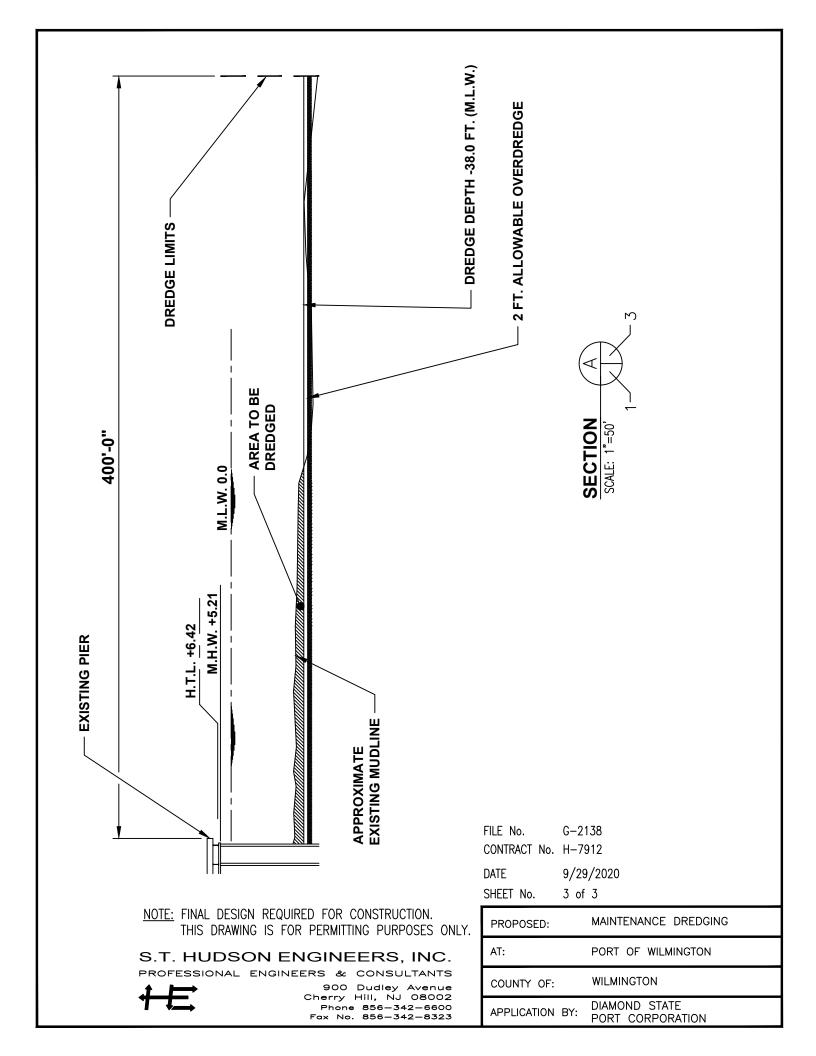
SHEET 1

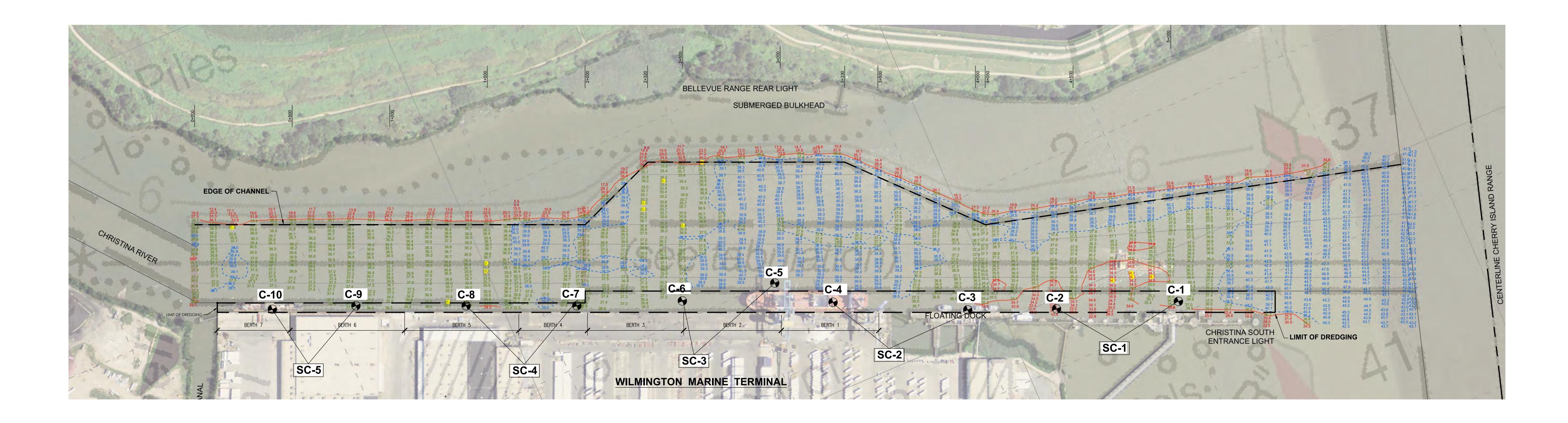
DATE SHEET No. 2 of 3

 $\begin{tabular}{lll} {\tt NOTE:} \\ {\tt FINAL DESIGN} \\ {\tt REQUIRED FOR CONSTRUCTION.} \\ {\tt THIS DRAWING IS FOR PERMITTING PURPOSES ONLY.} \\ \end{tabular}$

S.T. HUDSON ENGINEERS, INC.

PROFESSIONAL ENGINEERS & CONSULTANTS


900 Dudley Avenue Cherry Hill, NJ 08002 Phone 856-342-6600 Fax No. 856-342-8323


MAINTENANCE DREDGING PROPOSED: AT: PORT OF WILMINGTON WILMINGTON COUNTY OF: DIAMOND STATE APPLICATION BY: PORT CORPORATION

FILE No.

G-2138 CONTRACT No. H-7912

9/29/2020

SITE PLAN

SCALE: 1" = 200'

DATUM CHART:

ELEV. -2.98'

NGVD (1929 ADJUSTED) ELEV O.O

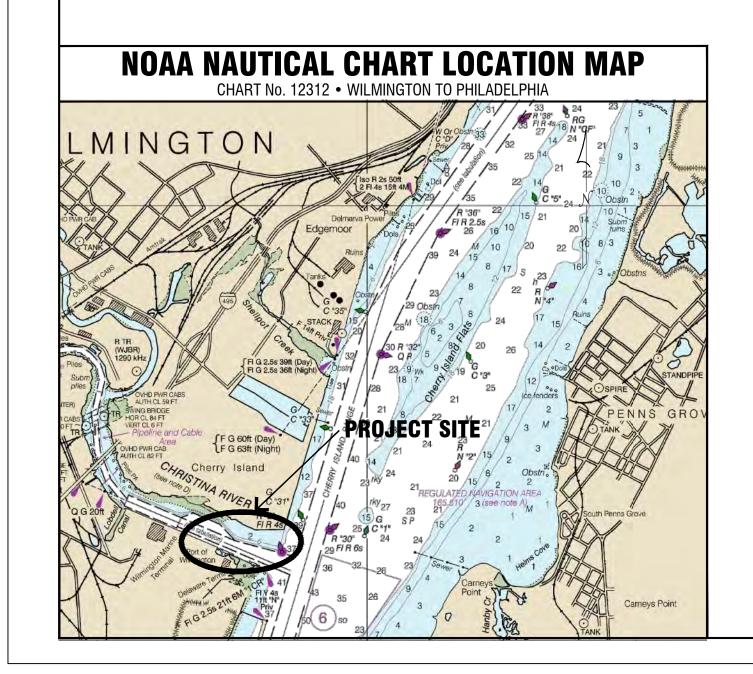
MEAN LOWER LOW WATER (M.L.L.W.)

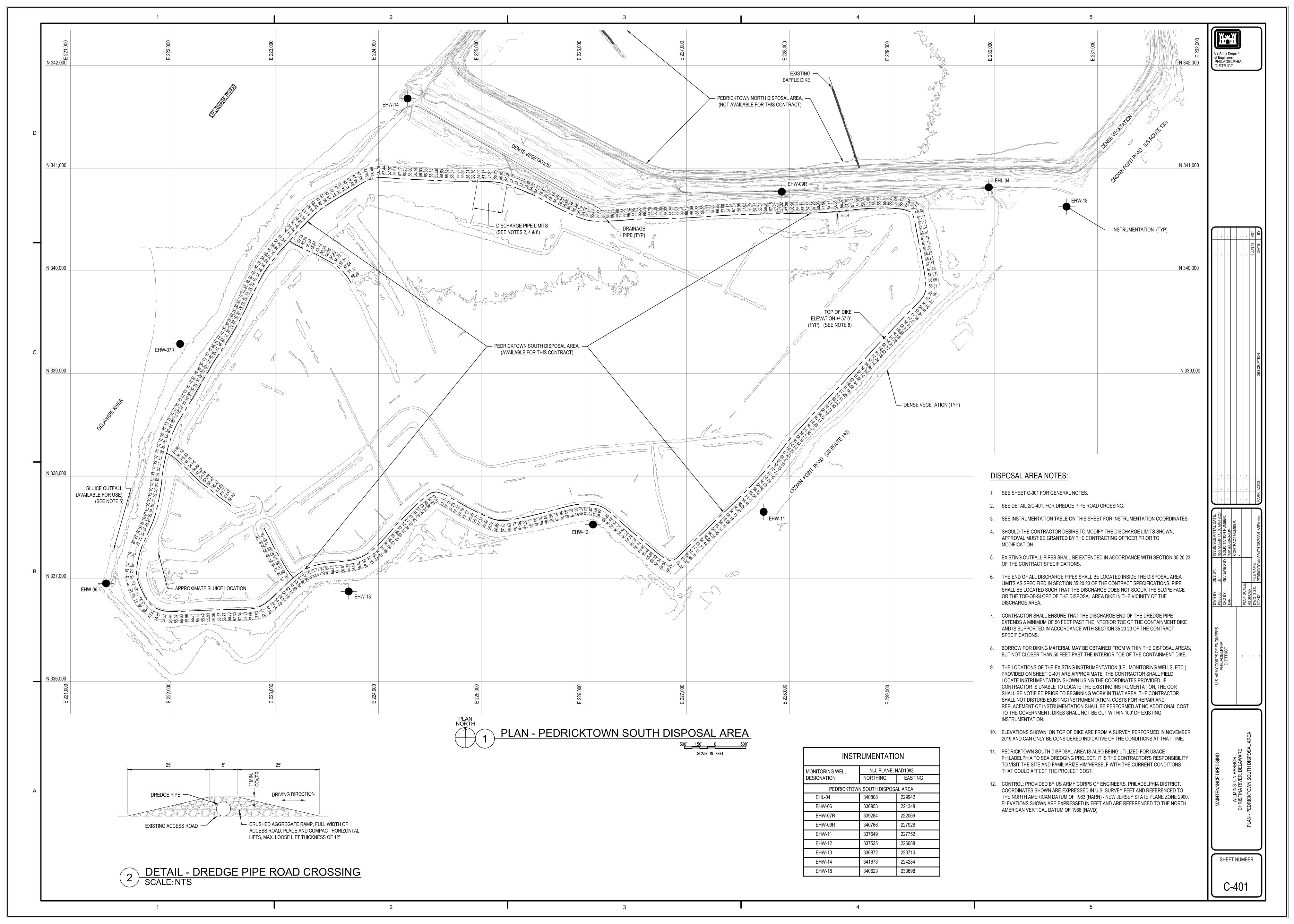
HYDROGRAPHIC SURVEY NOTES:

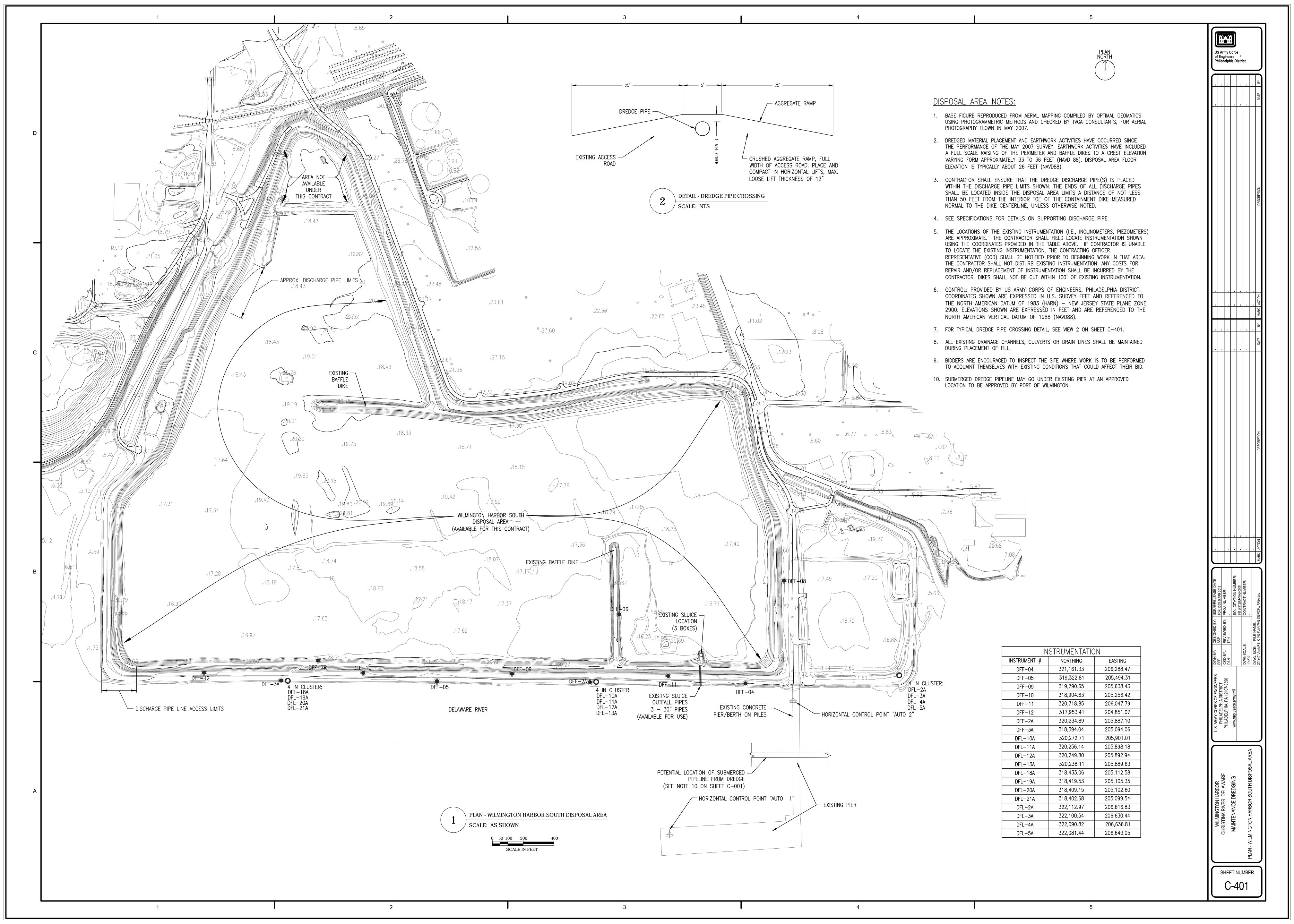
- 1. THIS SURVEY MEETS STANDARDS AS OUTLINED IN CORPS OF ENGINEERS' HYDROGRAPHIC SURVEY MANUAL EM1110-2-1003, DATED NOVEMBER 30, 2013 FOR NAVIGATION AND DREDGING SUPPORT SURVEYS.
- 2. HORIZONTAL REFERENCE-NAD 83, NEW JERSEY STATE PLANE, ZONE 2900, U.S. FOOT.
- 3. VERTICAL REFERENCE-MEAN LOWER LOW WATER WHICH IS 2.98' BELOW NAVD88
- 4. GEOID 09 AND NOAA TIDAL EPOCH: 1983-2001 WERE USED. SOUNDINGS ARE EXPRESSED IN FEET AND TENTHS AND REFER TO MEAN LOWER LOW WATER.
- 5. CONTOURS WERE GENERATED USING THE MINIMUM DEPTH WITHIN SEARCH RADIUS OF 18'.
- 6. HYPACK INC. SOFTWARE WAS USED TO PERFORM THE SOUNDING SELECTION AND CONTOUR GENERATION.
- 7. THIS INFORMATION DEPICTED ON THIS MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THE TIME.
- 8. POSITIONS OF THE AIDS TO NAVIGATION ARE PROVIDED FOR INFORMATION ONLY, AND SHOULD NOT BE USED FOR NAVIGATION.
- 9. THE LIMITS OF THE FEDERAL CHANNEL DEPICT THE MOST CURRENT CHANNEL.
- 10. BASE MAPPING LINEWORK OR ORTHOPHOTOGRAPHY HAS BEEN COMPILED FROM A VARIETY OF SOURCES AND DATES AND IS INTENDED TO PORTRAY GENERAL CHARACTERISTICS OF THE SHORELINE AND OTHER FEATURES TEMPORAL CHANGES MAY HAVE OCCURED SINCE THIS DATA SET WAS COLLECTED AND SOME PARTS OF THE DATA MAY NO LONGER BE AN ACCURATE REPRESENTATION OF THE SURFACE CONDITIONS.
- 11. HYDRO DATA AND DRAWING BACKGROUND TAKEN FROM U.S. ARMY CORPS OF ENGINEERS DRAWING NUMBER E-WH-08.

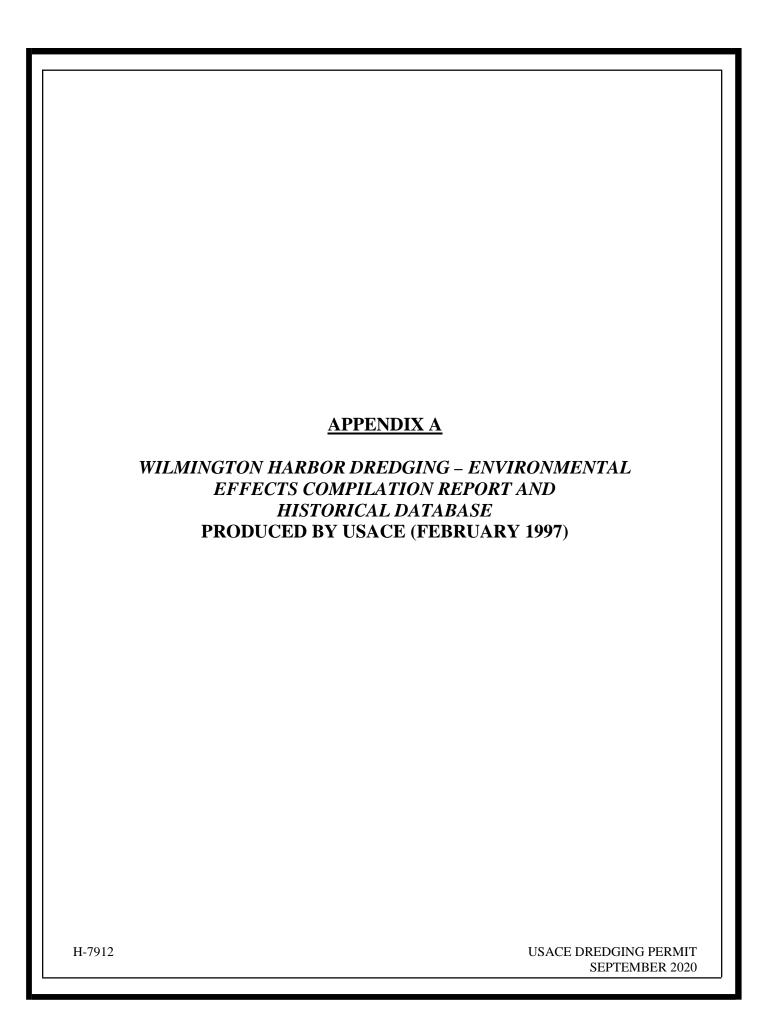
CORE SAMPLE LOCATION CHART							
CALCULATED LOCATIONS VIA PLAN			ACTUAL LOCATIONS VIA DGPS				
NORTHING	EASTING	I.D.		NORTHING	EASTING		
323058.780	207000.379	C-	1	323063.21	207003.37		
323270118	206416.467	C-2	2	323274.91	206414.46		
323437.795	205989.616	C-:	3	323449.70	205994.35		
323748.673	205368.029	C-4	4	323757.66	205375.99		
323953.496	205135.731	C-4	5	323966.31	205140.65		
324060.093	204668.255	C-(6	324069.15	204669.68		
324268.886	204120.646	C-7	7	324295.16	204152.73		
324523.430	203650.933	C-8	В	324521.64	203645.56		
324685.149	203112.368	C-6	9	324706.93	203123.36		
324891.785	202723.986	C-1	0	324902.13	202728.66		

CORE SAMPLING NOTES:


1. FOR CORE SAMPLE LOCATIONS, SEE "ACTUAL LOCATIONS VIA DGPS" IN THE SAMPLE LOCATION CHART.


2. CORE SAMPLES WERE TAKEN ON JULY 21,2020 and JULY 29, 2020.


TOTAL DREDGE AREA = 476,150 Sq. Ft.


TOTAL DREDGE VOLUME = ESTIMATED 75,000 C.Y.
PENDING PER-DREDGE SURVEY

						"Drawings issued in electronic form are provided for the convenience of the recipient and are use at the sole risk of the user. Reliance may be placed only on hard copies of drawings issued by S.T. Hudson Engineers. in the event of any discrepancy, the hard copy will govern."	d
ŧ	appr.	ap	prov	/als		S. T. HUDSON ENGINEERS, INC	
approved by			for	date	PROFESSIONAL ENGINEERS & CONSULTANT		
djd	by					900 Dudley Av Cherry Hill, NJ 0800	е
ns						Phone No. 856-342-660 Fax No. 856-342-832	
actual sample locations	scription	seal	sec	lc		GT USA WILMINGTON, LLC. WILMINGTON MARINE TERMINAL WILMINGTON, DELAWARE	
Added ac	Q					drawn STAFF date 04/21/20 checked PF drftg. approval ADS FILE G-1172 H-79	2
8/10/20	date					dwg. no.	rev.
1 8/	rev.					SAMPLING PLAN 1	1

B. LONLIN

WILMINGTON HARBOR DREDGING ENVIRONMENTAL EFFECTS COMPILATION
REPORT AND HISTORICAL DATABASE

WILMINGTON HARBOR DREDGING ENVIRONMENTAL EFFECTS COMPILATION REPORT AND HISTORICAL DATABASE

Prepared for

U.S. Army Corps of Engineers Philadelphia District Philadelphia, PA 19107

Prepared by

Frederick S. Kelley Thuzar Myint

Versar, Inc. 9200 Rumsey Road Columbia, MD 21045

Contract No. DACW61-95-D-0011 Delivery Order No. 0029

Prepared Under the Supervision of

Principal Investigator

William H. Burton

February 1997

FOREWORD

This report, entitled, Wilmington Harbor Dredging - Environmental Effects Compilation Report and Historical Database was prepared by Versar, Inc. for Ms Barbara Conlin, Environmental Resources Branch, U.S. Army Corps of Engineers, Philadelphia District under Contract No. DACW61-95-D-0011; Task Order 0029.

TABLE OF CONTENTS

			Page
FOREV	VORD .	· · · · · · · · · · · · · · · · · · ·	iii
1.0	INTROE	DUCTION	. 1-1
2.0	2.2 DA	ATABASE DEVELOPMENT	. 2-1 . 2-1 . 2-1
3.0	3.1 W 3.2 Si	TS ATER QUALITY MONITORING 3.1.1 Criteria Comparison 3.1.2 Effects of Dredging on Water Quality EDIMENT AND ELUTRIATE TESTING 3.2.1 Sediments 3.2.2 Elutriate Testing Elutriates ROUNDWATER MONITORING	3-1 3-1 . 3-11 . 3-16 . 3-16 . 3-26
4.0	SUMM	IARY AND CONCLUSIONS	4-1
5.0	RECO	MMENDATIONS	5-1
6.0	REFER	ENCES	6-1
7.0	DATA	BASE DESCRIPTION	7-1
APPE	NDICES		
	Α	Water Quality Database	A-1
	В	Groundwater Database	B-1
	С	Elutriate Database	C-1
	D	Sediment Database	D-1

1.0 INTRODUCTION

The U.S. Army Corps of Engineers (USACE) is responsible for maintaining safe navigation within the port of Wilmington Harbor, Delaware. One aspect of maintaining safe navigation is the routine dredging of the harbor channel. Over the past 15 years, the USACE has conducted 18 maintenance dredging projects within the harbor. For each maintenance dredging project, the USACE was required to obtain a permit from the Delaware Department of Natural Resources and Environmental Control (DNREC). Over the years, the permits required environmental monitoring of the effects of dredging including: water quality monitoring at the dredge disposal site weir discharges and mixing zones, measurements of contaminant concentrations in sediments and elutriates from the harbor, and groundwater monitoring at wells located in the upland dredge disposal site. The USACE is currently pursuing a five year maintenance dredging permit from DNREC. As a condition to authorizing the current permit, DNREC has requested that the USACE summarize all of the results from environmental monitoring conducted during previous maintenance dredging projects, and provide an overview of the environmental effects of maintenance dredging at Wilmington Harbor.

The analytical results of water quality testing conducted during Wilmington Harbor dredging operations are summarized in approximately 300 pages of data tables and laboratory certificates. Sediments contaminant testing results have been summarized in two separate Greeley-Polhemus reports (Greeley-Polhemus Group 1993, 1994). Past monitoring programs were conducted by a number of other contractors who reported their results in a variety of formats including project specific data reports, laboratory analysis certificates, and data summary tables. A chronological history of the dredge monitoring studies is presented in Table 1-1. To date, none of monitoring results have been summarized in a comprehensive report and evaluated to determine if Wilmington Harbor maintenance dredging is having significant effects on ecological resources in the Delaware River.

To comply with DNREC's request for a summary of the results of maintenance dredge monitoring, and an overview of the environmental effects of maintenance dredging at Wilmington Harbor, the USACE contracted Versar to compile 15 years of monitoring data from 1980 to 1994. An electronic database was created that would facilitate data interpretation and statistical analysis, compare the monitoring results to existing criteria, and provide interpretation relating to the environmental effects of maintenance dredging on Wilmington Harbor.

Table 1-1. A chronological history of maintenance dredge monitoring at Wilmington Harbor from 1980 to 1994						
Dredge Monitoring Project	Project Description	Testing Description				
1980 (January- March)	 On 1/22/80, water was collected at the weir outfall, 8 sites in the mixing zone, and at a background site. On 8 sampling dates from 1/23/80 to 3/10/80, water was collected at the weir outfall, and adjacent, upstream, and downstream of the weir outfall. 	 Waters collected at all sites were tested for metals and physical parameters on all dates; and PCB's on 3/10/80. 				
1980 (October) - 1981 (February)	 Pre-dredge monitoring was conducted on 10/09/80; water was collected at 2 sites in the mixing zone, and at a background site. During-dredge monitoring was conducted on 4 sampling dates (from 12/09/80 to 2/25/81); water was collected at the weir outfall, 8 mixing zone sites, and a background site. 	- Waters collected at all sites were tested for metals and physical parameters on all dates.				
1981 (September- December)	 Pre-dredge monitoring was conducted on 9/14/81; water was collected at 2 sites in the mixing zone, and at a background site. During-dredge monitoring was conducted on 4 sampling dates (from 10/13/81 to 12/7/81); water was collected at the weir outfall, 4 mixing zone sites, and a background site. 	- Waters collected at all sites were tested for metals and physical parameters on all dates.				
1982 (October- December)	- Pre-, during- and post-dredge monitoring were conducted on 10/27, 11/02 and 12/15/82, respectively; water was collected at the weir, 6 sites in the mixing zone, and at a background site. (No samples were collected at the weir during post-dredge monitoring.)	 Waters collected at all sites were tested for metals and physical parameters on all dates. A composite water sample collected at the weir on 11/03/82 was measured for BOD5, COD, and flow. 				
1983 (June)	 During-dredge monitoring was conducted on 3 sampling dates (from 6/15/83 to 6/27/83); water was collected at the weir, 6 sites in the mixing zone, and at a background site. 	 Waters collected at all sites were tested for metals and physical parameters on all dates. Composite water samples collected at the weir on 2 dates were measured for BOD5, COD fecal coliforms, and flow 				

Table 1-1. Co	Table 1-1. Cont'd							
Dredge Monitoring Project	Project Description	Testing Description						
1983 (December) - 1984 (February)	 During-dredge monitoring was conducted on 2 dates (12/19/83 and 1/05/84); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 12/27/83 and 1/10/84. Post-dredge monitoring was conducted on 2/07/84; except for the weir-outfall, water was collected as before. 	 All water samples were tested for metals and physical parameters, and PCBs. Additional weir-outfall samples were tested for coliforms. 						
1985 (January - February)	 During-dredge monitoring was conducted on 2 dates (1/03/85 and 1/14/85); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 1/7/85 and 1/15/85. Post-dredge monitoring was conducted on 2/07/85; except for the weir-outfall, mixing zone water was collected as before. 	 All water samples were tested for metals and physical parameters, and PCBs. Additional weir-outfall samples were tested for coliforms and BOD. 						
1985 (June - August)	 Elutriate monitoring was conducted on 6/19/85; 10 samples were collected in the harbor. During-dredge monitoring was conducted on 2 dates (6/28/85 and 7/17/85); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. An additional water sample was collected from the weir-outfall on 6/30/85. Post-dredge monitoring was conducted on 8/08/85; except for the weir-outfall, mixing zone water was collected as hefore 	 Elutriate samples were tested for metals, PCBs, and physical parameters All water samples were tested for metals and physical parameters, and PCBs. Additional weir-outfall samples were tested for coliforms. 						

Table 1-1. Cont'd							
Dredge Monitoring Project	Project Description	Testing Description					
1986 (January - March)	 During-dredge monitoring was conducted on 2 dates (1/09/86 and 1/13/86); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 1/13/86 and 1/22/86. Post-dredge monitoring was conducted on 2/13/86; except for the weir-outfall, mixing zone water was collected as before. Groundwater well monitoring was conducted on 3/11/86; samples were collected from 6 wells. 	 All water samples were tested for metals and physical parameters, and PCBs. Additional weir-outfall samples were tested for coliforms and BOD. Groundwater samples were tested for zinc, total nitrogen, TOC and pH. 					
1986 (September)	- During-dredge monitoring was conducted on 2 dates (9/04/86 and 9/12/86); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. An additional water sample was collected from the weir-outfall on 9/10/86.	 All water samples were tested for metals, physical parameters, and PCBs. The additional weir-outfall sample was tested for BOD. 					
1987 (April)	- Groundwater well monitoring was conducted between 4/07/87 and 4/14/87; 11 samples were collected.	- Groundwater samples were tested for TOC, chloride, zinc, TKN and pH.					
1988 (October - December)	- During-dredge monitoring was conducted on 2 dates (10/24/88 and 11/07/88); water was collected at the weir-outfall, 7 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 11/04/88 and 11/08/88. - Post-dredge monitoring was conducted 12/01/88; mixing zone water samples were collected as before, except no weir-outfall sample was taken	 All water samples were tested for metals, physical parameters, and PCBs. Additional weir-outfall samples were tested for coliforms and BOD. 					

Table 1-1. Co	Table 1-1. Cont'd						
Dredge Monitoring Project	Project Description	Testing Description					
1989 (August - September)	 During-dredge monitoring was conducted on 8/15/89; water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. An additional water sample was collected from the weir-outfall on 8/21/89. Post-dredge monitoring was conducted 9/12/89; mixing zone water samples were collected as before, except no weir-outfall sample was taken. 	 All water samples were tested for metals, physical parameters, and PCBs. Additional weir-outfall sample was tested for coliforms. 					
1990 (May - June)	- During-dredge monitoring was conducted on two dates (5/02/90 and 6/15/90); water samples were collected at 8 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 5/15/90 and 5/24/90.	 All water samples were tested for metals, physical parameters, and PCBs. Additional weir-outfall sample was tested for coliforms and BOD. 					
1991 (January)	- During-dredge monitoring was conducted on two dates (1/25/91 and 1/30/91); water samples were collected at 7 sites in the mixing zone, and at a background site. Water samples from the weir-outfall were collected on 1/24/91 and 1/30/91.	 Water samples collected in the mixing zone and at the background site were tested for metal, physical parameters, and PCBs. Samples from the weir- outfall were tested for coliforms and BOD. 					
1991 (October - December)	- During-dredge monitoring conducted on 5 dates from 11/07/91 to 12/05/91; water samples were collected from the weiroutfall, 7 sites in the mixing zone, and at a background site. Additional water samples were collected almost continuously from the weir-outfall from 10/30/91 to 12/07/91.	 All water samples were tested for metals, physical parameters, and PCBs. Additional weir-outfall sample were tested for TSS and coliforms. 					
1992 (July - August)	- During-dredge monitoring was conducted on two dates (7/22/92 and 7/27/92); water was collected at the weir-outfall, 7 sites in the mixing zone, and at a background site. Additional water samples were collected at the weir-outfall from 7/20/92 to 8/10/92.	- Water samples of the mixing zone and background were tested for physical, metals and organic parameters; weir outfall samples were tested for TSS (63 samples), coliforms (3 samples), and once for physical, metals, and organic parameters					

Table 1-1. Cont'd								
Dredge Monitoring Project Description Project		Testing Description						
1993 (March - April)	 Pre-dredge monitoring was conducted 3/10-11/93; 6 sediment and elutriate, and a background water sample were collected in the Harbor. During-dredge monitoring was conducted from 3/23/93 to 4/09/93; samples were collected from the weir-outfall, 4 mixing zone sites and a background site on 3 dates. Additional water samples were collected from the weir-outfall on 3 dates. Post-dredge monitoring was conducted on 4/16/93; mixing zone water samples were collected as above excluding the weir-outfall sample. 	 Sediment and elutriate samples were tested for metals, organics, and PCBs. Water samples collected from the weir-outfall were tested for metals, organics, and PCBs. Mixing zone and background samples were tested for metals and organics. Additional weir-outfall samples were tested for TSS. 						
1993 (December) - 1994 (April)	 Pre-dredge monitoring was conducted on 12/22/93; 2 water samples at one site, and 2 composite sediment samples at 2 sites were collected in the mixing zone. During-dredge monitoring was conducted on three dates; 2 water samples were collected in the mixing zone on 1/13/94, and 24-hr composite samples collected at weir outfall on 1/04/94 and 2/25/94. Additional water samples were collected every three days at weir-outfall. Post-dredge monitoring was conducted on two dates; water samples were collected from the weir-outfall and the two mixing zone sites on 4/15/94, and at the weir-outfall on 5/20/94. 	All water and sediment samples were tested for metals, PCBs, PAHs, and physical parameters. Additional during-dredge weir-outfall samples were tested for TSS.						

2.0 METHODS

2.1 DATABASE DEVELOPMENT

All of the monitoring data from 1980 to 1994 were entered into a Lotus spreadsheet from hard copy format. Each data entry included common identifiers including project name, study year, date, station identification, contractor name, and comments on specific values. Separate database files were created for water quality, groundwater, and sediment contaminant monitoring. Concentrations of each parameter monitored were adjusted to a common unit of measure (in water, mg/L for metals and miscellaneous parameters, and μ g/L for organics and pesticides; in sediment for the parameters groups, mg/kg and μ g/kg, respectively). Database quality control was administered by comparing data entries with the original tables or analysis certificates, checking parameter reporting units, and use of a computer program to check for out-of-range parameters and other data anomalies (e.g., missing data or invalid station names). Finally, the Lotus database spreadsheets were converted to SAS (SAS Institute 1990) data sets for data manipulation, statistical analysis, and final storage.

2.2 DATA ANALYSIS

2.2.1 Criteria Comparison

The concentrations and measurements of parameters analyzed for water quality, sediment and elutriate contaminants, and groundwater well-monitoring were compared with current federal and state regulatory criteria (Tables 2-1 and 2-2). Water quality and elutriate parameter concentrations were compared to EPA's marine chronic criteria, or acute chronic criteria in absence of the former value (Wilmington Harbor is at the transition zone between freshwater and salt water). Sediment contaminant concentrations were compared to Long et al's (1995) effects range-low (ER-L), or effects range-median (ER-M) guidance values for sediment quality in the absence of state guidelines. A few sediment parameters had neither effects range criteria and were compared to the EPA's (1988) overall apparent effects threshold (OAET) or threshold effects levels (TEL). Groundwater well-monitoring parameter concentrations were compared to National Secondary Drinking Water Regulations (CFR 40 1996).

2.2.2 Effects of Dredging on Water Quality

Of the four dredge monitoring components, groundwater, sediment, elutriate and weiroutfall water quality, only the latter was conducted frequently enough to permit meaningful statistical comparisons. Data from sediment and elutriate, and groundwater monitoring were collected during only 2 and 3 of the 18 maintenance dredge projects. Additionally, data for

	Criteria			
Parameter	Water (μg/L)	Sediments (μg/kg)		
Chlorobenzene	129			
Chrysene		384		
Dibenzo(a,h)anthracene		63.4		
Ethylbenzene	430			
Fluoranthene	16	600		
Fluorene		19		
Hexachlorobutadiene	32			
Hexachlorocyclopentadiene	7			
Hexachloroethane	940			
Isophorone	12900			
Naphthalene	2350	160		
Nitrobenzene	6680			
Pentachlorophenol	7.9			
Phenanthrene	4.6	240		
Phenol	5800			
Pyrene		865		
Tetrachloroethene	450			
Toluene	5000			
Trichloroethene	2000			
	Pesticides			
2,4'-DDD	3.6	1.2		
2,4'-DDE	14	2.2		
2,4'-DDT	0.001	1.5		
4,4'-DDD	3.6	1.2		
4.4'-DDE	14	2.2		

Table 2-2. Cont'd					
	Criteria				
Parameter	Water (μg/L)	Sediments (μg/kg)			
4,4'-DDT	0.001	1.58			
A-BHC	0.34				
Aldrin	1.3				
B-BHC	0.34				
Chlordane	0.004	2			
Cis-chlordane	0.004				
D-BHC	0.34				
Dieldrin	0.0019	0.715			
Endosulfan I	0.0087				
Endosulfan II	0.0087				
Endrin	0.0023				
G-BHC	0.34				
Heptachlor	0.0036				
Heptachlor epoxide	0.0036				
Mirex	0.001				
Toxaphene	0.0002				
Trans-chlordane	0.004				

many of the parameters lacked variation as many concentrations were below test detection limits. Low data variability was especially true for the organic and pesticide parameters.

Statistical comparisons among water quality parameters were limited to the during-dredge phase of dredge monitoring projects. Most of the data for dredge projects were collected repeatedly through the during-dredge phase, and only once, if at all, for pre- and post-dredge monitoring. In addition, low data variability due to a high incidence of concentrations below test detection limits restricted the application of statistical comparisons. For a total of 19 water quality parameters, analysis of variance (ANOVA) tests were made to determine differences between weir-outfall sites, mixing zone sites, and background sites. Duncan's Multiple Range Test was conducted to determine statistical differences between site variables (Sokal and Rohlf 1981). Parameter measurements were treated independently for all sites; parameter means for each site category were calculated by averaging all of the concentrations measured over the 15 years of monitoring. Concentrations less than test detection limits were given the value of the detection limit for each calculation.

Water quality of the mixing zone was monitored by collecting samples within the weir turbidity plume. Fixed sites for sample collection were established within the plume at different distances from the outfall. The number of samples collected in the mixing zone on each monitoring date varied according to maintenance dredge project. In addition, different project sampling schemes often used site numbers to identify sampling locations, but did not consistently assign the same site number to a location relative to the weir-outfall. Collection site locations varied according to tide cycle, as they were always collected on the down current. These combined factors made it impossible to categorize mixing zone stations by distance from the weir-outfall with confidence, consequently, all data from samples collected within the mixing zone were pooled.

3.0 RESULTS

Over 100 parameters were measured for each of the monitoring components (e.g., water quality, and sediment and elutriate contaminants). This section addresses the monitoring components in order, and divides the list of parameters into general groups that include: metals, inorganic non-metals, and physical parameters; PCBs and organics; and pesticides. Only a few parameters were measured during groundwater well-monitoring of the upland disposal site, and are presented collectively.

3.1 WATER QUALITY MONITORING

3.1.1 Criteria Comparison

A total of 164 water quality parameters were monitored during maintenance dredging of Wilmington Harbor over the past 15 years (Table 3-1, 3-2, and 3-4). The parameters comprised several general groupings and included physical, metals, inorganic non-metals, and organics such as polychlorinated biphenyls (PCBs) and pesticides. The frequency of measurement among all parameters ranged from 428 for Zinc to a single measurement for two of the organics. Initially, the frequencies of measure and criteria exceedence were calculated for each parameter among all measurements disregarding the dredge phase in which it was collected and the station location. For parameters that chronically exceeded criteria discussion is included relative to the station type and dredge phase for which the exceedences occurred.

3.1.1.1 Metals, Physical, and Miscellaneous Parameters

Thirty-seven water quality parameters comprising metals, inorganic non-metals, nutrient measures, physical measures, and bacteria counts were analyzed during maintenance dredge monitoring at Wilmington Harbor (Table 3-1). Among these parameters, 37 had listed criteria concentrations or measures. A comparison of the criteria with water quality monitoring data identified 7 parameters that had concentrations exceeding or not in compliance with their respective criteria. These included cadmium, chromium, lead, nickel, zinc, dissolved oxygen, and pH (criteria given as a range from 6.5 to 8.5).

Cadmium concentrations were measured 127 times over the 15 years of water quality monitoring (Table 3-1). Approximately 20% (25 samples) of the concentrations measured at all sites exceeded the criterion for cadmium of less than 0.009 mg/L. However, 23 of the exceeding concentrations at 0.010 mg/L were only slightly greater than the criterion. The maximum concentration of cadmium (0.025 mg/L) was measured in a sample collected from the weir-outfall in February 1980.

Table 3-1. Frequencies of water quality parameter measurement for metals, inorganic non-metals, nutrients, physical measures, and bacteria counts monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Aluminum	109	0	NL			
Antimony	8	8	0.5	0	0	0.0
Arsenic	38	13	0.036	0	0	0.0
Beryllium	28	26	NL			
Cadmium	127	44	0.0093	1	25	19.7
Chloride	3	0	NL			
Chromium	147	84	0.05	0	2	1.4
Copper	147	53	2.9	0	0	0.0
Lead	147	47	0.0085	40	78	53.1
Mercury	281	261	0.025	0	0	0.0
Nickel	38	28	0.0083	28	8	21.1
Selenium	18	18	0.071	0	0	0.0
Silver	18	18	0.0092	16	0	0.0
Thallium	8	8	2.13	0	0	0.0
Zinc	428	46	0.086	0	144	33.6
Cyanide	6	6	0.001	6	0	0.0
Dissolved Oxygen	394	2	<5	0	29	7.4
BOD	414	192	NL_			
COD	159	7	NL			
Ammonia	3	0	0			
Nitrate	61	1	0			
Nitrite	3	0	NL			
Nitrate + Nitrite	24	0	10	0	0	0.0
Total Nitrogen	327	0	NL			
Total Kjeldahl Nitrogen	152	o	NL			
Total Phosphate	128	29	NL			

Table 3-1. Cont'd						
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Hardness	10	0	NL		,	
Oil & Grease	19	16	NL			
рН	404	0	6.5-8.5	0	7*	1.7
Settleable Solids	19	8	NL			
Temperature (°C)	394	1	NL			
Total Organic Carbon	407	0	NL			
Total Petroleum Hydrocarbons	10	10	NL			
Total Suspended Solids	925	3	NL			
Turbidity (ntu)	396	0	NL			
Fecal Coliform (#/100 ml)	56	0	NL			
Total Coliform (#/100 ml)	49	1	NL_			

^{* -} pH always below the criteria range NL - Not listed

Chromium concentrations were measured 147 times over the 15 years of water quality monitoring (Table 3-1). Less than 2% (2 samples) of the concentrations measured at all sites exceeded the criterion for chromium of less than 0.05 mg/L. However, the frequency of chromium concentrations exceeding the criterion may be less. The water quality criterion used in the comparison was based on the EPA chronic saltwater criterion for hexavalent chromium which represents only a fraction of total chromium. Applying this criterion to total chromium concentrations may have resulted in an overestimate of the number of exceeding concentrations. The exceeding chromium concentrations, approximately 2 and 11 times greater than the criterion, were measured in samples collected from the weir-outfall during February 1980.

Lead concentrations were measured 147 times over the 15 years of water quality monitoring (Table 3-1). Greater than 50% (78 samples) of the concentrations measured at all sites exceeded the criterion of less than 0.009 mg/L. The frequency of concentrations exceeding the criterion was probably underestimated. Among all samples analyzed for lead, 47 had concentrations less than test detection limits, and were not counted as exceeding the criterion. However, among these samples, 43 had test detection limits that exceeded the criterion. The distribution pattern of exceeding lead concentrations was not clearly defined. Leading concentrations above criteria were observed during all phases of dredge monitoring (pre, during, and post), and at all station types including the background station. However, the greatest concentrations of lead were measured in samples collected from the during-dredge phase of water quality monitoring.

Nickel concentrations were measured 38 times over the 15 years of water quality monitoring (Table 3-1). Approximately 20% (8 samples) of the concentrations measured among all sites exceeded the criterion for nickel of less than 0.008 mg/L. The frequency of exceeding concentrations was probably underestimated. Among all samples analyzed for nickel, 28 had concentrations less than the test detection limits. However, the test detection limit for all of these samples was greater than the criterion. All but one of the exceeding concentrations were observed in samples collected from the weir-outfall, and all but one of these was collected in the during-dredge phase of water quality monitoring. The maximum concentration of nickel (0.0320 mg/L) observed during maintenance dredge monitoring was 4 times greater than the criterion.

Zinc concentrations were measured 428 times over the 15 years of water quality monitoring (Table 3-1). Approximately 30% (144 samples) of the concentrations measured among all sites exceeded the criterion for zinc of less than 0.086 mg/L. Exceeding concentrations of zinc were observed at all station types. The weir-outfall had the greatest number of exceedences at 93, and the greatest concentration of zinc observed during monitoring at 21.0 mg/L. The mixing zone had 34 exceeding concentrations, while the background had 17.

Dissolved oxygen (DO) concentrations were measured 394 times during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-1). Less than 10% (29 measures)

of the concentrations measured among all sites were below the minimum criteria for DO of 5.0 mg/L. Low DO concentrations were observed at all of the site types. Most of the low DO concentrations (17) were observed at the mixing zone sites; low concentrations at the weir-outfall and background sites numbered 9 and 2, respectively. However, based on the percentage of DO concentrations measured below criteria, the weir-outfall was greatest (25%) followed by the mixing zone (5%) and background (4%). The concentrations of DO below criteria were different between the weir-outfall and the mixing zone-background sites. All but one of the weir-outfall DO concentrations were below 2 mg/L, while all of the mixing zone and background concentrations were greater than 4 mg/L.

Measurements of pH were collected 404 times during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-1). Less than 2% (7 measures) were outside of the criteria range for pH of 6.5 to 8.5. All but one of the noncompliant measures were too acidic and fell below the criteria range. Six of the measurements were observed at mixing zone sites, and the seventh was from the background. The lowest measurement of pH (2.89) and the only measurement exceeding the criteria range (8.55) were both recorded from mixing zone stations on the same monitoring date.

Nine other parameters were compared to water quality criteria, and had no exceeding measures during the 15 years of monitoring at Wilmington Harbor (Table 3-1). Of these, silver and cyanide had concentrations that may have exceeded their respective criteria but were confounded by test detection limits. In both cases, the test detection limits exceeded criteria concentrations. Twenty-one water quality parameters were measured that had no criteria.

3.1.1.2 PCBs and Organics

A total of 98 PCB and organic parameters were monitored during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-2). Among these parameters, 32 had listed criteria concentrations. A comparison of the criteria with water quality monitoring data identified only PCBs as the only parameter that had concentrations exceeding criteria.

PCB concentrations were measured 247 times over the 15 years of water quality monitoring (Table 3-2). Fourteen percent (35 samples) of the concentrations measured among all sites exceeded the water quality criterion for PCBs of less than 0.03 μ g/L. The number of concentrations exceeding the criterion was probably underestimated. Among all 247 samples, 212 had concentrations less than test detection limits and were regarded as not exceeding the criterion. However, among the 212 samples, 201 had test detection limits that were greater than the criterion. All of the site types had concentrations of PCBs that exceeded the criterion. The weir-outfall and background had the least number of exceeding concentrations at 4 and 5, respectively, while the mixing zone had 26. The greatest concentration (2.70)

Table 3-2. Frequencies of water quality parameter measurement for PCBs and organics monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
PCB's	247	212	0.03	201	35	14.2
1-Methylnaphthalene	10	10	NL			
1-Methylphenanthrene	10	10	NL			
1,1-Dichloroethane	4	4	NL			
1,1-Dichloroethene	4	4	NL			
1,1,1-Trichloroethane	4	4	31200	0	0	0.0
1,1,2-Trichloroethane	4	4	NL			
1,1,2,2-Tetrachloroethane	4	4	9020	0	0	0.0
1,2-Dichlorobenzene	4	4	NL.			
1,2-Dichloroethane	3	3	113000	0	0	0.0
1,2-Dichloroethene	4	4	NL			
1,2-Dichloropropane	4	4	3040	0	0	0.0
1,2-Diphenyl Hydrazine	4	4	NL			
1,2,4-Trichlorobenzene	4	4	129	0	0	0.0
1,3-Dichlorobenzene	4	4	129	0	0	0.0
1,4 & 1,2-Dichlorobenzene	3	3	129	0	0	0.0
1,4-Dichlorobenzene	4	4	129	0	0	0.0
2-Chloroethylvinylether	1	1	NL			
2-Chloronaphthalene	4	4	7.5	4	0	0.0
2-Chlorophenol	4	4	29700	0	0	0.0
2-Methylnaphthalene	10	10	NL			
2-Nitrophenol	4	4	4850	0	0	0.0
2,3,5-Trimethyl-naphthalene	10	10	NL			
2,4-Dichlorophenol	4	4	NL.			
2,4-Dimethylphenol	4	4	NL			
2,4-Dinitrophenol	4	4	NL			

Table 3-2. Cont'd						
Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
2,4-Dinitrotoluene	4	4	NL			
2,4,6-Trichlorophenol	4	4	NL			
2,6-Dimethylnaphthalene	10	10	NL			
2,6-Dinitrotoluene	4	4	NL			
3,3'-Dichlorobenzidine	4	4	NL			
4-Bromophenyl-phenylether	4	4	NL			
4-Chlorophenyl-phenylether	4	4	NL			
4-Nitrophenol	4	4	4850	0	0	0.0
4,6-Dinitro-2-methylphenol	4	4	NL			
4,-Chloro-3-methylphenol	4	4	NL			
Acenaphthene	14	14	710	0	0	0.0
Acenaphthylene	14	14	NL			
Acrolein	4	4	55	0	0	0.0
Acrylonitrile	4	4	NL			
Anthracene	14	14	NL			
Benzene	4	4	700	0	0	0.0
Benzidine	4	4	NL			
Benzo(a)anthracene	14	14	NL			
Benzo(a)pyrene	34	34	NL			
Benzo(b)fluoranthene	14	14	NL			
Benzo(e)pyrene	10	10	NL			
Benzo(g,h,i)perylene	14	14	NL			
Benzo(k)fluoranthene	14	14	NL			
Biphenyl	10	10	NL			
Bis(2-chloroethoxy)methane	4	4	NL.			
Bis(2-chloroethyl)ether	4	4	NL			
Bis(2-chloroisopropyl)ether	4	4	NL			
Bis(2-ethylhexyl)phthalate	24	24	NL			

Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Bromodichloromethane	4	4	NL			
Bromoform	4	4	NL			
Bromomethane	4	4	NL			
Butlybenzylphthalate	4	4	NL			
Carbon Tetrachloride	4	4	50000	0	0	0.0
Chlorobenzene	4	4	129	0	0	0.0
Chloroethane	4	4	NL			
Chloroform	24	24	NL			
Chloromethane	4	4	NL			
Chrysene	14	14	NL			
Cis-1,3-Dichloropropene	4	4	NL			
Cis,trans,1,2-Dichloroethene	1	11	NL			
Dibenzo(a,h)anthracene	14	14	NL			
Dibromochloromethane	4	4	NL			
Diethylphthalate	4	4	NL			
Dimethylphthalate	4	4	NL			
Di-n-butylphthalate	4	4	NL			
Di-n-octylphthalate	4	4	NL.			
Ethylbenzene	4	4	430	0	0	0.0
Fluoranthene	34	34	16	0	0	0.0
Fluorene	14	14	NL			
Hexachlorobenzene	4	4	NL.			
Hexachlorobutadiene	4	4	32	0	0	0.0
Hexachlorocyclopentadiene	4	4	7	4	0	0.0
Hexachloroethane	4	4	940	0	0	0.0
Indeno(1,2,3-c,d)pyrene	14	14	NL_			
Isophorone	4	4	12900	0	0	0.0
Methylene Chloride	4	4	NL			

Table 3-2. Cont'd Parameter	# Measured	# Below Detection Limit	Criteria (µg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Naphthalene	14	14	2350	0	0	0.0
Nitrobenzene	4	4	6680	0	0	0.0
N-nitrosodimethylamine	4	4	NL			
N-nitroso-Di-n-propylamine	4	4	NL			
N-nitrosodiphenylamine	4	4	NL			
Pentachlorophenol	4	4	7.9	4	0	0.0
Perylene	10	10	NL			
Phenanthrene	14	14	4.6	14	0	0.0
Phenol	53	36	5800	0	0	0.0
Pyrene	14	14	NL.			
Tetrachloroethene	24	24	450	0	0	0.0
Toluene	4	4	5000	0	0	0.0
Trans-1,3-Dichloropropene	4	4	NL			
Trichloroethene	4	4	2000	0	0	0.0
Trichlorofluoromethane	3	3	NL			
Vinyl Chloride	4	4	NL			

 $\mu g/L$) among all PCB measurements was observed at a mixing zone site during January 1985, and was 90 times greater than the criterion.

For several of the dredge water quality monitoring projects, PCBs were measured with different units of precision. In 1980 and 1993, PCBs were measured by industrial groups (Aroclors 1254, 1260, 1242, 1248, and 1221). All of the concentrations during both of these years were below test detection limits. In 1994, concentrations of total PCBs were measured in units of $\mu g/L$ (parts per billion), and that of PCB specific congeners, in units of ng/L (parts per trillion) and pg/L (parts per quadrillion). At the total PCB level, no PCBs were detected in any of samples analyzed, however, at the specific congener level, several species were detected (Table 3-3). Predredge water quality monitoring resulted in the detection of one congener in harbor water; during-dredge monitoring resulted in 4 detections at the weir-outfall and 1 in the mixing zone; and post-dredge monitoring resulted in two detections at both weir-outfall and mixing zones. The sample with the greatest PCB concentration calculated by summing all congeners detected (475 pg/L at the weir-outfall, 25 February) was more than 60 times less than the criterion for PCBs. No regulatory criteria are published for specific PCB congeners.

	monitoring in 1994											
PCB Congeners	Pr	е	Dur	ing	Po	st						
			Weir-o	outfall								
77 Tetra	Not sa	mpled	319	368	41.1	118						
81 Tetra			11.1	ND	ND	ND						
126 Penta			52.9	58	5.6	ND						
169 Hexa			ND	47.4	ND	ND						
			Mixing	j Zone								
	Station 1	Station 1	Station 1	Station 2	Station 1	Station 2						
77 Tetra	51.2	31	31	64.2	31.2	28.7						
126 Penta	ND	ND	ND	ND	4.9	4.6						

Thirty-one other organic parameters were compared to water quality criteria, and none had exceeding concentrations during the 15 years of monitoring at Wilmington Harbor (Table 3-2). Among these, the organics, 2-chloronaphthalene, hexachlorocyclopentadiene, pentachlorophenol, and phenanthrene had concentrations that may have exceeded their

respective criteria but were confounded by test detection limits. In both cases, the test detection limits exceeded criteria concentrations.

Sixty-six organic parameters of water quality that were measured had no criteria. All of the concentrations measured for these parameters were less than their respective test detection limits.

3.1.1.3 Pesticides

A total of 29 pesticide parameters were monitored during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-4). Among these parameters, 22 had listed criteria concentrations. A comparison of the criteria with water quality monitoring data found no parameters with concentrations exceeding a criterion. However, among the parameters with criteria, 13 had concentrations that may have exceeded their respective criteria but were confounded by test detection limits. In all cases, the test detection limits exceeded criteria concentrations.

Seven pesticide parameters of water quality that were measured had no criteria (Table 3-4). All of the concentrations measured for these parameters were less than their respective test detection limits with one exception. Oxychlordane was detected in a sample collected from the weir-outfall in the during-dredge phase in 1994.

3.1.2 Effects of Dredging on Water Quality

Analysis of variance (ANOVA) was used to compare water quality of the weir-outfall, mixing zone, and background site for 19 of the water quality parameters (Table 3-5). These 19 parameters were the only ones that had enough data variability to apply a statistically meaningful comparison. The water quality comparison was restricted to data collected in the during-dredge phase of maintenance dredge monitoring.

Significant differences between monitoring sites were observed for 14 of the 19 parameters compared by ANOVA. In all 14 instances, the water quality of the weir-outfall was different from the mixing zone and background site, and that between the mixing zone and the background site was not different. Among the metals, aluminum in the weir-outfall was 5 times greater than the mixing zone and background sites. Weir concentration of arsenic was at least twice mixing zone and background levels while chromium was three times as great. Lead concentration in the weir were approximately three times higher than mixing zone and background and zinc was at least 8 times higher. No significant differences between sites were observed for cadmium or copper. Among nutrient parameters, both total nitrogen and TKN in the weir-outfall were almost 10 times greater than in the mixing zone and background sites. Total phosphorus was also greater in the weir-outfall but only by a factor of 2. The differences between sites were greatest for turbidity and total suspended solids;

Table 3-4. Frequencies of water quality parameter measurement for pesticides monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
2,4'-DDD	10	10	3.6	0	0	0.0
2,4'-DDE	10	10	14	0	0	0.0
2,4'-DDT	10	10	0.001	10	0	0.0
4,4'-DDD	13	13	3.6	0	0	0.0
4,4'-DDE	13	13	14	0	0	0.0
4,4'-DDT	13	13	0.001	13	0	0.0
A-BHC	13	13	0.34	0	0	0.0
Aldrin	13	13	1.3	0	0	0.0
в-внс	13	13	0.34	0	0	0.0
Chlordane	7	3	0.004	3	4	57.1
Cis-chlordane	10	10	0.004	10	0	0.0
Cis-nonachlor	10	10	NL			
D-BHC	13	13	0.34	0	0	0.0
Dicofol	10	10	NL			
Dieldrin	13	13	0.0019	13	0	0.0
Endosulfan I	13	13	0.0087	13	0	0.0
Endosulfan II	13	13	0.0087	13	0	0.0
Endosulfan sulfate	13	13	NL			
Endrin	13	13	0.0023	13	0	0.0
Endrin aldehyde	13	13	NL			
G-BHC	13	13	0.34	0	0	0.0
Heptachlor	13	13	0.0036	13	0	0.0
Heptachlor epoxide	13	13	0.0036	13	0	0.0
Hexychlorobenzene	10	10	NL			
Mirex	10	10	0.001	10	0	0.0
Oxychlordane	10	9	NL			

Table 3-4. Co	ont'd					
Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation >Criteria	% of Observation > Criteria
Toxaphene	17	17	0.0002	17	0	0.0
Trans-chlordane	10	10	0.004	10	0	0.0
Trans-nonachior	10	10	NL			

Table 3-5. ANOVA comparison of means for water quality parameters monitored in the during-dredge phase of maintenance dredging at Wilmington Harbor from 1980 to 1994. (Means with the same letter are not significantly different; a is significantly greater than b; total sample size is indicated in parentheses.)

Parameter	Weir-Outfall	Mixing Zone	Background
BOD (mg/L)	31.6°	3.2 ^b	3.7 ^b
	(54)	(266)	(38)
COD (mg/L)	142°	38 ^b	39 ^b
	(21)	(92)	(11)
рН	7.2ª	7.2°	7.2°
	(35)	(269)	(38)
Dissolved Oxygen (mg/L)	7.4 ^b	8.8*	8.4°
	(33)	(267)	(38)
Fecal Coliform	1913°	316°	200°
(# of colonies)	(41)	(12)	(2)
Total Coliform	14657°	1758 *	3250°
(# of colonies)	(34)	(12)	(2)
TOC (mg/L)	63.8°	5.6 ^b	4.8 ^b
	(38)	(269)	(38)
Total Phosphate (mg/L)	0.53°	0.21 ^b	0.18 ^b
	(20)	(86)	(10)
Total Suspended Solids (mg/L)	1430°	71 ^b	64 ^b
	(557)	(268)	(38)
Turbidity (NTUs)	3065*	42 ^b	31 ^b
	(36)	(266)	(38)
TKN (mg/L)	18.1°	2.0 ^b	1.6 ^b
	(11)	(105)	(16)
Total Nitrogen (mg/L)	38.1 ^(a)	4.0 ^b	3.5 ^b
	(27)	(225)	(31)
Aluminum (mg/L)	12.7 ^(a)	2.2 ^b	2.3 ^B
	(15)	(74)	(8)
Arsenic (mg/L)	0.0105*	0.0040 ^b	0.0023 ^b
	(9)	(15)	(3)

Table 3-5. Cont'd			
Parameter	Weir-Outfall	Mixing Zone	Background
Cadmium (mg/L)	0.0053°	0.0039°	0.0038*
	(24)	(77)	(8)
Chromium (mg/L)	0.0474°	0.0147 ^b	0.0149 ^b
	(24)	(89)	(11)
Copper (mg/L)	0.0522ª	0.0283°	0.0315°
	(24)	(89)	(11)
Lead (mg/L)	0.0889°	0.0301 ^b	0.0215 ^b
	(24)	(89)	(11)
Zinc (mg/L)	1.34°	0.07 ^b	0.16 ^b
	(40)	(280)	(41)

the former was greater in the weir-outfall by and factor of 70, and the latter was greater by a factor of 30. Concentrations of BOD, COD and TOC were greater in the weir-outfall by factors of 10, 4, and 12, respectively. Dissolved oxygen in the weir-outfall, although only 12% less than the mixing zone and background site, was still significantly lower. No differences were observed between sites for pH or the coliform parameters.

3.2 SEDIMENT AND ELUTRIATE TESTING

3.2.1 Sediments

Sediment contaminant testing was conducted twice during the 15 years of maintenance dredging at Wilmington Harbor. In total, the concentrations of 141 parameters were analyzed in sediments collected from Wilmington Harbor prior to dredging (Tables 3-6 3-7, and 3-8). Only 33 of the sediment contaminant parameters had listed sediment quality criteria. Three parameters had at least one concentration that exceeded the criterion for all of the sediment testing data (mercury, silver and phenanthrene).

Mercury was measured 8 times in sediments and exceeded the criterion of 0.15 mg/kg for only one sediment sample. This sample was collected during pre-dredge monitoring in December 1993 and exceeded the criterion by a factor of two.

Silver concentrations in sediments were also measured 8 times and exceeded the criterion of 1.0 mg/kg twice. Both exceeding concentrations were measured during predredge in December 1993 and were 3 and 4 times over the criterion.

Lastly, phenanthrene concentrations, measured 8 times, exceeded the criterion of 240 $\mu g/kg$ twice during pre-dredge monitoring conducted during March 1993 (Table 3-7). The exceeding concentrations were 2 to 2.5 times greater than the criterion. The number of exceeding phenanthrene concentrations may have been greater than 2; two concentrations, also measured in March 1993, were less than a test detection limit that was greater than the criterion.

Among the 33 sediment parameters with criteria, 17 had concentrations that may have exceeded their respective criteria. In all instances, result concentrations were less than detection limits that were in turn greater than parameter criteria. Also among the 33 parameters, 13 had concentrations that were unambiguously less than their respective criteria. These parameters included antimony, arsenic, cadmium, chromium, copper, lead, nickel, zinc, total PCBs, benzo(a)pyrene, chrysene, flouranthene, and pyrene.

A total of 108 sediment contaminant parameters had no listed sediment quality criteria. Of these parameters, 100 had resulting concentrations that were always less than their

Table 3-6. Frequencies of sediment and elutriate parameters measurement for metals, inorganic non-metals, nutrient parameters and physical measures monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

The state of the s		Sediment (mg	/kg, where	applicable)			Elutriate (m	g/L, where	applicable)	
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
Aluminum	NM					3	1	NL.		
Antimony	6	6	25	O	0	7	7	0.5	0	0
Arsenic	8	0	8.2	0	0	7	6	0.036	0	6
Beryllium	6	0	NL			7	5	NL		
Cadmium	8	6	1.2	0	0	10	10	0.0093	0	9
Chromium	8	0	81	0	0	10	9	0.05	0	0
Copper	8	0	34	0	. 0	10	7	2.9	0	0
Lead	8	0	48.7	0	0	10	8	0.0085	1	8
Mercury	8	6	0.15	1	0	21	21	0.025	O	0
Nickel	8	0	20.9	0	0	7	7	0.0083	0	7
Selenium	8	3	NL			7	7	0.071	О	6
Silver	8	6	1.0	2	0	7	7	0.0009	0	7
Thallium	6	6	NL			7	7	2.13	0	0
Zinc	8	0	150	0	0	21	5	0.086	3	0
Cyanide	6	0	NL			7	7	0.001	0	7
BOD	NM					14	9	NL		
COD	NM					3	0	NL		
Total Nitrogen	NM					11	0	NL		
Total Kjeldahl Nitrogen	NM					3	0	NL		

Parameter			Elutriate (m	g/L, where	applicable)					
	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
Total Phosphate	NM					3	1	NL		
Oil & Grease	NM					3	3	NL		
рН	NM					14	0	6.5-8.5	0	0
Total Organic Carbon	2	0	NL			14	0	NL		
Total Petroleum Hydrocarbons	2	0	NL			NM				

Table 3-7. Frequencies of sediment and elutriate parameters measurement for organics monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

		Sedi	ment (µg/k	g)			El	utriate (µg/L)	
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
PCBs	8	6	0.0227	o	О	21	21	0.03	0	11
1-Methylnaphthalene	2	2	70	0	2	NM				
1-Methylphenanthrene	2	2	NL			NM				
1,1-Dichloroethane	6	6	NL			7	7	NL		
1,1-Dichloroethene	7	7	NL			7	7	NL		
1,1,1-Trichloroethane	6	6	NL			7	7	31200	0	0
1,1,2-Trichloroethane	6	6	NL			7	7	NL		
1,1,2,2-Tetrachloroethane	6	6	NL		,	7	7	9020	0	0
1,2-Dichlorobenzene	6	6	NL			7	7	NL		
1,2-Dichloroethane	6	6	NL			7	7	113000	0	0
1,2-Dichloroethene	7	7	NL			7	7	NL		
1,2-Dichloropropane	6	6	NL			7	7	3040	0	0
1,2-Diphenyl Hydrazine	6	6	NL		·	7	7	NL		
1,2,4-Trichlorobenzene	6	6	NL_			7	7	129	0	0
1,3-Dichlorobenzene	6	6	NL			7	7	129	0	0
1,4 & 1,2-Dichlorobenzene	6	6	NL			7	7	129	0	0
1,4-Dichlorobenzene	6	6	NL			7	7	129	0	0
2-Chloronaphthalene	6	6	NL			7	7	7.5	0	7
2-Chlorophenol	6	6	NL_			7	7	29700	0	0
2-Methylnaphthalene	2	2	70	0	2	NM				

		Sedi	ment (µg/k	(g)	Elutriate (μg/L)					
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
2-Nitrophenol	6	6	NL.			7	7	4850	0	0
2,3,5-Trimethyl-naphthalene	2	2	NL			NM				
2,4-Dichlorophenol	6	6	NL.			7	7	NL_		
2,4-Dimethylphenol	6	6	NL			7	7	NL		
2,4-Dinitrophenol	6	6	NL			7	7	NL		
2,4-Dinitrotoluene	6	6	NL			7	7	NL		
2,4,6-Trichlorophenol	6	6	NL			7	7	NL		
2,6-Dimethylnaphthalene	2	2	NL			NM				
2,6-Dinitrotoluene	6	6	NL		`	7	7	NL		
3,3'-Dichlorobenzidine	6	6	NL			7	7	NL		
4-Bromophenyl-phenylether	6	6	NL			7	7	NL		
4-Chlorophenyl-phenylether	6	6	NL.			7	7	NL		
4-Nitrophenol	6	6	NL			7	7	4850	0	0
4,6-Dinitro-2-methylphenol	6	6	NL.			7	7	NL		
4,-Chloro-3-methylphenol	6	6	NL			7	7	NL.		
Acenaphthene	8 .	8	16	0	8	7	7	710	0	0
Acenaphthylene	8	8	44	0	8	7	7	NL		
Acrolein	6	6	NL			7	7	55	0	0
Acrylonitrile	6	6	NL			7	7	NL.		
Anthracene	8	8	85.3	0	8	7	7	NL		
Benzene	6	6	NL			7	7	700	0	0

Table 3-7. Cont'd											
		Sedi	ment (µg/k	(g)		Elutriate (μg/L)					
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria	
Benzidine	6	6	NL			7	7	NL.			
Benzo(a)anthracene	8	8	261	0	8	7	7	NL			
Benzo(a)pyrene	8	8	430	0	0	7	7	NL			
Benzo(b)fluoranthene	8	8	NL			7	7	NL			
Benzo(e)pyrene	2	2	NL			NM					
Benzo(g,h,i)perylene	8	8	NL			7	7	NL			
Benzo(k)fluoranthene	8	8	NL			7	7	NL			
Biphenyl	2	2	NL			NM		NL			
Bis(2-chloroethoxy)methane	6	6	NL			7	7	NL			
Bis(2-chloroethyl)ether	6	6	NL			7	7	NL_			
Bis(2-chloroisopropyl)ether	6	6	NL			7	7	NL			
Bis(2-ethylhexyl)phthalate	6	3	NL			7	7	NL			
Bromodichloromethane	6	6	NL			7	7	NL			
Bromoform	6	6	NL			7	7	NL			
Bromomethane	6	6	NL			7	7	NL			
Butlybenzylphthalate	6	66	NL			7	7	NL			
Carbon Tetrachloride	6	6	NL			7	7	50000	0	0	
Chlorobenzene	6	6	NL			7	7	129	0	0	
Chloroethane	6	6	NL			7	7	NL			
Chloroform	6	6	NL			7	5	NL.			
Chloromethane	6	6	NL			7	7	NL			

transcription of the second of		Sedi	ment (µg/k	:g)		Elutriate (μg/L)					
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria	
Chrysene	8	8	384	0	0	7	7	NL			
Cis-1,3-Dichloropropene	6	6	NL			7	7	NL			
Dibenzo(a,h)anthracene	8	8	63.4	0	8	7	7	NL			
Dibromochloromethane	6	6	NL			7	7	NL			
Diethylphthalate	6	6	NL			7	7	NL			
Dimethylphthalate	6	6	NL			7	7	NL			
Di-n-butylphthalate	6	6	NL			7	7	NL			
Di-n-octylphthalate	6	6	NL			7	7	NL			
Ethylbenzene	6	6	NL			7	7	430	0	0	
Fluoranthene	8	8	600	0	0	7	7	16	0	0	
Fluorene	8	8	19	0	8	7	7	NL			
Hexachlorobenzene	6	6	NL			7	7	NL			
Hexachlorobutadiene	6	6	NL			7	7	32	0	0	
Hexachlorocyclopentadiene	6	6	NL			7	7	7	0	7	
	6	6	NL			7	7	940	0	0	
Hexachloroethane	8	8	NL.			7	7	NL.			
Indeno(1,2,3-c,d)pyrene	6	6	NL NL			7	7	12900	0	0	
Isophorone	6	6	NL NL			7	7	NL			
Methylene Chloride		8	160	0	8	7	7	2350	0	0	
Naphthalene	8			 		7	7	6680	0	0	
Nitrobenzene	6	6	NL NL			7	7	NL			

		Sedi	ment (µg/k	:g)		Elutriate (μg/L)					
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria	
N-nitroso-Di-n-propylamine	6	6	NL			7	7	NL			
N-nitrosodiphenylamine	6	6	NL			7	7	NL			
Pentachlorophenol	6	6	NL			7	7	7.9	0	7	
Perylene	2	2	NL			NM					
Phenanthrene	8	6	240	2	2	7	7	4.6	0	7	
Phenol	6	0	NL			7	1	5800	0	0	
Pyrene	8	8	865	0	0	7	7	NL			
Tetrachloroethene	6	6	NL			7	7	450	0	0	
Toluene	6	6	NL			7	7	5000	0	0	
Trans-1,3-Dichloropropene	6	6	NL			7	7	NL			
Trichloroethene	6	6	NL			7	7	2000	0	0	
Trichlorofluoromethane	6	6	NL			7	7	NL			
Vinyl Chloride	6	6	NL			7	7	NL			

Table 3-8. Frequencies of sediment and elutriate parameters measurement for pesticides monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

		Sedi	ment (µg/k	g)			Elu	triate (µg/L	}	
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
2,4'-DDD	2	2	1.22	0	2	NM				
2,4'-DDE	2	2	2.2	0	2	NM				
2,4'-DDT	2	2	1.58	0	2	NM				
4,4'-DDD	8	8	1.22	0	8	7	7	3.6	0	0
4,4'-DDE	8	8	2.2	0	8	7	7	14	0	0
4,4'-DDT	8	8	1.58	0	8	7	.7	0.001	0	7
A-BHC	8	8	NL			7	7	0.34	0	0
Aldrin	8	8	NL			7	7	1.3	0	0
B-BHC	8	8	NL			7	7	0.34	0	0
Chlordane	6	6	2	O	6	7	7	0.004	0	7
Cis-chlordane	2	2	NL			NM				
Cis-nonachlor	2	2	NL			NM				
D-BHC	8	8	NL.			7	7	0.34	0	0
Dicofol	2	2	NL			NM				
Dieldrin	8	8	0.715	0	8	7	7	0.0019	0	7
Endosulfan I	8	8	NL			7	7	0.0087	0	7
Endosulfan II	8	8	NL			7	7	0.0087	0	7
Endosulfan sulfate	8	8	NL			7	7	NL.		
Endrin	8	8	NL			7	7	0.0023	0	7
Endrin aldehyde	8	8	NL			7	7	NL		

Table 3-8. Cont'd										
		Sedi	iment (μg/k	g)		Elu	triate (µg/L)		
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
G-BHC	8	8	NL			7	7	0.34	0	0
Heptachlor	8	8	NL			7	7	0.0036	0	7
Heptachior epoxide	8	8	NL			7	7	0.0036	0	7
Hexychlorobenzene	2	2	NL			NM				
Mirex	2	2	NL			NM				
Oxychlordane	2	1	NL			NM				
Toxaphene	8	8	NL			7	7	0.0002	0	7
Trans-chlordane	2	2	NL			NM				
Trans-nonachlor	2	2	NL			NM				

NL - Not listed NM - Not measured

respective test detection limits. The remaining 8 parameters with at least one concentration measured above test detection limits included cyanide, total organic carbon, total petroleum hydrocarbons, beryllium, selenium, bis(2-ethylhexyl)phthalate, phenol, and oxychlordane.

3.2.2 Elutriate Testing

Elutriate testing was conducted three times during the 15 years of maintenance dredging at Wilmington Harbor. In total, the concentrations of 129 elutriate parameters were analyzed from samples collected in Wilmington Harbor prior to dredging (Tables 3-6, 3-7, and 3-8). Of these, 61 parameters had listed water quality criteria. In a comparison with criteria, only 2 parameters had at least one concentration that exceeded it's criterion for all of the elutriate monitoring data (lead and zinc).

Lead was measured in 10 elutriate samples and exceeded the water quality criterion of 0.0085 mg/L only once (Table 3-6). The elutriate sample, collected during pre-dredge monitoring in December 1979, exceeded the criterion by a factor of 27. The number of lead concentrations exceeding the criterion may have been greater; 8 of the remaining concentrations were less than detection limits that were in turn greater than the criterion. The only elutriate concentration that was measured less than the criteria was from the background sample collected during March 1993.

Zinc was measured in 21 elutriate samples and exceeded the criterion of 0.086 mg/L only 3 times (Table 3-6). All of the exceeding concentrations were approximately 33% higher than the criterion. One of the elutriate samples was collected in March 1979; the remaining two were collected in June 1995.

Nineteen parameters had concentrations that may have exceeded their respective criteria, but were indeterminate because of high test detection limits. In most instances, concentrations were less than detection limits that were in turn greater than parameter criteria. Among the 61 parameters compared to water quality criteria, 41 had concentrations that were unambiguously less than their respective criteria. These parameters included pH, antimony, chromium, copper, mercury, thallium and 36 parameters comprised of organics and pesticides (Tables 3-6, 3-7, and 3-8).

A total of 67 elutriate parameters had no listed water quality criteria. Of these parameters, 58 had resulting concentrations that were always less than their respective test detection limits. The remaining 9 parameters with at least one concentration measured above test detection limits included BOD, COD, TKN, total nitrogen, TOC, total phosphate, aluminum, beryllium, and chloroform (Table 3-6).

3.2.3 PCBs in Sediment Elutriates

PCBs were monitored in elutriates during two of the 15 years of maintenance dredging at Wilmington Harbor (Table 3-7). In June 1985, total PCB concentrations among 11 samples analyzed were all less than test detection limits (2 mg/L), however, the detection limits were at least 6000 times greater than the criterion of 0.00003 mg/L. In 1993, PCB concentrations were measured by industrial groups (Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260) for 7 elutriate samples. Again, all of the resulting concentrations were less than test detection limits for each industrial group, however, all of the industrial group detection limits (0.5-1.0 μ g/L) were greater than the parameter criterion by a factor greater than 10.

3.3 GROUNDWATER MONITORING

Groundwater well-monitoring was conducted twice during the 15 years of maintenance-dredging environmental effects monitoring. Six parameters were analyzed for groundwater well-monitoring (Table 3-9). Of these, only three had EPA National Interim Secondary Drinking Water Maximum Contaminant Levels (MCL). Chloride had the highest percentage of exceedence (55%), but was only monitored once. The average chloride concentration was slightly below the MCL. Measurements of pH were in compliance with the MCL except for two measures in 1987 that were below the range. Zinc was measured during both monitoring years and was always at least three times below the MCL.

	parameters monitore intenance dredging. il 1987)		_	
Parameter	EPA MCL	N	Exceed	AVG
Chloride (mg/L)	250 mg/L	11	6	236
рН	6.5-8.5	23	2	6.8
Zinc (mg/L)	5 mg/L	23	0	0.09
Total Organic Carbon (mg/L)	NL	23	-	74
Total Nitrogen (mg/L)	NL	12	44	58.7
TKN (mg/L)	NL	11		17.6

4.0 SUMMARY AND CONCLUSIONS

Environmental monitoring associated with maintenance dredging projects has been conducted at Wilmington Harbor during the past 15 years. Monitoring has focused primarily on water quality of the weir-outfall and mixing zone. A few of the monitoring studies investigated sediment and elutriate contaminant concentrations, and groundwater quality at the upland dredge disposal site. Parameters monitored among studies included metals, inorganic non-metals, nutrients, physical measures, PCBs, organics and pesticides.

All of the data collected during the dredge monitoring was compiled into an electronic database. The database facilitated parameter comparisons with federal or state criteria, and provided means for making statistical comparisons between sites monitored for water quality. These data are now available electronically and are attached to this report.

The number of parameters that exceeded water quality standards was relatively low over the 15 years of monitoring. Of the 164 water quality parameters measured during maintenance dredge monitoring, only 8 had concentrations that were not compliant with water quality criteria. Most of the exceeding parameters were metals including cadmium, chromium, lead, nickel, and zinc. Concentrations of dissolved oxygen were low at times for all sites, but were lowest in the weir-outfall. Noncompliant measurements of pH were usually below the criteria range. PCB monitoring suggested that concentrations exceeding criteria occur at a relatively low frequency, however, the frequency was confounded by many concentrations that were less than test detection limits but were in turn greater than the criteria.

Water quality comparisons between weir-outfall, mixing zone and background sites suggest that the effects of dredging activities dissipated in the approximately 0.25 acre mixing zone. Statistical comparisons for 14 of 19 water quality parameters indicated that the water quality of the weir-outfall was poorer relative to the mixing zone and background sites, but no differences existed between the mixing zone samples and background sites.

Sediment contaminant concentrations have been relatively low over the years of maintenance dredging at Wilmington Harbor. Sediment and elutriate contaminant monitoring resulted in low frequencies of exceedence among 141 and 129 parameters monitored respectively. Among sediments parameters, only mercury, silver, and the organic compound phenanthrene had concentrations exceeding criteria. Furthermore, the combined number of exceeding concentrations was only 5. Among elutriate parameters, only lead and zinc had concentrations exceeding criteria, and the total number of exceedences was 4.

Groundwater monitoring of the upland disposal site indicated minimal contamination. Only a few parameters were monitored over the 15 years and the frequencies of exceedence were low.

5.0 RECOMMENDATIONS

Based on 15 years of data compiled from over 100 different parameters monitored or tested in water, sediment, sediments elutriates, and groundwater, the weight of evidence suggests that past maintenance dredging operations in Wilmington Harbor has not caused significant environmental impacts to Delaware River water quality. Thus, for future maintenance dredging projects the intensive levels of environmental monitoring conducted in past studies may be not be necessary.

However, the effectiveness of upland dredge disposal operations is to a large degree dependent on the efficient operation of the disposal site. For example, weir monitoring conducted by the USACOE in 1995 during the last disposal operation in Wilmington Harbor revealed that the suspended solids coming out of the weir were often lower than background concentrations (Versar 1995). Proper gaging of the weir height is an important factor in the operation of these facilities as increasing the retention time of water in the site increases the Since the former studies have shown the dissolved removal of suspended solids. contaminants are rarely above levels of concern, and that mixing zone concentration are not different from background levels, decreasing the suspended solids loadings is probably the most important environmental factor the can readily be controlled by the dredge operators. Thus, at minimum, we recommend that for future projects total suspended solids and turbidity be measured at the weir-outfall throughout dredging operation. This will provide a general characterization of the function of the dredge disposal weir and will provide the operator immediate feedback as to whether they need to alter the operation (e.g., increase the weir height, decrease the flow rate) to minimize the dredging operations affects on water quality effects in the Delaware River.

6.0 REFERENCES

- Code of Federal Regulations (CFR). 1996. Title 40 Protection of Environment. Part 143 National Secondary Drinking Water Regulations.
- Delaware Department of Natural Resources and Environmental Control. 1993. State of Delaware, surface water quality standards. Dover, DE.
- Greeley-Polhemus Group, Inc., and RMC Environmental Services, Inc. 1994. Water quality monitoring for Wilmington Harbor maintenance dredging operations, Winter 1994. Prepared for U.S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA.
- Greeley-Polhemus Group, Inc., and RMC Environmental Services, Inc. 1993. Water quality monitoring for Wilmington Harbor maintenance dredging operations, Spring 1993. Prepared for U.S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. *Environmental Management* 19:81-97.
- SAS Institute Inc. 1990. SAS Language: Reference, Version 6, First Edition, 1042 pp. Cary, NC.
- Sokal, R.R., and F.J. Rohlf. 1981. Biometry. W.H. Freeman and Company. New York, NY.
- U.S. EPA. 1992. Quality criteria for water
- U.S. EPA. 1988. The apparent effects threshold approach; briefing report to the EPA Science Advisory Board.
- Versar. 1995. Water quality monitoring for Wilmington Harbor maintenance dredging operations. Prepared for U.S. Army Corps of Engineers Philadelphia District. Philadelphia, PA.

7.0 DATABASE DESCRIPTION

All testing data from 1979 through the most recent studies in 1994 were entered into a series of Lotus spreadsheets for four packets of data received from the Corps of Engineers. The data packets included old laboratory analysis certificates, handwritten station location maps, and in some cases data reports. These materials were reviewed to identify the test results which were entered into a spreadsheet. Each data record included common identifiers such as sample type, study year, date, and station identification. Quality control for the data included: comparing all data entries with the original report tables or analysis certificates, checking parameter reporting units, and use of computer programs to check for out-of-range parameters and other data anomalies (e.g., missing data or invalid station names). Specific parameters are reported in the same units for all years and are described in the data dictionaries presented in the following appendices. The Lotus spreadsheets were combined into four separate SAS data sets each of which contain:

- discharge water quality monitoring related to the upland disposal sites,
- groundwater testing at the upland site,
- elutriate testing of dredged sediment, and
- bulk analysis of sediment contaminant concentrations.

The data are stored as SAS data sets to facilitate statistical analysis and because of the large number of variables (over 400 for the water quality data set) is beyond the number of columns a Lotus spreadsheet can handle. In addition, a hard copy appendix of all data was not produced as it would be excessively long (over 2,000 pages just for the water quality data set). Therefore, the electronic data set contained on the attached computer disk is intended to served as the data appendix for the Wilmington Harbor Compilation Report.

Appendix A - Water Quality Database

Name:

WQ.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 1001 observations and 479 variables in the dataset. Each observation represents a water quality sample and a series of chemical and biological measurements. A sample can be uniquely identified by station type, station name, sampling date, time, tide, tributary, and dredging period. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Silver is detected the concentration value is stored in the AG variable and a blank space exists in S_AG (Flag variable for Silver). If the parameter was not detected, the detection limit is stored in AG and less than sign (<) is stored in S_AG. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

Samples are categorized into four types of stations: Background, Mixing Zone, Outfall, and Weir; and four types of dredging periods: Pre, During, Post, and Drawdown. There are two water bodies associated with the samples: Christina River and Delaware River. If a sample does not have tributary information, blank space is stored in its variable.

Wilmington Harbor - Water Quality Data

CONTENTS PROCEDURE

Data Set Name: WORK.WQ Observations: 1001 Member Type: DATA Variables: 479 Engine: V611 Indexes: 0 Created: 10:36 Wednesday, February 19, 1997 Observation Length: 4699 Last Modified: 10:36 Wednesday, February 19, 1997 Deleted Observations: 0 Protection: Compressed: NO Sorted: Data Set Type: NO

----Engine/Host Dependent Information----

Label:

Data Set Page Size: 14336
Number of Data Set Pages: 338
File Format: 607
First Data Page: 5
Max Obs per Page: 3
Obs in First Data Page: 2

-----Alphabetic List of Variables and Attributes-----

#	Variable	Туре	Len	Pos	Format ,	Label
72	AG	Num	8	662		Silver (mg/l)
54	AL	Num	8	519	•	Aluminum (mg/l)
55	AS	Num	8	527		Arsenic (mg/l)
57	BE	Num	8	541		Beryllium (mg/l)
23	BOD	Num	8	243		Biochemical Oxygen Demand (mg/l)
60	CD	Num	8	569		Cadmium (mg/l)
58	CHLR	Num	8	549		Chloride (mg/l)
37	COD	Num	8	368		Chemical Oxygen Demand (mg/l)
6	COMMENT	Char	32	52	32.	Sample Comment
62	CR	Num	8	589		Chromium (mg/l)
64	CU	Num	8	609		Copper (mg/l)
76	CY	Num	8	704		Cyanide (mg/l)
5	DATE	Num	8	44	MMDDYY8.	Sampling Date
28	DO	Num	8	287		Dissolved Oxygen (mg/l)
396	D_8	Num	8	4019		8 Di (ng/L)
395	D_209	Num	8	4011		209 Deca (ng/L)
20	FC	Num	8	215		Fecal Coliform (#/100 ml)
38	FLOW	Num	8	376		Flow (mgd)
397	H38_58	Num	8	4027		138,158 Hexa (ng/L)
398	H70_90	Num	8	4035		170,190 Hepta (ng/L)
399	HARD	Num	8	4043		Hardness (mg/L)
35	HG	Num	8	348		Mercury (mg/l)
400	H_128	Num	8	4051		128 Hexa (ng/L)
401	H_137	Num	8	4059		137 Hexa (ng/L)
402	H_149	Num	8	4067		149 Hexa (ng/L)
403	H_151	Num	8	4075		151 Hexa (ng/L)
404	H_153	Num	8	4083		153 Hexa (ng/L)
405	H_156	Num	8	4091		156 Hexa (ng/L)
406	H_157	Num	8	4099		157 Hexa (ng/L)
407	H_166	Num	8	4107		166 Hexa (ng/L)
408	_ Н 167	Num	8	4115		167 Hexa (ng/L)
409	H_168	Num	8	4123		168 Hexa (ng/L)

Wilmington Harbor - Water Quality Data

#	Variable	Туре	Len	Pos	Format	Label
410	H_169	Num	8	4131		169 Hexa (pg/L)
411	H_177	Num	8	4139		177 Hepta (ng/L)
412	H_179	Num	8	4147		179 Hepta (ng/L)
413	H_180	Num	8	4155		180 Hepta (ng/L)
414	H_183	Num	8	4163		183 Hepta (ng/L)
415	H_185	Num	8	4171		185 Hepta (ng/L)
416	H_187	Num	8	4179		187 Hepta (ng/L)
417	H_189	Num	8	4187		189 Hepta (ng/L)
418	H_191	Num	8	4195		191 Hepta (ng/L)
296	NH3	Num	8	3219		Ammonia (mg/L)
68	NI	Num	8	640		Nickel (mg/l)
39	NN	Num	8	384		Nitrate+Nitrite (mg/l)
297	NO2	Num	8	3227		Nitrite (mg/l)
88	NO3	Num	8	794		Nitrate (mg/l)
419	N_206	Num	8	4203		206 Nona (ng/L)
420	N_207	Num	8	4211		207 Nona (ng/L)
421	N_208	Num	8	4219		208 Nona (ng/L)
48	OG	Num	8	472		Oil & Grease (mg/l)
422	ORG_1	Num	8	4227		1-Methylnaphthalene (ug/L)
423	ORG_2	Num	8	4235		1-Methylphenanthrene (ug/L)
314	ORG_3	Num	8	3363		1,1-Dichloroethane (ug/L)
325	ORG_4	Num	8	3451		1,1-Dichloroethene (ug/L)
333	ORG_5	Num	8	3515		1,1,1-Trichloroethane (ug/L)
343	ORG_6	Num	8	3595		1,1,2-Trichloroethane (ug/L)
352	ORG_7	Num	8	3667		1,1,2,2-Tetrachloroethane (ug/L)
362	ORG_8	Num	8	3747		1,2-Dichlorobenzene (ug/L)
372	ORG_9	Num	8	3827		1,2-Dichloroethane (ug/L)
298	ORG_10	Num	8	3235		1,2-Dichloroethene (ug/L)
299	ORG_11	Num	8	3243		1,2-Dichloropropane (ug/L)
300	ORG_12	Num	8	3251		1,2-Diphenyl Hydrazine (ug/L)
301	ORG_13	Num	8	3259		1,2,4-Trichlorobenzene (ug/L)
302	ORG_14	Num	8	3267		1,3-Dichlorobenzene (ug/L)
303	ORG_15	Num	8	3275		1,4 & 1,2-Dichlorobenzene (ug/L)
304	ORG_16	Num	8	3283		1,4-Dichlorobenzene (ug/L)
478	ORG_17	Num	8	4683		2-Chloroethylvinylether (ug/l)
305	ORG_18	Num	8	3291		2-Chloronaphthalene (ug/L)
306	ORG_19	Num	8	3299		2-Chlorophenol (ug/L)
424	ORG_20	Num	8	4243		2-Methylnaphthalene (ug/L)
307	ORG_21	Num	8	3307		2-Nitrophenol (ug/L)
425	ORG_22	Num	8	4251		2,3,5-Trimethyl-naphthalene (ug/L)
308	ORG_23	Num	8	3315		2,4-Dichlorophenol (ug/L)
309	ORG_24	Num	8	3323		2,4-Dimethylphenol (ug/L)
310	ORG_25	Num	8	3331		2,4-Dinitrophenol (ug/L)
311	ORG_26	Num	8	3339		2,4-Dinitrotoluene (ug/L)
312	ORG_27	Num	8	3347		2,4,6-Trichlorophenol (ug/L)
426	ORG_28	Num	8	4259		2,6-Dimethylnaphthalene (ug/L)
313	ORG_29	Num	8	3355		2,6-Dinitrotoluene (ug/L)
315	ORG_30	Num	8	3371		3,3'-Dichlorobenzidine (ug/L)
316	ORG_31	Num	8	3379		4-Bromophenyl-phenylether (ug/L)
317	ORG_32	Num	8	3387		4-Chlorophenyl-phenylether (ug/L)
318	ORG_33	Num	8	3395		4-Nitrophenol (ug/L)
319	ORG 34	Num	8	3403		4 6-Dinitro-2-methylphenol (ug/l)

Wilmington Harbor - Water Quality Data

#	Variable	Туре	Len	Pos	Format	Label
320	ORG_35	Num	8	3411		4,-Chloro-3-methylphenol (ug/L)
321	ORG_36	Num	8	3419		Acenaphthene (ug/L)
322	ORG_37	Num	8	3427		Acenaphthylene (ug/L)
323	ORG_38	Num .	8	3435		Acrolein (ug/L)
324	ORG_39	Num	8	3443		Acrylonitrile (ug/L)
326	ORG_40	Num	8	3459		Anthracene (ug/L)
327	ORG_41	Num	8	3467		Benzene (ug/L)
328	ORG_42	Num	8	3475		Benzidine (ug/L)
329	ORG_43	Num	8	3483		Benzo(a)anthracene (ug/L)
291	ORG_44	Num	8	3179		Benzo(a)pyrene (ug/L)
330	ORG_45	Num	8	3491		Benzo(b)fluoranthene (ug/L)
427	ORG_46	Num	8	4267		Benzo(e)pyrene (ug/L)
331	ORG_47	Num	8	3499		Benzo(g,h,i)perylene (ug/L)
332	ORG_48	Num	8	3507		Benzo(k)fluoranthene (ug/L)
428	ORG_49	Num	8	4275		Biphenyl (ug/L)
334	ORG_50	Num	8	3523		Bis(2-chloroethoxy)methane (ug/L)
335	ORG_51	Num	8	3531		Bis(2-chloroethyl)ether (ug/L)
336	ORG_52	Num	8	3539		Bis(2-chloroisopropyl)ether (ug/L)
292	ORG_53	Num	8	3187		Bis(2-ethylhexyl)phthalate (ug/L)
337	ORG_54	Num	8	3547	*	Bromodichloromethane (ug/L)
338	ORG_55	Num	8	3555		Bromoform (ug/L)
339	ORG_56	Num	8	3563		Bromomethane (ug/L)
340	ORG_57	Num	8	3571		Butlybenzylphthalate (ug/L)
341	ORG_58	Num	8	3579		Carbon Tetrachloride (ug/L)
342	ORG_59	Num	8	3587		Chlorobenzene (ug/L)
344	ORG_60	Num	8	3603		Chloroethane (ug/L)
293	ORG_61	Num	8	3195		Chloroform (ug/L)
345	ORG_62	Num	8	3611		Chloromethane (ug/L)
346	ORG_63	Num	8	3619		Chrysene (ug/L)
347	ORG_64	Num	8	3627		Cis-1,3-Dichloropropene (ug/L)
479	ORG_65	Num	8	4691		Cis,trans,1,2-Dichloroethene (ug/l)
348	ORG_66	Num	8	3635		Dibenzo(a,h)anthracene (ug/L)
349	ORG_67	Num	8	3643		Dibromochloromethane (ug/L)
350	ORG_68	Num	8	3651		Diethylphthalate (ug/L)
351	ORG_69	Num	8	3659		Dimethylphthalate (ug/L)
353	ORG_70	Num	8	3675		Di-n-butylphthalate (ug/L)
354	ORG_71	Num	8	3683		Di-n-octylphthalate (ug/L)
355	ORG_72	Num	8	3691		Ethylbenzene (ug/L)
294	ORG_73	Num	8	3203		Fluoranthene (ug/L)
356	ORG_74	Num	8	3699		Fluorene (ug/L)
357	ORG_75	Num	8	3707		Hexachlorobenzene (ug/L)
358	ORG_76	Num	8	3715		Hexachlorobutadiene (ug/L)
359	ORG_77	Num	8	3723		Hexachlorocyclopentadiene (ug/L)
360	ORG_78	Num	8	3731		Hexachloroethane (ug/L)
361	ORG_79	Num	8	3739		<pre>Indeno(1,2,3-c,d)pyrene (ug/L)</pre>
363	ORG_80	Num	8	3755		Isophorone (ug/L)
364	ORG_81	Num	8	3763		Methylene Chloride (ug/L)
365	ORG_82	Num	8	3771		Naphthalene (ug/L)
366	ORG_83	Num	8	3779		Nitrobenzene (ug/L)
367	ORG_84	Num	8	3787		N-nitrosodimethylamine (ug/L)
368	ORG_85	Num	8	3795		N-nitroso-Di-n-propylamine (ug/L)
369	ORG_86	Num	8	3803		N-nitrosodiphenylamine (ug/L)
						- · · · · · · ·

370	
429 ORG_88 Num 8 4283 Perylene (ug/L) 371 ORG_89 Num 8 3819 Phenol (mg/l) 373 ORG_91 Num 8 3412 Phenol (mg/l) 373 ORG_91 Num 8 3835 Pyrene (ug/L) 295 ORG_92 Num 8 3843 Toluene (ug/L) 374 ORG_93 Num 8 3843 Toluene (ug/L) 375 ORG_94 Num 8 3851 Trans-1,3-Dichloropropene (ug/L) 376 ORG_95 Num 8 3859 Trichloroethene (ug/L) 377 ORG_96 Num 8 3857 Vinyl Chloride (ug/L) 430 O_194 Num 8 4291 194 Octa (ng/L) 431 O_195 Num 8 4299 195 Octa (ng/L) 432 O_196 Num 8 4315 200 Octa (ng/L) 433 O_200 Num 8 4323	
371	
42 ORG_00 Num 8 412 Phenol (mg/L) 373 ORG_91 Num 8 3835 Pyrene (ug/L) 374 ORG_93 Num 8 3211 Tetrachloroethene (ug/L) 375 ORG_93 Num 8 3843 Toluene (ug/L) 375 ORG_95 Num 8 3851 Trachloroethene (ug/L) 376 ORG_95 Num 8 3867 Trichloroethene (ug/L) 378 ORG_97 Num 8 3867 Trichloroethene (ug/L) 378 ORG_97 Num 8 3867 Trichloroethene (ug/L) 430 O_194 Num 8 4291 194 Octa (ng/L) 431 O_195 Num 8 4299 195 Octa (ng/L) 432 O_196 Num 8 4307 198 Octa (ng/L) 433 O_200 Num 8 4315 200 Octa (ng/L) 435	
295 ORG_92 Num 8 3211 Tetrachloroethene (ug/L) 374 ORG_93 Num 8 3843 Toluene (ug/L) 375 ORG_94 Num 8 3851 Trans-1,3-Dichloropropene (ug/L) 376 ORG_95 Num 8 3859 Trichloroethene (ug/L) 377 ORG_96 Num 8 3859 Trichlorofluoromethane (ug/L) 378 ORG_97 Num 8 3875 Vinyl Chloride (ug/L) 430 O_194 Num 8 4299 195 Octa (ng/L) 431 O_195 Num 8 4299 195 Octa (ng/L) 432 O_196 Num 8 4307 196 Octa (ng/L) 433 O_200 Num 8 4315 200 Octa (ng/L) 434 O_201 Num 8 4323 201 Octa (ng/L) 435 O_203 Num 8 4331 203 Octa (ng/L) 436 O_205 Num 8 8331 PCB-1016 (ug/L) 93 P1016 Num 8 831 PCB-1016 (ug/L) 94 P1221 Num 8 180 PCB-1221 (ug/L) 95 P1232 Num 8 851 PCB-1222 (ug/L) 95 P1242 Num 8 871 PCB-1224 (ug/L) 99 P1248 Num 8 891 PCB-1242 (ug/L) 101 P1254 Num 8 891 PCB-1260 (ug/L) 103 P1260 Num 8 160 PCB-1224 (ug/L) 104 P42_48 Num 8 911 PCB-1254 (ug/L) 105 P1260 Num 8 140 PCB-1248 (ug/L) 106 PB Num 8 12 Report Page Number 12 PAGE Num 8 12 Report Page Number 14 P42_48 Num 8 12 Report Page Number 15 PB Num 8 120 PCB-1240 (ug/L) 16 PCB Num 8 120 PCB-1254, 1260 (ug/L) 17 PCB SC (ug/L) 18 PBB Num 8 200 PBB (mg/L) 19 PCB SC (ug/L) 10 PCB Num 8 4347 PCB-1254, 1260 (ug/L) 10 PCB Num 8 4347 PCB-124 (ug/L) 10 PCB Num 8 4399 PCB-10 (ug/L) 10 PCB-10 (ug/L) 10 PCB-10 Num 8 4399 PCB-10 (ug/L) 10 PCB-10 (ug/L) 10 PCB-10 Num 8 4399 PCB-10 (ug/L) 10 PCB-10 Num 8 4399 PCB-10 (ug/L)	
374	
375	
376 ORG_95 Num 8 3859 Trichloroethene (ug/L) 377 ORG_96 Num 8 3867 Trichlorofluoromethane (ug/L) 378 ORG_97 Num 8 3867 Vinyl Chloride (ug/L) 430 O_194 Num 8 4299 194 Octa (ng/L) 431 O_195 Num 8 4299 195 Octa (ng/L) 432 O_196 Num 8 4307 196 Octa (ng/L) 433 O_200 Num 8 4315 200 Octa (ng/L) 434 O_201 Num 8 4323 201 Octa (ng/L) 435 O_203 Num 8 4331 203 Octa (ng/L) 436 O_205 Num 8 4339 205 Octa (ng/L) 93 P1016 Num 8 831 PCB-1021 (ug/l) 95 P1232 Num 8 851 PCB-1016 (ug/l) 97 P1242 Num 8 851 PCB-1221 (ug/l) 98 P1254 Num 8 851 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1242 (ug/l) 101 P1254 Num 8 891 PCB-1244 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 12 P54_60 Num 8 140 PCB-1224, 1248 (ug/l) 12 P54_60 Num 8 12 Report Page Number 66 PB Num 8 12 Report Page Number 18 PBB Num 8 629 Lead (mg/l) 10 PCB 1224, 1248 (ug/l) 10 PCB Num 8 120 PCB'1248, 1260 (ug/l) 10 PCB Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 390 PES_5 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L)	
377 ORG_96 Num 8 3867 Trichlorofluoromethane (ug/L) 378 ORG_97 Num 8 3875 Vinyl Chloride (ug/L) 430 O_194 Num 8 4291 194 Octa (ng/L) 431 O_195 Num 8 4299 195 Octa (ng/L) 432 O_196 Num 8 4307 196 Octa (ng/L) 433 O_200 Num 8 4315 200 Octa (ng/L) 434 O_201 Num 8 4323 201 Octa (ng/L) 436 O_205 Num 8 4331 203 Octa (ng/L) 436 O_205 Num 8 831 PCB-1016 (ug/L) 93 P1016 Num 8 831 PCB-1212 (ug/l) 95 P1221 Num 8 851 PCB-1222 (ug/l) 97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1240	
378 ORG_97 Num 8 3875 Vinyl Chloride (ug/L) 430	
430	
431	
432	
433	
434	
435	
436	
93 P1016 Num 8 831 PCB-1016 (ug/l) 16 P1221 Num 8 180 PCB-1221 (ug/l) 95 P1232 Num 8 851 PCB-1232 (ug/l) 97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 931 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 12 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PCB-1252 (ug/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4347 2,4'-DDD (ug/L) 447 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
16 P1221 Num 8 180 PCB-1221 (ug/l) 95 P1232 Num 8 851 PCB-1232 (ug/l) 97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1240 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 19 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDD (ug/L) 442 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDD (ug/L)	
95 P1232 Num 8 851 PCB-1232 (ug/l) 97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1244 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdov PST) 50 PEST Num 8 4347 2,4'-DDD (ug/L) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 347 PES_3 Num 8 4427 2,4'-DDD (ug/L) 349 PES_5 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow DEST Num 8 4347 PES_1 Num 8 4347 PES_1 Num 8 4347 PES_1 Num 8 4379 PES_1 Num 8 4379 PES_4 Num 8 3963 A,4'-DDE (ug/L) 390 PES_5 Num 8 3971 A,4'-DDE (ug/L) 391 PES_6 Num 8 3979 A,4'-DDE (ug/L)	
99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PES_1 Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDD (ug/L) 447 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12 Dredging (PRE,D=During,POST,Drawdow 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-	
14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12 Dredging (PRE,D=During,POST,Drawdow 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
12 P54_60	
2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdov 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12 Dredging (PRE,D=During,POST,Drawdown) 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12 Dredging (PRE,D=During,POST,Drawdown Post) 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdown 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	wn)
441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
392 PES_7 Num 8 3987 A-BHC (ug/L)	
394 PES_9 Num 8 4003 B-BHC (ug/L)	
79 PES_10 Num 8 732 Chlorodane (ug/l)	
438 PES_11 Num 8 4355 Cis-chlordane (ug/L)	
439 PES_12 Num 8 4363 Cis-nonachlor (ug/L)	
379 PES_13 Num 8 3883 D-BHC (ug/L)	
440 PES_14 Num 8 4371 Dicofol (ug/L)	
380 PES_15 Num 8 3891 Dieldrin (ug/L)	
381 PES_16 Num 8 3899 Endosulfan I (ug/L)	
382 PES_17 Num 8 3907 Endosulfan II (ug/L)	
383 PES_18 Num 8 3915 Endosulfan sulfate (ug/L)	
384 PES_19 Num 8 3923 Endrin (ug/L)	

#	Variable	Type	Len	Pos	Format	Label
385	PES_20	Num	8	3931		Endrin aldehyde (ug/L)
386	PES_21	Num	8	3939		G-BHC (ug/L)
387	PES_22	Num	8	3947		Heptachlor (ug/L)
388	PES_23	Num	8	3955		Heptachlor epoxide (ug/L)
442	PES_24	Num	8	4387		Hexychlorobenzene (ug/L)
443	PES_25	Num	8	4395		Mirex (ug/L)
444	PES_26	Num	8	4403		Oxychlordane (ug/L)
78	PES_27	Num	8	724		Toxaphene (ug/l)
445	PES_28	Num	8	4411		Trans-chlordane (ug/L)
446	PES_29	Num	8	4419		Trans-nonachlor (ug/L)
26	PH	Num	8	267		рH
457	P_82	Num	8	4507		82 Penta (ng/L)
458	P_87	Num	8	4515		87 Penta (ng/L)
459	P_95	Num	8	4523		95 Penta (ng/L)
460	P_99	Num	8	4531		99 Penta (ng/L)
448	P_101	Num	8	4435		101 Penta (ng/L)
449	P_105	Num	8	4443		105 Penta (ng/L)
450	P_110	Num	8	4451		110 Penta (ng/L)
451	P_114	Num	8	4459		114 Penta (ng/L)
452	P_118	Num	8	4467		118 Penta (ng/L)
453	P_119	Num	8	4475		119 Penta (ng/L)
454	P_123	Num	8	4483		123 Penta (ng/L)
455	P_126	Num	8	4491		126 Penta (pg/L)
456	P_127	Num	8	4499		127 Penta (ng/L)
52	SB	Num	8	506		Antimony (mg/l)
70	SE	Num	8	651		Selenium (mg/l)
46	SS	Num	8	452		Settleable Solids (mg/l)
4	STATION	Char	12	32	12.	Sampling Station
71	S_AG	Char	3	659	3.	Flag for AG (Less than DL)
53	S_AL	Char	5	514	5.	Flag for AL (Less than DL)
90	S_AS	Char	5	807	5.	Flag for AS (Less than DL)
56	S_BE	Char	6	535	6.	Flag for BE (Less than DL)
22	S_BOD	Char	12	231	12.	Flag for BOD (Less than DL)
59	s_cd	Char	12	557	12.	Flag for CD (Less than DL)
36	s_cod	Char	12	356	12.	Flag for COD (Less than DL)
61	S_CR	Char	12	577	12.	Flag for CR (Less than DL)
63	s_cu	Char	12	597	12.	Flag for CU (Less than DL)
75	s_cy	Char	12	692	12.	Flag for CY (Less than DL)
27	S_DO	Char	12	275	12.	Flag for DO (Less than DL)
211	S_D_8	Char	12	2219	12.	Flag for D_8 (Less than DL)
210	S_D_209	Char	12	2207	12.	Flag for D_209 (Less than DL)
19	S_FC	Char	7	208	7.	Flag for FC (Less than DL)
212	S_H38_58	Char	12	2231	12.	Flag for H38_58 (Less than DL)
213	S_H70_90	Char	12	2243	12.	Flag for H70_90 (Less than DL)
214	S_HARD	Char	12	2255	12.	Flag for HARD (Less than DL)
34	S_HG	Char	12	336	12.	Flag for HG (Less than DL)
215	S_H_128	Char	12	2267	12.	Flag for H_128 (Less than DL)
216	S_H_137	Char	12	2279	12.	Flag for H_137 (Less than DL)
217	S_H_149	Char	12	2291	12.	Flag for H_149 (Less than DL)
218	S_H_151	Char	12	2303	12.	Flag for H_151 (Less than DL)
219	S_H_153	Char	12	2315	12.	Flag for H_153 (Less than DL)
220	S_H_156	Char	12	2327	12.	Flag for H_156 (Less than DL)
						<u> </u>

#	Variable	Туре	Len	Pos	Format	Label
221	S_H_157	Char	12	2339	12.	Flag for H_157 (Less than DL)
222	S_H_166	Char	12	2351	12.	Flag for H_166 (Less than DL)
223	S_H_167	Char	12	2363	12.	Flag for H_167 (Less than DL)
224	S_H_168	Char	12	2375	12.	Flag for H_168 (Less than DL)
225	S_H_169	Char	12	2387	12.	Flag for H_169 (Less than DL)
226	S_H_177	Char	12	2399	12.	Flag for H_177 (Less than DL)
227	S_H_179	Char	12	2411	12.	Flag for H_179 (Less than DL)
228	S_H_180	Char	12	2423	12.	Flag for H_180 (Less than DL)
229	S_H_183	Char	12	2435	12.	Flag for H_183 (Less than DL)
230	S_H_185	Char	12	2447	12.	Flag for H_185 (Less than DL)
231	S_H_187	Char	12	2459	12.	Flag for H_187 (Less than DL)
232	S_H_189	Char	12	2471	12.	Flag for H_189 (Less than DL)
233	S_H_191	Char	12	2483	12.	Flag for H_191 (Less than DL)
110	S_NH3	Char	12	1007	12.	Flag for NH3 (Less than DL)
67	S_NI	Char	3	637	3.	Flag for NI (Less than DL)
91	S_NN	Char	7 • o	812 1019	7. 12.	Flag for NN (Less than DL) Flag for NO2 (Less than DL)
111 87	S_NO2 S_NO3	Char Char	12 6	788	6.	Flag for NO3 (Less than DL)
234	S_N_206	Char	12	2495	12.	Flag for N_206 (Less than DL)
235	S_N_207	Char	12	2507	12.	Flag for N_207 (Less than DL)
236	S_N_208	Char	12	2519	12.	Flag for N_208 (Less than DL)
47	s_og	Char	12	460	12.	Flag for OG (Less than DL)
237	S_ORG_1	Char	12	2531	12.	Flag for ORG_1 (Less than DL)
238	S_ORG_2	Char	12	2543	12.	Flag for ORG_2 (Less than DL)
128	S_ORG_3	Char	12	1223	12.	Flag for ORG_3 (Less than DL)
139	s_org_4	Char	12	1355	12.	Flag for ORG_4 (Less than DL)
147	S_ORG_5	Char	12	1451	12.	Flag for ORG_5 (Less than DL)
157	S_ORG_6	Char	12	1571	12.	Flag for ORG_6 (Less than DL)
166	S_ORG_7	Char	12	1679	12.	Flag for ORG_7 (Less than DL)
176	S_ORG_8	Char	12	1799	12.	Flag for ORG_8 (Less than DL)
186	S_ORG_9	Char	12	1919	12.	Flag for ORG_9 (Less than DL)
112	S_ORG_10	Char	12	1031	12.	Flag for ORG_10 (Less than DL)
113	S_ORG_11	Char	12	1043	12.	Flag for ORG_11 (Less than DL)
114	S_ORG_12	Char	12	1055	12.	Flag for ORG_12 (Less than DL)
115	S_ORG_13	Char	12	1067	12.	Flag for ORG_13 (Less than DL)
116	S_ORG_14	Char	12	1079	12.	Flag for ORG_14 (Less than DL)
117	S_ORG_15	Char	12	1091	12.	Flag for ORG_15 (Less than DL)
118	S_ORG_16	Char	12	1103	12.	Flag for ORG_16 (Less than DL)
476	S_ORG_17	Char	12 12	4659	12.	Flag for ORG_17 (Less than DL)
119	S_ORG_18	Char Char	12	1115 1127	12. 12.	Flag for ORG_18 (Less than DL) Flag for ORG_19 (Less than DL)
120	S_ORG_19	Char	12	2555	12.	Flag for ORG_20 (Less than DL)
239 121	S_ORG_20 S_ORG_21	Char	12	1139	12.	Flag for ORG_21 (Less than DL)
240	S_ORG_22	Char	12	2567	12.	Flag for ORG_22 (Less than DL)
122	S_ORG_23	Char	12	1151	12.	Flag for ORG_23 (Less than DL)
123	S_ORG_24	Char	12	1163	12.	Flag for ORG_24 (Less than DL)
124	S_ORG_25	Char	12	1175	12.	Flag for ORG_25 (Less than DL)
125	S_ORG_26	Char	12	1187	12.	Flag for ORG_26 (Less than DL)
126	S_ORG_27	Char	12	1199	12.	Flag for ORG_27 (Less than DL)
241	S_ORG_28	Char	12	2579	12.	Flag for ORG_28 (Less than DL)
127	S_ORG_29	Char	12	1211	12.	Flag for ORG_29 (Less than DL)
129	S_ORG_30	Char	12	1235	12.	Flag for ORG_30 (Less than DL)
					, ,	

#	Variable	Type	Len	Pos	Format	Label
130	S_ORG_31	Char	12	1247	12.	Flag for ORG_31 (Less than DL)
131	S_ORG_32	Char	12	1259	12.	Flag for ORG_32 (Less than DL)
132	S_ORG_33	Char	12	1271	12.	Flag for ORG_33 (Less than DL)
133	S_ORG_34	Char	12	1283	12.	Flag for ORG_34 (Less than DL)
134	S_ORG_35	Char	12	1295	12.	Flag for ORG_35 (Less than DL)
135	s_org_36	Char	12	1307	12.	Flag for ORG_36 (Less than DL)
136	S_ORG_37	Char	12	1319	12.	Flag for ORG_37 (Less than DL)
137	S_ORG_38	Char	12	1331	12.	Flag for ORG_38 (Less than DL)
138	S_ORG_39	Char	12	1343	12.	Flag for ORG_39 (Less than DL)
140	S_ORG_40	Char	12	1367	12.	Flag for ORG_40 (Less than DL)
141	S_ORG_41	Char	12	1379	12.	Flag for ORG_41 (Less than DL)
142	S_ORG_42	Char	12	1391	12.	Flag for ORG_42 (Less than DL)
143	S_ORG_43	Char	12	1403	12.	Flag for ORG_43 (Less than DL)
105	S_ORG_44	Char	12	947	12.	Flag for ORG 44 (Less than DL)
144	S_ORG_45	Char	12	1415	12.	Flag for ORG_45 (Less than DL)
242	S_ORG_46	Char	12	2591	12.	Flag for ORG_46 (Less than DL)
145	S_ORG_47	Char	12	1427	12.	Flag for ORG_47 (Less than DL)
146	S_ORG_48	Char	12	1439	12.	Flag for ORG_48 (Less than DL)
243	S_ORG_49	Char	12	2603	12.	Flag for ORG_49 (Less than DL)
148	S ORG 50	Char	12	1463	12.	Flag for ORG_50 (Less than DL)
149	S_ORG_51	Chan	12	1475	12.	Flag for ORG_51 (Less than DL)
150	S_ORG_52	Char	12	1487	12.	Flag for ORG_52 (Less than DL)
106	S_ORG_53	Char	12	959	12.	Flag for ORG_53 (Less than DL)
151	S_ORG_54	Char	12	1499	12.	Flag for ORG_54 (Less than DL)
152	S_ORG_55	Char	12	1511	12.	Flag for ORG_55 (Less than DL)
153	S_ORG_56	Char	12	1523	12.	Flag for ORG_56 (Less than DL)
154	S_ORG_57	Char	12	1535	12.	Flag for ORG_57 (Less than DL)
155	S_ORG_58	Char	12	1547	12.	Flag for ORG_58 (Less than DL)
156	S_ORG_59	Char	12	1559	12.	Flag for ORG_59 (Less than DL)
158	S_ORG_60	Char	12	1583	12.	Flag for ORG_60 (Less than DL)
107	S_ORG_61	Char	12	971	12.	Flag for ORG 61 (Less than DL)
159	S_ORG_62	Char	12	1595	12.	Flag for ORG 62 (Less than DL)
160	S_ORG_63	Char	12	1607	12.	Flag for ORG_63 (Less than DL)
161	S_ORG_64	Char	12	1619	12.	Flag for ORG_64 (Less than DL)
477	S_ORG_65	Char	12	4671	12.	Flag for ORG 65 (Less than DL)
162	S_ORG_66	Char	12	1631	12.	Flag for ORG_66 (Less than DL)
163	S ORG 67	Char	12	1643	12.	Flag for ORG_67 (Less than DL)
164	S_ORG_68	Char	12	1655	12.	Flag for ORG_68 (Less than DL)
165	S_ORG_69	Char	12	1667	12.	Flag for ORG_69 (Less than DL)
167		Char	12	1691	12.	Flag for ORG_70 (Less than DL)
168	S_ORG_70 S_ORG_71	Char	12	1703	12.	Flag for ORG_70 (Less than DL)
		Char	12	1715	12.	
169 108	S_ORG_72	Char	12	983	12.	Flag for ORG_72 (Less than DL) Flag for ORG_73 (Less than DL)
	S_ORG_73	Char	12	1727	12.	
170	S_ORG_74					Flag for ORG_74 (Less than DL)
171	S_ORG_75	Char	12	1739	12.	Flag for ORG_75 (Less than DL)
172	S_ORG_76	Char	12	1751	12.	Flag for ORG_76 (Less than DL)
173	S_ORG_77	Char	12	1763	12.	Flag for ORG_77 (Less than DL)
174	S_ORG_78	Char	12	1775	12.	Flag for ORG_78 (Less than DL)
175	s_ORG_79	Char	12	1787	12.	Flag for ORG_79 (Less than DL)
177	S_ORG_80	Char	12	1811	12.	Flag for ORG_80 (Less than DL)
178	S_ORG_81	Char	12	1823	12.	Flag for ORG_81 (Less than DL)
179	S_ORG_82	Char	12	1835	12.	Flag for ORG_82 (Less than DL)

#	Variable	Туре	Len	Pos	Format	Label
180	S_ORG_83	Char	12	1847	12.	Flag for ORG_83 (Less than DL)
181	s_org_84	Char	12	1859	12.	Flag for ORG_84 (Less than DL)
182	S_ORG_85	Char	12	1871	12.	Flag for ORG_85 (Less than DL)
183	S_ORG_86	Char	12	1883	12.	Flag for ORG_86 (Less than DL)
184	S_ORG_87	Char	12	1895	12.	Flag for ORG_87 (Less than DL)
244	S_ORG_88	Char	12	2615	12.	Flag for ORG_88 (Less than DL)
185	S_ORG_89	Char	12	1907	12.	Flag for ORG_89 (Less than DL)
41	S_ORG_90	Char	12	400	12.	Flag for ORG_90 (Less than DL)
187	S_ORG_91	Char	12	1931	12.	Flag for ORG_91 (Less than DL)
109	S_ORG_92	Char	12	995	12.	Flag for ORG_92 (Less than DL)
188	S_ORG_93	Char	12	1943	12.	Flag for ORG_93 (Less than DL)
189	S_ORG_94	Char	12	1955	12.	Flag for ORG_94 (Less than DL)
190	S_ORG_95	Char	12	1967	12.	Flag for ORG_95 (Less than DL)
191	S_ORG_96	Char	12	1979	12.	Flag for ORG_96 (Less than DL)
192	S_ORG_97	Char	12	1991	12.	Flag for ORG_97 (Less than DL) Flag for O_194 (Less than DL)
245	S_0_194	Char Char	12 12	2627 2639	12. 12.	Flag for 0_195 (Less than DL)
246 247	S_0_195 S_0_196	Char	12	2651	12.	Flag for 0_196 (Less than DL)
248	S_0_190 S_0_200	Char	12	2663	12.	Flag for 0_200 (Less than DL)
249	S_0_201	Char	12	2675	12.	Flag for 0_201 (Less than DL)
250	S_0_203	Char	12	2687	12.	Flag for 0_203 (Less than DL)
251	S_0_205	Char	12	2699	12.	Flag for O_205 (Less than DL)
92	S_P1016	Char	12	819	12.	Flag for P1016 (Less than DL)
15	S_P1221	Char	12	168	12.	Flag for P1221 (Less than DL)
94	S_P1232	Char	12	839	12.	Flag for P1232 (Less than DL)
96	S_P1242	Char	12	859	12.	Flag for P1242 (Less than DL)
98	S_P1248	Char	12	879	12.	Flag for P1248 (Less than DL)
100	S_P1254	Char	12	899	12.	Flag for P1254 (Less than DL)
102	S_P1260	Char	12	919	12.	Flag for P1260 (Less than DL)
13	S_P42_48	Char	12	148	12.	Flag for P42_48 (Less than DL)
11	S_P54_60	Char	12	128	12.	Flag for P54_60 (Less than DL)
65	S_PB	Char	12	617	12.	Flag for PB (Less than DL)
17	S_PBB	Char	12	188	12.	Flag for PBB (Less than DL)
9	S_PCB	Char	12	108	12.	Flag for PCB (Less than DL)
49	S_PEST	Char	12	480	12.	Flag for PEST (Less than DL)
252	S_PES_1	Char	12	2711	12.	Flag for PES_1 (Less than DL)
256	S_PES_2	Char	12	2759	12.	Flag for PES_2 (Less than DL)
262	S_PES_3	Char	12	2831	12.	Flag for PES_3 (Less than DL)
204	S_PES_4	Char	12	2135 2147	12. 12.	Flag for PES_4 (Less than DL) Flag for PES_5 (Less than DL)
205	S_PES_5	Char	12		12.	Flag for PES_6 (Less than DL)
206	S_PES_6	Char	12 12	2159 2171	12.	Flag for PES_7 (Less than DL)
207	S_PES_7	Char Char	12	2171	12.	Flag for PES_8 (Less than DL)
208 209	S_PES_8	Char	12	2195	12.	Flag for PES_9 (Less than DL)
	S_PES_9	Char	12	2003	12.	Flag for PES_10 (Less than DL)
193 253	S_PES_10 S_PES_11	Char	12	2723	12.	Flag for PES_11 (Less than DL)
253 254	S_PES_11	Char	12	2735	12.	Flag for PES_12 (Less than DL)
194	S_PES_12	Char	12	2015	12.	Flag for PES_13 (Less than DL)
255	S_PES_14	Char	12	2747	12.	Flag for PES_14 (Less than DL)
195	S_PES_15	Char	12	2027	12.	Flag for PES_15 (Less than DL)
196	S_PES_16	Char	12	2039	12.	Flag for PES_16 (Less than DL)
197	S_PES_17	Char	12	2051	12.	Flag for PES_17 (Less than DL)
.07	~_, ~~ __ ,		• •		•	_

#	Variable	Туре	Len	Pos	Format	Label
198	S_PES_18	Char	12	2063	12.	Flag for PES_18 (Less than DL)
199	S_PES_19	Char	12	2075	12.	Flag for PES_19 (Less than DL)
200	S_PES_20	Char	12	2087	12.	Flag for PES_20 (Less than DL)
201	S_PES_21	Char	12	2099	12.	Flag for PES_21 (Less than DL)
202	S_PES_22	Char	12	2111	12.	Flag for PES_22 (Less than DL)
203	S_PES_23	Char	12	2123	12.	Flag for PES_23 (Less than DL)
257	S_PES_24	Char	12	2771	12.	Flag for PES_24 (Less than DL)
258	S_PES_25	Char	12	2783	12.	Flag for PES_25 (Less than DL)
259	S_PES_26	Char	12	2795	12.	Flag for PES_26 (Less than DL)
77	S_PES_27	Char	12	712	12.	Flag for TOXAPE (Less than DL)
260	S_PES_28	Char	12	2807	12.	Flag for PES_28 (Less than DL)
261	S_PES_29	Char	12	2819	12.	Flag for PES_29 (Less than DL)
84	S_PH	Char	5	770	5.	Flag for pH (Less than DL)
272	S_P_82	Char	12	2951	12.	Flag for P_82 (Less than DL)
273	S_P_87	Char	12	2963	12.	Flag for P_87 (Less than DL)
274	S_P_95	Char	12	2975	12.	Flag for P_95 (Less than DL)
275	S_P_99	Char	12-	2987	12.	Flag for P_99 (Less than DL)
263	S_P_101	Char	12	2843	12.	Flag for P_101 (Less than DL)
264	S_P_105	Char	12	2855	12.	Flag for P_105 (Less than DL)
265	S_P_110	Char	12	2867	12.	Flag for P_110 (Less than DL)
266	S_P_114	Char	12	2879	12.	Flag for P_114 (Less than DL)
267	S_P_118	Char	12	2891	12.	Flag for P_118 (Less than DL)
268	S_P_119	Char	12	2903	12.	Flag for P_119 (Less than DL)
269	S_P_123	Char	12	2915	12.	Flag for P_123 (Less than DL)
270	S_P_126	Char	12	2927	12.	Flag for P_126 (Less than DL)
271	S_P_127	Char	12	2939	12.	Flag for P_127 (Less than DL)
51	S_SB	Char	6	500	6.	Flag for SB (Less than DL)
69	S_SE	Char	3	648	З.	Flag for SE (Less than DL)
45	s_ss	Char	12	440	12.	Flag for SS (Less than DL)
82	s_TC	Char	5	760	5.	Flag for TC (Less than DL)
83	S_TEMP	Char	5	765	5.	Flag for TEMP (Less than DL)
89	S_TKN	Char	5	802	5.	Flag for TKN (Less than DL)
73	S_TL	Char	14	670	14.	Flag for TL (Less than DL)
85	S_TN	Char	7	775	7.	Flag for TN (Less than DL)
32	S_TOC	Char	5	323	5.	Flag for TOC (Less than DL)
43	S_TP	Char	12	420	12.	Flag for TP (Less than DL)
276	S_TPH	Char	12	2999	12.	Flag for TPH (Less than DL)
81	S_TSS	Char	12	748	12.	Flag for TSS (Less than DL)
86	S_TURB	Char	6	782	6.	Flag for TURB (Less than DL)
, 277	S_T_18	Char	12	3011	12.	Flag for T_18 (Less than DL)
278	S_T_28	Char	12	3023	12.	Flag for T_28 (Less than DL)
279	S_T_37	Char	12	3035	12.	Flag for T_37 (Less than DL)
280	S_T_44	Char	12	3047	12.	Flag for T_44 (Less than DL)
281	S_T_47	Char	12	3059	12.	Flag for T_47 (Less than DL)
282	S_T_49	Char	12	3071	12.	Flag for T_49 (Less than DL)
283	S_T_52	Char	12	3083	12.	Flag for T_52 (Less than DL)
284	S_T_60	Char	12	3095	12.	Flag for T_60 (Less than DL)
285	s_T_66	Char	12	3107	12.	Flag for T_66 (Less than DL)
286	S_T_70	Char	12	3119	12.	Flag for T_70 (Less than DL)
287	s_T_74	Char	12	3131	12.	Flag for T_74 (Less than DL)
288	S_T_77	Char	12	3143	12.	Flag for T_77 (Less than DL)
289	S_T_80	Char	12	3155	12.	Flag for T_80 (Less than DL)
	- -					<u> </u>

Wilmington Harbor - Water Quality Data

#	Variable	Type	Len	Pos	Format	Label
290	S_T_81	Char	12	3167	12.	Flag for T_81 (Less than DL)
30	s_zn	Char	12	303	12.	Flag for ZN (Less than DL)
21	ΤC	Num	8	223		Total Coliform (#/100 ml)
25	TEMP	Num	8	259		Temperature (Degrees Centigrade)
1	TIDE	Char	12	0	12.	Tide
104	TIME	Num	8	939	TIME5.	Sampling Time
40	TKN	Num	8	392		Total Kjeldahl Nitrogen (mg/l)
74	TL	Num	8	684		Thallium (mg/l)
80	TN	Num	8	740		Total Nitrogen (mg/l)
33	TOC	Num	8	328		Total Organic Carbon (mg/l)
44	TP	Num	8	432		Total Phosphate (mg/l)
461	TPH	Num	8	4539		Total Petroleum Hydrocarbons (mg/l)
7	TRIB	Char	12	84	12.	CR=Christina River,DR=Delaware River
29	TSS	Num	8	295		Total Suspended Solids (mg/l)
24	TURB	Num	8	251		Turbidity (ntu)
3	TYPE	Char	12	20	12.	B=Backgrnd,M=Mixing Z.,O=Outfall,W=Weir
462	T_18	Num	8	4547		18 Tri (ng/L)
463	T_28	Num	8	4555		28 Tri (ng/L)
464	T_37	Num	8	4563		37 Tri (ng/L)
465	T_44	Num	8	4571		44 Tetra (ng/L)
466	T_47	Num	8	4579	•	47 Tetra (ng/L)
467	T_49	Num	8	4587		49 Tetra (ng/L)
468	T_52	Num	8	4595		52 Tetra (ng/L)
469	T_60	Num	8	4603		60 Tetra (ng/L)
470	T_66	Num	8	4611		66 Tetra (ng/L)
471	T_70	Num	8	4619		70 Tetra (ng/L)
472	T_74	Num	8	4627		74 Tetra (ng/L)
473	T77	Num	8	4635		77 Tetra (pg/L)
474	T_80	Num	8	4643		80 Tetra (ng/L)
475	T_81	Num	8	4651		81 Tetra (pg/L)
31	ZN	Num	8	315		Zinc (mg/l)

Variab	le Label	N	Nmiss	Mean	Minimum	Maximum
PAGE	Report Page Number	1001	0	402.9500500	1.0000000	858.0000000
DATE	Sampling Date	1001	0	10729.62	7326.00	13328.00
PCB	PCB's (ug/l)	237	764	7.6258650	0	500.0000000
P54_60	• = -	4	997	10.0000000	10.0000000	10,0000000
P42_48		4	997	50.0000000	50.0000000	50,0000000
P1221	PCB-1221 (ug/l)	25	976	17.1600000	0.5000000	100.000000
PBB	PBB (mg/l)	4	997	20.0000000	20,0000000	20.0000000
FC FC	Fecal Coliform (#/100 ml)	56	945	1497.43	30.0000000	10000.00
тс	Total Coliform (#/100 ml)	49	952	11549.80	500.0000000	160000.00
BOD	Biochemical Oxygen Demand (mg/l)	414	587	6.9205314	2.4000000	310.0000000
TURB	Turbidity (ntu)	396	605	316.9184343	6.2000000	55000.00
TEMP	Temperature (Degrees Centigrade)	394	607	12.0651015	0	58.0000000
PH	Hq	404	597	7.2137129	2.8900000	8,5500000
DO	Dissolved Oxygen (mg/l)	394	607	8.6180203	0.2000000	15.0000000
TSS	Total Suspended Solids (mg/l)	924	77	890.1643939	0	77700.00
ZN	Zinc (mg/l)	428	573	0.2139019	0.0090000	21.0000000
TOC	Total Organic Carbon (mg/l)	407	594	11,2146437	1,4000000	1000.00
HG	Mercury (mg/l)	281	720	0.000804626	0.000100000	0.0200000
COD	Chemical Oxygen Demand (mg/l)	159	842	60.3647799	5.0000000	430.0000000
FLOW	Flow (mgd)	4	997	26.9700000	2.9600000	70.8000000
NN	Nitrate+Nitrite (mg/l)	24	977	1.7166667	1.4100000	2.1500000
TKN	Total Kjeldahl Nitrogen (mg/l)	152	849	3.2377632	0.5000000	25.0000000
ORG 90	-	53	948	0.0068755	0.0040000	0.0200000
TP	Total Phosphate (mg/l)	128	873	0.2504688	0.0300000	2.0000000
SS	Settleable Solids (mg/l)	19	982	60.4931579	0.0700000	640.0000000
OG	Oil & Grease (mg/l)	19	982	1.7894737	1.0000000	7.0000000
□ PEST	Pesticides (mg/l)	5	996	0.0804000	0.0020000	0.1000000
SB	Antimony (mg/l)	8	993	0.0042500	0.0020000	0.0100000
AL.	Aluminum (mg/l)	109	892	3.6431193	0.6000000	110.0000000
- a AS	Arsenic (mg/l)	38	963	0.0051816	0.0020000	0.0176000
BE	Beryllium (mg/l)	28	973	0.0025750	0.000200000	0.0200000
CHLR	Chloride (mg/l)	3	998	1400.00	1100.00	1800.00
CD	Cadmium (mg/l)	127	874	0.0046614	0.000300000	0.0250000
CR	Chromium (mg/l)	147	854	0.0222238	0.0010000	0.5800000
J cu	Copper (mg/l)	147	854	0.0340612	0.0040000	0.4400000
" PB	Lead (mg/l)	147	854	0.0419320	0.0010000	0.9600000
NI	Nickel (mg/l)	38	963	0.0141947	0.0066000	0.1000000
SE	Selenium (mg/l)	18	983	0.0024444	0.0020000	0.0050000
AG	Silver (mg/l)	18	983	0.0048889	0.000500000	0.0200000
TL	Thallium (mg/l)	8	993	0.0170000	0.0020000	0.1000000
L CY	Cyanide (mg/l)	6	995	0.0075000	0.0050000	0.0100000
PES_2	•	17	984	1.2941176	1,0000000	2.0000000
PES_1		7	994	1.9285714	0.5000000	3.0000000
TN -	Total Nitrogen (mg/l)	327	674	6.8274618	0.4500000	260.0000000
NO3	Nitrate (mg/l)	61	940	2.0440984	0.0500000	2.8000000
P1016		21	980	1.3809524	0.5000000	5.0000000
P1232	•	21	980	1.3809524	0.5000000	5.0000000
P1242	·	21	980	1.3809524	0.5000000	5.0000000
P1248	PCB-1248 (ug/l)	21	980	1.3809524	0.5000000	5.0000000
P1254	• • •	21	980	1.7142857	1.0000000	5.0000000
P1260		21	980	1.7142857	1.0000000	5.0000000
TIME	Sampling Time	945		44172.38	3600.00	84900.00
ORG_4	· -	34		10.0000000	10.0000000	10.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum 1
ORG_53	Bis(2-ethylhexyl)phthalate (ug/L)	24	977	9.8333333	6.0000000	10.000000
ORG_61	Chloroform (ug/L)	24	977	4.8333333	1.0000000	5.0000000
ORG_73	Fluoranthene (ug/L)	34	967	10.0000000	10.0000000	10.0000000
ORG_92	Tetrachloroethene (ug/L)	24	977	4.8333333	1.0000000	5.0000000
NH3	Ammonia (mg/L)	3	998	9.7000000	6.1000000	12.0000000
N02	Nitrite (mg/l)	3	998	0.1726667	0.1350000	0.2180000
ORG_10	1,2-Dichloroethene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_11	1,2-Dichloropropane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_12	1,2-Diphenyl Hydrazine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_13	1,2,4-Trichlorobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_14	1,3-Dichlorobenzene (ug/L)	4	997	6.2500000	5.0000000	10.0000000
ORG_15	1,4 & 1,2-Dichlorobenzene (ug/L)	3	998	5.0000000	5.0000000	5.0000000
ORG_16	1,4-Dichlorobenzene (ug/L)	4	997	10,0000000	10.0000000	10.0000000
ORG_18	2-Chloronaphthalene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_19	2-Chlorophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG 21	2-Nitrophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_23	2,4-Dichlorophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_24	2,4-Dimethylphenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_25	2,4-Dinitrophenol (ug/L)	4	997	45.0000000	30.0000000	50.0000000
ORG_26	2,4-Dinitrotoluene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_27	2,4,6-Trichlorophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_29	2,6-Dinitrotoluene (ug/L)	4	, 997	10.0000000	10.0000000	10.0000000
ORG_3	1,1-Dichloroethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_30	3,3'-Dichlorobenzidine (ug/L)	4	997	17.5000000	10.0000000	20.0000000 🚎
ORG_31	4-Bromophenyl-phenylether (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_32	4-Chlorophenyl-phenylether (ug/L)	4	997	10.0000000	10.0000000	10.0000000 📑
ORG_33	4-Nitrophenol (ug/L)	4	997	45.0000000	30.0000000	50.0000000
ORG_34	4,6-Dinitro-2-methylphenol (ug/L)	4	997	40.0000000	10.0000000	50.0000000
ORG_35	4,-Chloro-3-methylphenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_36	Acenaphthene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_37	Acenaphthylene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG 38	Acrolein (ug/L)	4	997	8.7500000	5.0000000	10.0000000 🍱
ORG_39	Acrylonitrile (ug/L)	4	997	8.7500000	5.0000000	10.0000000
ORG_4	1,1-Dichloroethene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_40	Anthracene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_41	Benzene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG 42	Benzidine (ug/L)	4	997	67.5000000	30.0000000	80.0000000
ORG_43	Benzo(a)anthracene (ug/L)	14	987	10.0000000	10.0000000	10.0000000 🥼
ORG_45	Benzo(b)fluoranthene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_47	Benzo(g,h,i)perylene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_48	Benzo(k)fluoranthene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_5	1,1,1-Trichloroethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_50	Bis(2-chloroethoxy)methane (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_51	Bis(2-chloroethyl)ether (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_52	Bis(2-chloroisopropyl)ether (ug/L)	4	997	10,0000000	10.0000000	10.0000000
ORG_54	Bromodichloromethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_55	Bromoform (ug/L)	4	997	4.2500000	2.0000000	5.0000000
ORG_56	Bromomethane (ug/L)	4		8.7500000	5.0000000	10.0000000
ORG_57	Butlybenzylphthalate (ug/L)	4		10.0000000	10.0000000	10.0000000
ORG_58	Carbon Tetrachloride (ug/L)	4		4.0000000	1.0000000	5.0000000
ORG_59	Chlorobenzene (ug/L)	4		4.0000000	1.0000000	5.0000000
ORG_6	1,1,2-Trichloroethane (ug/L)	4		4.0000000	1.0000000	5.0000000
ORG_60	Chloroethane (ug/L)	4		7.7500000	1.0000000	10.0000000
5.14_00						

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
ORG_62	Chloromethane (ug/L)	4	997	8.7500000	5.0000000	10.0000000
ORG_63	Chrysene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_64	Cis-1,3-Dichloropropene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_66	Dibenzo(a,h)anthracene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_67	Dibromochloromethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_68	Diethylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_69	Dimethylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_7	1,1,2,2-Tetrachloroethane (ug/L)	4	997	4.2500000	2.0000000	5.0000000
ORG_70	Di-n-butylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_71	Di-n-octylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_72	Ethylbenzene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_74	Fluorene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
DRG_75	Hexachlorobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_76	Hexachlorobutadiene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_77	Hexachlorocyclopentadiene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG 78	Hexachloroethane (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_79	Indeno(1,2,3-c,d)pyrene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_8	1,2-Dichlorobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_80	Isophorone (ug/L)	4	997	10.0000000	10.000000	10.0000000
ORG_81	Methylene Chloride (ug/L)	4	997	4.7500000	1.0000000	7.0000000
ORG_82	Naphthalene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_83	Nitrobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_84	N-nitrosodimethylamine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_85	N-nitroso-Di-n-propylamine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_86	N-nitrosodiphenylamine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_87	Pentachlorophenol (ug/L)	4	997	45.0000000	30.0000000	50.0000000
- ORG_89	Phenanthrene (ug/L)	14	987	10.0000000	10.0000000	10,0000000
ORG_9	1,2-Dichloroethane (ug/L)	3	998	5.0000000	5.0000000	5.0000000
ORG_91	Pyrene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_93	Toluene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_94	Trans-1,3-Dichloropropene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_95	Trichloroethene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG 96	Trichlorofluoromethane (ug/L)	3	998	5.0000000	5.0000000	5.0000000
ORG_97	Vinyl Chloride (ug/L)	4	997	7.7500000	1.0000000	10.0000000
PES_13	D-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_15	Dieldrin (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES 16	Endosulfan I (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_17	Endosulfan II (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_18	Endosulfan sulfate (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_19	Endrin (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_20	Endrin aldehyde (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_21	G-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_22	Heptachlor (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES 23	Heptachlor epoxide (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_4	4,4'-DDD (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_5	4,4'-DDE (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_6	4,4'-DDT (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_7	A-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_8	Aldrin (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_9	B-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
D_209	209 Deca (ng/L)	10		62,5000000	62,5000000	62.5000000
B B	8 Di (ng/L)	10		31.3000000	31.3000000	31.3000000
H38 58	138,158 Hexa (ng/L)	10		50.0000000	50.0000000	50.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum 🛶
H70_90	170,190 Hepta (ng/L)	10	991	62.5000000	62.5000000	62.5000000
HARD	Hardness (mg/L)	10	991	168.1200000	58.6000000	444.0000000
H_128	128 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_137	137 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_149	149 Hexa (ng/L)	10	991	20.0000000	20.0000000	20.0000000
H_151	151 Hexa (ng/L)	10	991	31.3000000	31.3000000	31.3000000
H_153	153 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_156	156 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_157	157 Hexa (ng/L)	10	991	24.1000000	24.1000000	24.1000000
H_166	166 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_167	167 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_168	168 Hexa (ng/L)	10	991	21.8000000	21.8000000	21.8000000
H_169	169 Hexa (pg/L)	10	991	40.7400000	40.0000000	47.4000000
H_177	177 Hepta (ng/L)	10	991	30.0000000	30.000000	30.0000000
H_179	179 Hepta (ng/L)	10	991	30.0000000	30.0000000	30.0000000
H_180	180 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_183	183 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_185	185 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_187	187 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_189	189 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_191	191 Hepta (ng/L)	10	991	27.3000000	27.3000000	27.3000000
N_206	206 Nona (ng/L)	10,	991	62.0000000	62.0000000	62.0000000
N_207	207 Nona (ng/L)	10	991	37.5000000	37.5000000	37.5000000
N_208	208 Nona (ng/L)	10	991	40.0000000	40.0000000	40.0000000
ORG_1	1-Methylnaphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_2	1-Methylphenanthrene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_20	2-Methylnaphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_22	2,3,5-Trimethyl-naphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_28	2,6-Dimethylnaphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_46	Benzo(e)pyrene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_49	Biphenyl (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_88	Perylene (ug/L)	10	991	10.0000000	10.0000000	10.0000000 🧦
0_194	194 Octa (ng/L)	10	991	37.5000000	37.5000000	37.5000000
0_195	195 Octa (ng/L)	10	991	30.0000000	30,0000000	30.0000000
0_196	196 Octa (ng/L)	10	991	30.0000000	30.0000000	30.0000000
0_200	200 Octa (ng/L)	10	991	37,5000000	37.5000000	37.5000000
0_201	201 Octa (ng/L)	10	991	30.0000000	30.0000000	30.0000000
0_203	203 Octa (ng/L)	10	991	30.0000000	30.0000000	30.0000000
0_205	205 Octa (ng/L)	10	991	37.5000000	37.5000000	37.5000000
PES_1	2,4'-DDD (ug/L)	10	991	0.1100000	0.1000000	0.2000000
PES_11	Cis-chlordane (ug/L)	10	991	0.5500000	0.5000000	1.0000000
PES 12	Cis-nonachlor (ug/L)	10	991	0.5500000	0.5000000	1.0000000
 .PES_14	Dicofol (ug/L)	10	991	0.4000000	0.4000000	0.4000000
PES_2	2,4'-DDE (ug/L)	10	991	0.1100000	0.1000000	0.2000000
PES_24	Hexychlorobenzene (ug/L)	10	991	0.1100000	0.1000000	0.2000000
PES_25	Mirex (ug/L)	10	991	0.1000000	0.1000000	0.1000000.
PES_26	Oxychlordane (ug/L)	10	991	0.1996000	0.1960000	0.2000000
PES_28	Trans-chlordane (ug/L)	10	991	0.5500000	0.5000000	1.0000000
PES_29	Trans-nonachlor (ug/L)	10	991	0.5500000	0.5000000	1.0000000
PES_3	2,4'-DDT (ug/L)	10	991	0.1100000	0.1000000	0.2000000
P_101	101 Penta (ng/L)	10	991	25.0000000	25.0000000	25.0000000
_	•	10	991			25,0000000
P_105	105 Penta (ng/L)			25.0000000	25.0000000	: 1
P_110	110 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000

Wilmington Harbor - Water Quality Data

	Variable	Label	N	Nmiss	Mean	Minimum	Maximum
	P_114	114 Penta (ng/L)	· 10	991	25.0000000	25.0000000	25.0000000
	_ P_118	118 Penta (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	P_119	119 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	P_123	123 Penta (ng/L)	10	991	20.8000000	20.8000000	20.8000000
	P_126	126 Penta (pg/L)	10	991	32.6000000	4.6000000	58.0000000
	P_127	127 Penta (ng/L)	10	991	20.0000000	20.0000000	20.0000000
Commercial	P_82	82 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000
Section Section	P_87	87 Penta (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	P_95	95 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	P_99	99 Penta (ng/L)	10	991	14.0000000	14.0000000	14.0000000
	TPH	Total Petroleum Hydrocarbons (mg/l)	10	991	0.2460000	0.2400000	0.2500000
	T_18	18 Tri (ng/L)	10	991	12.5000000	12.5000000	12.5000000
De come	T_28	28 Tri (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	T_37	37 Tri (ng/L)	10	991	31.3000000	31.3000000	31.3000000
. 4	T_44	44 Tetra (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	T_47	47 Tetra (ng/L)	10	991	28.1000000	28.1000000	28.1000000
	T_49	49 Tetra (ng/L)	10	991	31.3000000	31.3000000	31.3000000
¥	T_52	52 Tetra (ng/L)	10	991	25.0000000	25.0000000	25.0000000
, <u>.</u>	T_60	60 Tetra (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	T_66	66 Tetra (ng/L)	10	991	32.6000000	32.6000000	32.6000000
	T_70	70 Tetra (ng/L)	10	991	28.4000000	28.4000000	28.4000000
50000	T_74	74 Tetra (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	T_77	77 Tetra (pg/L)	10	991	108.3400000	28.7000000	368.0000000
,	T_80	80 Tetra (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	T_81	81 Tetra (pg/L)	10	991	37.1100000	11.1000000	40.0000000
	ORG_17	2-Chloroethylvinylether (ug/l)	1	1000	10.0000000	10.0000000	10.0000000
10000	ORG_65	Cis,trans,1,2-Dichloroethene (ug/l)	1	1000	1.0000000	1.0000000	1.0000000

Appendix B - Groundwater Database

Name:

GW.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 22 observations and 16 variables in the dataset. Each observation represents a groundwater sample and a series of chemical and biological measurements. A sample can be uniquely identified by station name and sampling date. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Chloride is detected the concentration value is stored in the CHLR variable and a blank space exists in S_CHLR (Flag variable for Chloride). If the parameter was not detected, the detection limit is stored in CHLR and less than sign (<) is stored in S_CHLR. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

Wilmington Harbor - Groundwater Data

CONTENTS PROCEDURE

22 Observations: Data Set Name: WORK.GW 16 Variables: Member Type: DATA 0 Indexes: V611 Engine: Observation Length: 93 12:12 Wednesday, February 19, 1997 Created: Deleted Observations: 0 Last Modified: 12:12 Wednesday, February 19, 1997 NO Compressed: Protection: NO Sorted: Data Set Type:

----Engine/Host Dependent Information----

Label:

Data Set Page Size: 8192
Number of Data Set Pages: 1
File Format: 607
First Data Page: 1
Max Obs per Page: 87
Obs in First Data Page: 22

-----Alphabetic List of Variables and Attributes-----

#	Variable	Type	Len	Pos	Format	Label
9	CHLR	Num	8	22		Chloride (mg/l)
15	DATE	Num	8	77	MMDDYY8.	Sampling Date
14	LOCATION	Char	15	62		Study Site
16	PAGE	Num	8	85		Report Page Number
12	PH	Num	8	46		pН
1	STATION	Char	8	0		Sampling Well Identification
3	S_CHLR	Char	1	9		Flag for CHLR (Less than DL)
6	S_PH	Char	1	12		Flag for PH (Less than DL)
5	S_TKN	Char	1	11		Flag for TKN (Less than DL)
7	STN	Char	1	13		Flag for TN (Less than DL)
2	s_Toc	Char	1	8		Flag for TOC (Less than DL)
4	s_zn	Char	1	10		Flag for ZN (Less than DL)
11	TKN	Num	8	38		Total Kjeldahl Nitrogen (mg/l)
13	TN	Num	8	54		Total Nitrogen (mg/l)
8	TOC	Num	8	14		Total Organic Carbon (mg/l)
10	ZN	Num	8	30		Zinc (mg/l)

Wilmington Harbor - Groundwater Data

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
TOC CHLR	Total Organic Carbon (mg/l) Chloride (mg/l)	22 10	0	74.4454545 258.0000000	1.1000000	170.0000000 437.0000000
ZN TKN	Zinc (mg/l) Total Kjeldahl Nitrogen (mg/l) pH	22 10 22	0 12 0	0.0981818 16.6230000 6.8004545	0.0100000 0.4000000 5.5500000	1.4000000 54.0000000 8.1500000
PH TN DATE	Total Nitrogen (mg/l) Sampling Date	12 22	10 0	58.666667 9746.41	26.0000000 9566.00	80.0000000 9965.00
PAGE	Report Page Number	22	0	104.6363636	73.0000000	131.0000000

Appendix C - Elutriate Database

Name:

ELU.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 21 observations and 273 variables in the dataset. Each observation represents an elutriate sample and a series of chemical and biological measurements. A sample can be uniquely identified by station name, sampling date, time, and tributary. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Silver is detected the concentration value is stored in the AG variable and a blank space exists in S_AG (Flag variable for Silver). If the parameter was not detected, the detection limit is stored in AG and less than sign (<) is stored in S_AG. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

There are two water bodies associated with the samples: Christina River and Delaware River. If a sample does not have tributary information, blank space is stored in its variable.

CONTENTS PROCEDURE

Data Set Name: WORK.ELU Observations: 21 Variables: 273 Member Type: DATA V611 Indexes: Engine: 0 2714 Created: 10:36 Wednesday, February 19, 1997 Observation Length: Last Modified: 10:36 Wednesday, February 19, 1997 Deleted Observations: 0 Compressed: NO Protection: NO Data Set Type: Sorted:

Label:

----Engine/Host Dependent Information----

Data Set Page Size: 16384

Number of Data Set Pages: 6

File Format: 607

First Data Page: 3

Max Obs per Page: 6

Obs in First Data Page: 5

-----Alphabetic List of Variables and Attributes-----

#	Variable	Туре	Len	Pos	Format	Label
154	AG	Num	8	1754		Silver (mg/L)
30	AL	Num	8	278		Aluminum (mg/l)
155	AS	Num	8	1762		Arsenic (mg/L)
156	BE	Num	8	1770		Beryllium (mg/L)
8	BOD	Num	8	75		Biochemical Oxygen Demand (mg/l)
25	CD	Num	8	230		Cadmium (mg/l)
31	COD	Num	8	286		Chemical Oxygen Demand (mg/l)
4	COMMENT	Char	21	28	21.	Sample Comment
28	CR	Num	8	258		Chromium (mg/l)
26	CU	Num	8	238		Copper (mg/l)
157	CY	Num	8	1778		Cyanide (mg/L)
3	DATE	Num	8	20	MMDDYY8.	Sampling Date
14	HG	Num	8	131		Mercury (mg/l)
158	NI	Num	8	1786		Nickel (mg/L)
18	OG	Num	8	171		Oil & Grease (mg/l)
175	ORG_3	Num	8	1922		1,1-Dichloroethane (ug/L)
186	ORG_4	Num	8	2010		1,1-Dichloroethene (ug/L)
195	ORG_5	Num	8	2082		1,1,1-Trichloroethane (ug/L)
206	ORG_6	Num	8	2170		1,1,2-Trichloroethane (ug/L)
216	ORG_7	Num	8	2250		1,1,2,2-Tetrachloroethane (ug/L)
227	ORG_B	Num	8	2338		1,2-Dichlorobenzene (ug/L)
237	ORG_9	Num	8	2418		1,2-Dichloroethane (ug/L)
159	ORG_10	Num	8	1794		1,2-Dichloroethene (ug/L)
160	ORG_11	Num	8	1802		1,2-Dichloropropane (ug/L)
161	ORG_12	Num	8	1810		1,2-Diphenyl Hydrazine (ug/L)
162	ORG_13	Num	8	1818		1,2,4-Trichlorobenzene (ug/L)
163	ORG_14	Num	8	1826		1,3-Dichlorobenzene (ug/L)
164	ORG_15	Num	8	1834		1,4 & 1,2-Dichlorobenzene (ug/L)
165	ORG_16	Num	8	1842		1,4-Dichlorobenzene (ug/L)
166	ORG_18	Num	8	1850		2-Chloronaphthalene (ug/L)
167	ORG_19	Num	8	1858		2-Chlorophenol (ug/L)
168	ORG 21	Num	8	1866		2-Nitrophenol (ug/L)

#	Variable	Туре	Len	Pos	Format	Label
169	ORG_23	Num	8	1874		2,4-Dichlorophenol (ug/L)
170	ORG_24	Num	8	1882		2,4-Dimethylphenol (ug/L)
171	ORG_25	Num	8	1890		2,4-Dinitrophenol (ug/L)
172	ORG_26	Num	8	1898		2,4-Dinitrotoluene (ug/L)
173	ORG_27	Num	8	1906		2,4,6-Trichlorophenol (ug/L)
174	ORG_29	Num	8	1914		2,6-Dinitrotoluene (ug/L)
176	ORG_30	Num	8	1930		3,3'-Dichlorobenzidine (ug/L)
177	ORG_31	Num	8	1938		4-Bromophenyl-phenylether (ug/L)
178	ORG_32	Num	8	1946		4-Chlorophenyl-phenylether (ug/L)
179	ORG_33	Num	8	1954		4-Nitrophenol (ug/L)
180	ORG_34	Num	8	1962		4,6-Dinitro-2-methylphenol (ug/L)
181	ORG_35	Num	8	1970		4,-Chloro-3-methylphenol (ug/L)
182	ORG_36	Num	8	1978		Acenaphthene (ug/L)
183	ORG_37	Num	8	1986		Acenaphthylene (ug/L)
184	ORG_38	Num	8	1994		Acrolein (ug/L)
185	ORG_39	Num	8	2002		Acrylonitrile (ug/L)
187	ORG_40	Num	8	2018		Anthracene (ug/L)
188	ORG_41	Num	8	2026		Benzene (ug/L)
189	ORG_42	Num	8	2034		Benzidine (ug/L)
190	ORG_43	Num	8	2042		Benzo(a)anthracene (ug/L)
191	ORG_44	Num	8	2050		Benzo(a)pyrene (ug/L)
192	ORG_45	Num	8	2058		Benzo(b)fluoranthene (ug/L)
193	ORG_47	Num	8	2066		Benzo(g,h,i)perylene (ug/L)
194	ORG_48	Num	8	2074		Benzo(k)fluoranthene (ug/L)
196	ORG_50	Num	8	2090		Bis(2-chloroethoxy)methane (ug/L)
197	ORG_51	Num	8	2098		Bis(2-chloroethyl)ether (ug/L)
198	ORG_52	Num	8	2106		Bis(2-chloroisopropyl)ether (ug/L)
199	ORG_53	Num	8	2114		Bis(2-ethylhexyl)phthalate (ug/L)
200	ORG_54	Num	8	2122		Bromodichloromethane (ug/L)
201	ORG_55	Num	8	2130		Bromoform (ug/L)
202	ORG_56	Num	8	2138		Bromomethane (ug/L)
203	ORG_57	Num	8	2146		Butlybenzylphthalate (ug/L)
204	ORG_58	Num	8	2154		Carbon Tetrachloride (ug/L)
205	ORG_59	Num	8	2162		Chlorobenzene (ug/L)
207	ORG_60	Num	8	2178		Chloroethane (ug/L)
208	ORG_61	Num	8	2186		Chloroform (ug/L)
209	ORG_62	Num	8	2194		Chloromethane (ug/L)
210	ORG_63	Num	8	2202		Chrysene (ug/L)
211	ORG_64	Num	8	2210		Cis-1,3-Dichloropropene (ug/L)
212	ORG_66	Num	8	2218		Dibenzo(a,h)anthracene (ug/L)
213	ORG_67	Num	8	2226		Dibromochloromethane (ug/L)
214	ORG_68	Num	8	2234		Diethylphthalate (ug/L)
215	ORG_69	Num	8	2242		Dimethylphthalate (ug/L)
217	ORG_70	Num	8	2258		Di-n-butylphthalate (ug/L)
218	ORG_71	Num	8	2266		Di-n-octylphthalate (ug/L)
219	ORG_72	Num	8	2274		Ethylbenzene (ug/L)
220	ORG_73	Num	8	2282		Fluoranthene (ug/L)
221	ORG_74	Num	8	2290		Fluorene (ug/L)
222	ORG_75	Num	8	2298		Hexachlorobenzene (ug/L)
223	ORG_76	Num	8	2306		Hexachlorobutadiene (ug/L)
224	ORG_77	Num	8	2314		Hexachlorocyclopentadiene (ug/L)
225	ORG 78	Num	8	2322		Hexachloroethane (ug/L)
	5,,6 10		•			\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

#	Variable	Туре	Len	Pos	Format	Label
226	ORG_79	Num	8	2330		Indeno(1,2,3-c,d)pyrene (ug/L)
228	ORG_80	Num	8	2346		Isophorone (ug/L)
229	ORG_81	Num	8	2354		Methylene Chloride (ug/L)
230	ORG_82	Num	8	2362		Naphthalene (ug/L)
231	ORG_83	Num	8	2370		Nitrobenzene (ug/L)
232	ORG_84	Num	8	2378		N-nitrosodimethylamine (ug/L)
233	ORG_85	Num	8	2386		N-nitroso-Di-n-propylamine (ug/L)
234	ORG_86	Num	8	2394		N-nitrosodiphenylamine (ug/L)
235	ORG_87	Num	8	2402		Pentachlorophenol (ug/L)
236	ORG_89	Num	8	2410		Phenanthrene (ug/L)
238	ORG_90	Num	8	2426		Phenol (mg/L)
239	ORG_91	Num	8	2434		Pyrene (ug/L)
240	ORG_92	Num	8	2442		Tetrachloroethene (ug/L)
241	ORG_93	Num	8	2450		Toluene (ug/L)
242	ORG_94	Num	8	2458		Trans-1,3-Dichloropropene (ug/L)
243	ORG_95	Num	8	2466		Trichloroethene (ug/L)
244	ORG_96	Num	8	2474		Trichlorofluoromethane (ug/L)
245	ORG_97	Num	8	2482		Vinyl Chloride (ug/L)
246	P1016	Num	8	2490	, , ,	
247	P1221	Num	8	2498		
248	P1232	Num	8	2506	2506 PCB-1232 (ug/L)	
249	P1242	Num	8	2514 PCB-1242 (ug/L)		PCB-1242 (ug/L)
250	P1248	Num	8	2522	2522 PCB-1248 (ug/L)	
251	P1254	Num	8	2530	530 PCB-1254 (ug/L)	
252	P1260	Num	8	2538		
1	PAGE	Num	8	0	. • •	
23	PB	Num	8	210		Lead (mg/l)
16	PCB	Num	8	151		PCB's (mg/l)
265	PES_4	Num	8	2642		4,4'-DDD (ug/L)
266	PES_5	Num	8	2650		4,4'-DDE (ug/L)
267	PES_6	Num	8	2658		4,4'-DDT (ug/L)
268	PES_7	Num	8	2666		A-BHC (ug/L)
269	PES_8	Num	8	2674		Aldrin (ug/L)
270	PES_9	Num	8	2682		B-BHC (ug/L)
253	PES_10	Num	8	2546		Chlordane (ug/L)
254	PES_13	Num	8	2554		D-BHC (ug/L)
255	PES_15	Num	8	2562		Dieldrin (ug/L)
256	PES_16	Num	8	2570		Endosulfan I (ug/L)
257	PES_17	Num	8	2578		Endosulfan II (ug/L)
258	PES_18	Num	8	2586		Endosulfan sulfate (ug/L)
259	PES 19	Num	8	2594		Endrin (ug/L)
260	PES_20	Num	8	2602		Endrin aldehyde (ug/L)
261	PES_21	Num	8	2610		G-BHC (ug/L)
262	PES_22	Num	8	2618		Heptachlor (ug/L)
263	PES_23	Num	8	2626		Heptachlor epoxide (ug/L)
264	PES_27	Num	8	2634		Toxaphene (ug/L)
6	PH	Num	. 8	55		pH
271	SB	Num	8	2690		Antimony (mg/L)
272	SE	Num	8	2698		Selenium (mg/L)
2/2	STATION	Char	12	20 3 8	12.	Sampling Station
		Char	12	302	12.	Flag for AG (Less than DL)
33	S_AG					
29	S_AL	Char	12	266	12.	Flag for AL (Less than DL)

#	Variable	Туре	Len	Pos	Format	Label
34	S_AS	Char	12	314	12.	Flag for AS (Less than DL)
35	S_BE	Char	12	326	12.	Flag for BE (Less than DL)
7	S_BOD	Char	12	63	12.	Flag for BOD (Less than DL)
24	s_cd	Char	12	218	12.	Flag for CD (Less than DL)
27	s_cr	Char	12	246	12.	Flag for CR (Less than DL)
36	\$_CU	Char	12	338	12.	Flag for CU (Less than DL)
37	s_cy	Char	12	350	12.	Flag for CY (Less than DL)
13	S_HG	Char	12	119	12.	Flag for HG (Less than DL)
38	s_ni	Char	12	362	12	Flag for NI (Less than DL)
17	s_og	Char	12	159	12.	Flag for OG (Less than DL)
55	S_ORG_3	Char	12	566	12.	Flag for ORG_3 (Less than DL)
66	S_ORG_4	Char	12	698	12.	Flag for ORG_4 (Less than DL)
75	S_ORG_5	Char	12	806	12.	Flag for ORG_5 (Less than DL) Flag for ORG_6 (Less than DL)
86	S_ORG_6	Char	12	938	12.	Flag for ORG_7 (Less than DL)
96	s_org_7	Char	12	1058	12.	Flag for ORG_8 (Less than DL)
107	S_ORG_8	Char	12	1190	12.	Flag for ORG_9 (Less than DL)
117	S_ORG_9	Char	12	1310	12. 12.	Flag for ORG_10 (Less than DL)
39	S_ORG_10	Char	12	374 386	12.	Flag for ORG_11 (Less than DL)
40	S_ORG_11	Char	12 12	398	12.	Flag for ORG_12 (Less than DL)
41	S_ORG_12	Char Char	12	410	12.	Flag for ORG_13 (Less than DL)
42	S_ORG_13	Char	12	422	12.	Flag for ORG_14 (Less than DL)
43	S_ORG_14	Char	12	434	12.	Flag for ORG_15 (Less than DL)
44 45	S_ORG_15 S_ORG_16	Char	12	446	12.	Flag for ORG_16 (Less than DL)
46	S_ORG_18	Char	12	458	12.	Flag for ORG_18 (Less than DL)
47	S_ORG_19	Char	12	470	12.	Flag for ORG_19 (Less than DL)
48	S_ORG_21	Char	12	482	12.	Flag for ORG_21 (Less than DL)
49	S_ORG_23	Char	12	494	12.	Flag for ORG_23 (Less than DL)
50	S_ORG_24	Char	12	506	12.	Flag for ORG_24 (Less than DL)
51	S_ORG_25	Char	12	518	12.	Flag for ORG_25 (Less than DL)
52	S_ORG_26	Char	12	530	12.	Flag for ORG_26 (Less than DL)
53	s_org_27	Char	12	542	12.	Flag for ORG_27 (Less than DL)
54	s_ORG_29	Char	12	554	12.	Flag for ORG_29 (Less than DL)
56	S_ORG_30	Char	12	578	12.	Flag for ORG_30 (Less than DL)
57	S_ORG_31	Char	12	590	12.	Flag for ORG_31 (Less than DL)
58	S_ORG_32	Char	12	602	12.	Flag for ORG_32 (Less than DL)
59	S_ORG_33	Char	12	614	12.	Flag for ORG_33 (Less than DL)
60	S_ORG_34	Char	12	626	12.	Flag for ORG_34 (Less than DL)
61	S_ORG_35	Char	12	638	12.	Flag for ORG_35 (Less than DL)
62	S_ORG_36	Char	12	650	12.	Flag for ORG_36 (Less than DL)
63	S_ORG_37	Char	12	662	12.	Flag for ORG_37 (Less than DL)
64	S_ORG_38	Char	12	674	12.	Flag for ORG_38 (Less than DL)
65	S_ORG_39	Char	12	686	12.	Flag for ORG_39 (Less than DL) Flag for ORG_40 (Less than DL)
67	s_ORG_40	Char	12	710	12.	Flag for ORG_40 (Less than DL)
68	S_ORG_41	Char	12	722	12.	Flag for ORG_42 (Less than DL)
69	s_ORG_42	Char	12	734	12.	Flag for ORG_42 (Less than DL)
70	S_ORG_43	Char	12	746	12.	Flag for ORG_44 (Less than DL)
71	S_ORG_44	Char	12	758 770	12.	Flag for ORG_44 (Less than DL) Flag for ORG_45 (Less than DL)
72	S_ORG_45	Char	12	770	12.	Flag for ORG_45 (Less than DL)
73	s_ORG_47	Char	12	782	12.	Flag for ORG_48 (Less than DL)
74	S_ORG_48	Char	12	794	12.	Flag for ORG 50 (Less than DL)
7^	0 000 E0	Chan	10	Q1Q	1.7	FIAG IDE UNG SU (LESS LHGH UL)

#	Variable	Туре	Len	Pos	Format	Label
77	S_ORG_51	Char	12	830	12.	Flag for ORG_51 (Less than DL)
78	 S_ORG_52	Char	12	842	12.	Flag for ORG_52 (Less than DL)
79	S_ORG_53	Char	12	854	12.	Flag for ORG_53 (Less than DL)
80	S_ORG_54	Char	12	866	12.	Flag for ORG_54 (Less than DL)
81	s_ORG_55	Char	12	878	12.	Flag for ORG_55 (Less than DL)
82	s_ORG_56	Char	12	890	12.	Flag for ORG_56 (Less than DL)
83	S_ORG_57	Char	12	902	12.	Flag for ORG_57 (Less than DL)
84	S_ORG_58	Char	12	914	12.	Flag for ORG_58 (Less than DL)
85	s_ORG_59	Char	12	926	12.	Flag for ORG_59 (Less than DL)
87	s_org_60	Char	12	950	12.	Flag for ORG_60 (Less than DL)
88	S_ORG_61	Char	12	962	12.	Flag for ORG_61 (Less than DL)
89	S_ORG_62	Char	12	974	12.	Flag for ORG_62 (Less than DL)
90	S_ORG_63	Char	12	986	12.	Flag for ORG_63 (Less than DL)
91	S_ORG_64	Char	12	998	12.	Flag for ORG_64 (Less than DL)
92	S_ORG_66	Char	12	1010	12.	Flag for ORG_66 (Less than DL)
93	s_o RG_67	Char	12	1022	12.	Flag for ORG_67 (Less than DL)
94	s_org_68	Char	12	1034	12.	Flag for ORG_68 (Less than DL)
95	s_org_69	Char	12	1046	12.	Flag for ORG_69 (Less than DL)
97	S_ORG_70	Char	12	1070	12.	Flag for ORG_70 (Less than DL)
98	s_ORG_71	Char	12	1082	12.	Flag for ORG_71 (Less than DL)
99	s_ORG_72	Char	12	1094	12.	Flag for ORG_72 (Less than DL)
100	S_ORG_73	Char	12	1106	12.	Flag for ORG_73 (Less than DL)
101	S_ORG_74	Char	12	1118	12.	Flag for ORG_74 (Less than DL)
102	S_ORG_75	Char	12	1130	12.	Flag for ORG_75 (Less than DL) Flag for ORG_76 (Less than DL)
103	S_ORG_76	Char	12	1142	12.	Flag for ORG_77 (Less than DL)
104	S_ORG_77	Char	12	1154	12.	Flag for ORG_78 (Less than DL)
105	S_ORG_78	Char	12	1166	12. 12.	Flag for ORG_79 (Less than DL)
106	S_ORG_79	Char	12 12	1178 1202	12.	Flag for ORG_80 (Less than DL)
108	S_ORG_80	Char Char	12	1214	12.	Flag for ORG 81 (Less than DL)
109	S_ORG_81	Char	12	1226	12.	Flag for ORG_82 (Less than DL)
110	S_ORG_82	Char	12	1238	12.	Flag for ORG 83 (Less than DL)
111 112	S_ORG_83 S_ORG_84	Char	12	1250	12.	Flag for ORG_84 (Less than DL)
113	S_ORG_85	Char	12	1262	12.	Flag for ORG_85 (Less than DL)
114	S_ORG_86	Char	12	1274	12.	Flag for ORG 86 (Less than DL)
115	S_ORG_87	Char	12	1286	12.	Flag for ORG 87 (Less than DL)
116	S_ORG_89	Char	12	1298	12.	Flag for ORG_89 (Less than DL)
118	S_ORG_90	Char	12	1322	12.	Flag for ORG_90 (Less than DL)
119	S_ORG_91	Char	12	1334	12.	Flag for ORG_91 (Less than DL)
120	S_ORG_92	Char	12	1346	12.	Flag for ORG_92 (Less than DL)
121	S_ORG_93	Char	12	1358	12.	Flag for ORG_93 (Less than DL)
122	S_ORG_94	Char	12	1370	12.	Flag for ORG_94 (Less than DL)
123	S_ORG_95	Char	12	1382	12.	Flag for ORG_95 (Less than DL)
124	S_ORG_96	Char	12	1394	12.	Flag for ORG_96 (Less than DL)
125	S_ORG_97	Char	12	1406	12.	Flag for ORG_97 (Less than DL)
126	S_P1016	Char	12	1418	12.	Flag for P1016 (Less than DL)
127	S P1221	Char	12	1430	12.	Flag for P1221 (Less than DL)
128	S_P1232	Char	12	1442	12.	Flag for P1232 (Less than DL)
129	S_P1242	Char	12	1454	12.	Flag for P1242 (Less than DL)
130	S_P1248	Char	12	1466	12.	Flag for P1248 (Less than DL)
131	S_P1254	Char	12	1478	12.	Flag for P1254 (Less than DL)
132	S P1260	Char	12	1490	12.	Flag for P1260 (Less than DL)
11.15	S 1 1200	wirel!	,			

#	Variable	Type	Len	Pos	Format	Label
22	S PB	Char	12	198	12.	Flag for PB (Less than DL)
15	s_PCB	Char	12	139	12.	Flag for PCB (Less than DL)
145	S_PES_4	Char	12	1646	12.	Flag for PES_4 (Less than DL)
146	S_PES_5	Char	12	1658	12.	Flag for PES_5 (Less than DL)
147	S_PES_6	Char	12	1670	12.	Flag for PES_6 (Less than DL)
148	S_PES_7	Char	12	1682	12.	Flag for PES_7 (Less than DL)
149	S_PES_8	Char	12	1694	12.	Flag for PES_8 (Less than DL)
150	S_PES_9	Char	12	1706	12.	Flag for PES_9 (Less than DL)
133	S_PES_10	Char	12	1502	12.	Flag for PES_10 (Less than DL)
134	S_PES_13	Char	12	1514	12.	Flag for PES_13 (Less than DL)
135	S_PES_15	Char	12	1526	12.	Flag for PES_15 (Less than DL)
136	S_PES_16	Char	12	1538	12.	Flag for PES_16 (Less than DL)
137	S_PES_17	Char	12	1550	12.	Flag for PES_17 (Less than DL)
138	S_PES_18	Char	12	1562	12.	Flag for PES_18 (Less than DL)
139	S_PES_19	Char	12	1574	12.	Flag for PES_19 (Less than DL)
140	S_PES_20	Char	12	1586	12.	Flag for PES_20 (Less than DL)
141	S_PES_21	Char	12	1598	12.	Flag for PES_21 (Less than DL)
142	S_PES_22	Char	12	1610	12.	Flag for PES_22 (Less than DL)
143	S_PES_23	Char	12	1622	12.	Flag for PES_23 (Less than DL)
144	S_PES_27	Char	12	1634	12.	Flag for PES_27 (Less than DL)
151	S_SB	Char	12	1718	12.	Flag for SB (Less than DL)
152	S_SE	Char	12	1730	12.	Flag for SE (Less than DL)
153	S_TL	Char	12	1742	12.	Flag for TL (Less than DL)
20	S_TP	Char	3	187	з.	Flag for TP (Less than DL)
11	s_zn	Char	12	99	12.	Flag for ZN (Less than DL)
32	TIME	Num	8	294	TIME5.	Sampling Time
19	TKN	Num	8	179		Total Kjeldahl Nitrogen (mg/l)
273	TL	Num	8	2706		Thallium (mg/L)
10	TN	Num	8	91		Total Nitrogen (mg/l)
9	TOC	Num	8	83		Total Organic Carbon (mg/l)
21	TP	Num	8	190		Total Phosphate (mg/l)
5	TRIB	Char	6	49	6.	CR=Christina River,DR=Delaware River
12	ZN	Num	8	111		Zinc (mg/l)

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
PAGE	Report Page Number	21	0	360.0952381	170.0000000	671.0000000
DATE	Sampling Date	21	0	9953.24	7284.00	12123.00
PH	pH	14	7	7.5357143	6.6000000	8.1000000
BOD	Biochemical Oxygen Demand (mg/l)	14	7	8.4642857	2.4000000	11.0000000
TOC	Total Organic Carbon (mg/l)	14	7	27.7857143	8.0000000	44.0000000
TN	Total Nitrogen (mg/l)	11	10	15.4000000	3.4000000	28.0000000
ZN	Zinc (mg/l)	21	0	0.0645238	0.0300000	0.1200000
HG	Mercury (mg/l)	21	0	0.000733333	0.000200000	0.0010000
PCB	PCB's (mg/1)	11	10	2.0000000	2.0000000	2.0000000
OG	Oil & Grease (mg/l)	3	18	1.0000000	1.0000000	1.0000000
TKN	Total Kjeldahl Nitrogen (mg/l)	3	18	5.0000000	1.1000000	10.0000000
TP	Total Phosphate (mg/l)	3	18	0.1933333	0.0600000	0.4500000
PB	Lead (mg/l)	10	11	0.0933000	0.0030000	0.2300000
CD	Cadmium (mg/l)	10	11	0.0332000	0.0020000	0.0500000
CU	Copper (mg/l)	10	11	0.0480000	0.0300000	0.0600000
CR	Chromium (mg/l)	10	. 11	0.0365000	0.0050000	0.0500000
, AL.	Aluminum (mg/l)	3	18	1.3000000	0.1000000	3.3000000
COD	Chemical Oxygen Demand (mg/l)	3	18	38.0000000	17.0000000	72.0000000
) TIME	Sampling Time	14	7	42724.29	38700.00	47700.00
. AG	Silver (mg/L)	7	14	0.0435714	0.0050000	0.0500000
AS	Arsenic (mg/L)	7	14	0.0861429	0.0030000	0.1000000
BE	Beryllium (mg/L)	7	14	0.000500000	0.000500000	0.000500000
CY	Cyanide (mg/L)	7	14	0.0050000	0.0050000	0.0050000
NI	Nickel (mg/L)	7	14	0.0442857	0.0100000	0.0500000
9 ORG_10	1,2-Dichloroethene (ug/L)	7	14	5.0000000	5.0000000	5.0000000
ORG_11	1,2-Dichloropropane (ug/L)	7	14	5.0000000	5.0000000	5.0000000
ORG_12	1,2-Diphenyl Hydrazine (ug/L)	7	14	10.0000000	10.0000000	10.0000000
ORG_13	1,2,4-Trichlorobenzene (ug/L)	7	14	10.0000000	10.0000000	10.0000000
ORG_14	1,3-Dichlorobenzene (ug/L)	7		5.0000000	5.0000000	5.0000000
] ORG_15	1,4 & 1,2-Dichlorobenzene (ug/L)	7		5.0000000	5.0000000	5.0000000
ORG_16	1,4-Dichlorobenzene (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_18	2-Chloronaphthalene (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_19	2-Chlorophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_21	2-Nitrophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_23	2,4-Dichlorophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_24	2,4-Dimethylphenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_25	2,4-Dinitrophenol (ug/L)	7		50.0000000	50.0000000	50.0000000
* ORG_26	2,4-Dinitrotoluene (ug/L)	7		10.0000000	10.0000000	10.0000000
, ORG_27	2,4,6-Trichlorophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_29	2,6-Dinitrotoluene (ug/L)	7		10.0000000	10.0000000	10.0000000
DRG_3	1,1-Dichloroethane (ug/L)	7		5.0000000	5.000000	5.000000
ORG_30	3,3'-Dichlorobenzidine (ug/L)	7		20.0000000	20.0000000	20.0000000
ORG_31	4-Bromophenyl-phenylether (ug/L)	7		10.0000000	10.0000000	10.0000000
DRG_32	4-Chlorophenyl-phenylether (ug/L)	7			10.0000000	10.0000000
ORG_33	4-Nitrophenol (ug/L)	7		50.0000000	50.0000000	50.000000
ORG_34	4,6-Dinitro-2-methylphenol (ug/L)	7		50,0000000	50.0000000	50.0000000
ORG_35	4,-Chloro-3-methylphenol (ug/L)	7			10.0000000	10.0000000
ORG_36	Acenaphthene (ug/L)	7			10.0000000	
· —	Acenaphthylene (ug/L)	7			10.0000000	10.0000000
ORG_37	* **- *********************************				40 0000000	40 0000000
ORG_37	Acrolein (ug/L)	7			10.0000000	
4	•		7 14	10.0000000	10.0000000	10.000000
ORG_38	Acrolein (ug/L)	7		10.0000000 5.0000000		10.0000000 5.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum	?
ORG_41	Benzene (ug/L)	7	14	5.0000000	5.0000000	5.0000000	:
ORG_42	Benzidine (ug/L)	7	14	80.0000000	80.0000000	80.0000000	r
ORG_43	Benzo(a)anthracene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	
ORG_44	Benzo(a)pyrene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	-
ORG_45	Benzo(b)fluoranthene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	÷
ORG_47	Benzo(g,h,i)perylene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	
ORG_48	Benzo(k)fluoranthene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	>
ORG_5	1,1,1-Trichloroethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000	.77
ORG_50	Bis(2-chloroethoxy)methane (ug/L)	7	14	10.0000000	10.0000000	10.0000000	1
ORG_51	Bis(2-chloroethyl)ether (ug/L)	7	14	8.0000000	2.0000000	10.0000000	~
ORG_52	Bis(2-chloroisopropyl)ether (ug/L)	7	14	10.0000000	10.0000000	10.0000000	
ORG_53	Bis(2-ethylhexyl)phthalate (ug/L)	7	14	10.0000000	10.0000000	10.0000000	1
ORG_54	Bromodichloromethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000	Š
ORG_55	Bromoform (ug/L)	7	14	5.0000000	5,0000000	5.0000000	
ORG_56	Bromomethane (ug/L)	7	14	10.0000000	10.0000000	10.0000000	è
ORG_57	Butlybenzylphthalate (ug/L)	7	14	10.0000000	10.0000000	10.0000000	~
ORG_58	Carbon Tetrachloride (ug/L)	7	14	5.0000000	5.0000000	5.0000000	
ORG_59	Chlorobenzene (ug/L)	7		5.0000000	5.0000000	5.0000000	ŝ.
ORG_6	1,1,2-Trichloroethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000	
ORG_60	Chloroethane (ug/L)	7		10,0000000	10.0000000	10.0000000	
ORG_61	Chloroform (ug/L)	7		4.4285714	3.0000000	6.0000000	2
ORG_62	Chloromethane (ug/L)	7		10.0000000	10.0000000	10.0000000	:
ORG_63	Chrysene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_64	Cis-1,3-Dichloropropene (ug/L)	7		5.0000000	5.0000000	5.0000000	2
ORG_66	Dibenzo(a,h)anthracene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_67	Dibromochloromethane (ug/L)	7		5.0000000	5.0000000	5.0000000	2
ORG_68	Diethylphthalate (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_69	Dimethylphthalate (ug/L)	7		10.0000000	10.0000000	10.0000000	1
ORG_7	1,1,2,2-Tetrachloroethane (ug/L)	7		5.0000000	5.0000000	5.0000000	
ORG_70	Di-n-butylphthalate (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_71	Di-n-octylphthalate (ug/L)	7		10.0000000	10.0000000	10.0000000	:
ORG_72	Ethylbenzene (ug/L)	7		5.0000000	5.0000000	5.0000000	-
ORG_73	Fluoranthene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_74	Fluorene (ug/L)	7		10.0000000	10.0000000	10.0000000	4
ORG_75	Hexachlorobenzene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_76	Hexachlorobutadiene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_77	Hexachlorocyclopentadiene (ug/L)	7		10,0000000	10.0000000	10.0000000	
ORG_78	Hexachloroethane (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_79	Indeno(1,2,3-c,d)pyrene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_8	1,2-Dichlorobenzene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_80	Isophorone (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_81	Methylene Chloride (ug/L)	7		9.7142857	5.0000000	12.0000000	
ORG_82	Naphthalene (ug/L)	7		10.0000000	10.0000000	10.0000000	
-	Nitrobenzene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_83	N-nitrosodimethylamine (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_84	N-nitroso-Di-n-propylamine (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_85	N-nitrosodiphenylamine (ug/L)		' 14	10.0000000	10.0000000	10.0000000	
ORG_86		7		50.0000000	50.0000000	50.0000000	
ORG_87	Pentachlorophenol (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_89	Phenanthrene (ug/L)		7 14	5.0000000	5.0000000	5.0000000	
ORG_9	1,2-Dichloroethane (ug/L)		, 14 , 14	0.0067143	0.0050000	0.0090000	
ORG_90	Phenol (mg/L)				10.0000000	10.0000000	
ORG_91	Pyrene (ug/L)			10.0000000 5.0000000	5.000000	5.0000000	
ORG_92	Tetrachloroethene (ug/L)		7 14	3.0000000	3.000000		

	Variable	Label	N	Nmiss	Mean	Minimum	Maximum
	ORG_93	Toluene (ug/L)	7	14	5.0000000	5.000000	5.0000000
1	ORG_94	Trans-1,3-Dichloropropene (ug/L)	7	14	5.0000000	5.0000000	5.0000000
	ORG_95	Trichloroethene (ug/L)	7	14	5.0000000	5.0000000	5.0000000
	ORG_96	Trichlorofluoromethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000
-	ORG_97	Vinyl Chloride (ug/L)	7	14	10.0000000	10.0000000	10.0000000
	P1016	PCB-1016 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
	P1221	PCB-1221 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
P	P1232	PCB-1232 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
	P1242	PCB-1242 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
* 8	P1248	PCB-1248 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
F-77	P1254	PCB-1254 (ug/L)	7	14	1.0000000	1.0000000	1.0000000
	P1260	PCB-1260 (ug/L)	7	14	1.0000000	1.0000000	1.0000000
ۇۇ	PES_10	Chlordane (ug/L)	7	14	0.5000000	0.5000000	0.5000000
Şel B	PES_13	D-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
	PES_15	Dieldrin (ug/L)	7	14	0.1000000	0.1000000	0.1000000
٤٤	PES_16	Endosulfan I (ug/L)	7	14	0.0500000	0.0500000	0.0500000
Taring.	PES_17	Endosulfan II (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_18	Endosulfan sulfate (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_19	Endrin (ug/L)	7	14	0.1000000	0.1000000	0.1000000
		Endrin aldehyde (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_21	G-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
أسرة	PES_22	Heptachlor (ug/L)	7	14	0.0500000	0.0500000	0.0500000
_	PES 23	Heptachlor epoxide (ug/L)	7	14	0.0500000	0.0500000	0.0500000
	PES_27	Toxaphene (ug/L)	7	14	1.0000000	1.0000000	1.0000000
	PES_4	4,4'-DDD (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_5	4,4'-DDE (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_6	4,4'-DDT (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_7	A-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
	PES_8	Aldrin (ug/L)	7	14	0.0500000	0.0500000	0.0500000
V	PES_9	B-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
	SB	Antimony (mg/L)	7	14	0.0860000	0.0020000	0.1000000
٠٠,٠,٠	SE	Selenium (mg/L)	7	14	0.0860000	0.0020000	0.1000000
,	TL	Thallium (mg/L)	7	14	0.0431429	0.0020000	0.0500000
, inches							

Appendix D - Sediment Database

Name:

SED.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 8 observations and 425 variables in the dataset. Each observation represents a sediment sample and a series of chemical and biological measurements. A sample can be uniquely identified by station type, station name, sampling date, tributary, and dredging period. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Silver is detected the concentration value is stored in the AG variable and a blank space exists in S_AG (Flag variable for Silver). If the parameter was not detected, the detection limit is stored in AG and less than sign (<) is stored in S_AG. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

All sediment samples were taken from Christina River, Background station type, and were before dredging period.

#	Variable	Туре	Len	Pos	Format	Label
17	S_ORG_10	Char	12	198	12.	Flag for ORG_10 (Less than DL)
18	S_ORG_11	Char	12	210	12.	Flag for ORG_11 (Less than DL)
19	S_ORG_12	Char	12	222	12.	Flag for ORG_12 (Less than DL)
20	S_ORG_13	Char	12	234	12.	Flag for ORG_13 (Less than DL)
21	S_ORG_14	Char	12	246	12.	Flag for ORG_14 (Less than DL)
22	S_ORG_15	Char	12	258	12.	Flag for ORG_15 (Less than DL)
23	S_ORG_16	Char	12	270	12.	Flag for ORG_16 (Less than DL)
24	S_ORG_18	Char	12	282	12.	Flag for ORG_18 (Less than DL)
25	S_ORG_19	Char	12	294	12.	Flag for ORG_19 (Less than DL)
162	S_ORG_20	Char	12	1938	12.	Flag for ORG_20 (Less than DL)
26	S_ORG_21	Char	12	306	12.	Flag for ORG_21 (Less than DL)
163	S_ORG_22	Char	12	1950	12.	Flag for ORG_22 (Less than DL)
27	S_ORG_23	Char	12	318	12.	Flag for ORG_23 (Less than DL)
28	S_ORG_24	Char	12	330	12.	Flag for ORG_24 (Less than DL)
29	S_ORG_25	Char	12	342	12.	Flag for ORG_25 (Less than DL)
30	S_ORG_26	Char	12	354	12.	Flag for ORG_26 (Less than DL)
31	S_ORG_27	Char	12	366	12.	Flag for ORG_27 (Less than DL)
164	S_ORG_28	Char	12	1962	12.	Flag for ORG_28 (Less than DL)
32	S_ORG_29	Char	12	378	12.	Flag for ORG_29 (Less than DL)
34	S_ORG_30	Char	12	402	12.	Flag for ORG_30 (Less than DL)
35	S_ORG_31	Char	12	414	12.	Flag for ORG_31 (Less than DL)
36	S_ORG_32	Char	12	426	12.	Flag for ORG_32 (Less than DL)
37	S_ORG_33	Char	12	438	12.	Flag for ORG_33 (Less than DL)
38	S_ORG_34	Char	12	450	12.	Flag for ORG_34 (Less than DL)
39	S_ORG_35	Char	12	462	12.	Flag for ORG_35 (Less than DL)
40	s_0RG_36	Char	12	474	12.	Flag for ORG_36 (Less than DL)
41	S_ORG_37	Char	12	486	12.	Flag for ORG_37 (Less than DL)
42	S_ORG_38	Char	12	498	12.	Flag for ORG_38 (Less than DL)
43	S_ORG_39	Char	12	510	12.	Flag for ORG_39 (Less than DL)
45	S_ORG_40	Char	12	534	12.	Flag for ORG_40 (Less than DL)
46	S_ORG_41	Char	12	546	12.	Flag for ORG_41 (Less than DL)
47	S_ORG_42	Char	12	558	12.	Flag for ORG_42 (Less than DL)
48	S_ORG_43	Char	12	570	12.	Flag for ORG_43 (Less than DL)
49	S_ORG_44	Char	12	582	12.	Flag for ORG_44 (Less than DL)
50	S_ORG_45	Char	12	594	12.	Flag for ORG_45 (Less than DL)
165	S_ORG_46	Char	12	1974	12.	Flag for ORG_46 (Less than DL)
51	S_ORG_47	Char	12	606	12.	Flag for ORG_47 (Less than DL)
52	S_ORG_48	Char	12	618	12.	Flag for ORG_48 (Less than DL)
166	S_ORG_49	Char	12	1986	12.	Flag for ORG_49 (Less than DL)
54	S_ORG_50	Char	12	642	12.	Flag for ORG_50 (Less than DL)
55	S_ORG_51	Char	12	654	12.	Flag for ORG_51 (Less than DL)
56	S_ORG_52	Char	12	666	12.	Flag for ORG_52 (Less than DL)
57	S_ORG_53	Char	12	678	12.	Flag for ORG_53 (Less than DL)
58	S_ORG_54	Char	12	690	12.	Flag for ORG_54 (Less than DL)
59	S_ORG_55	Char	12	702	12.	Flag for ORG_55 (Less than DL)
60	S_ORG_56	Char	12	714	12.	Flag for ORG_56 (Less than DL)
61	S_ORG_57	Char	12	726	12.	Flag for ORG_57 (Less than DL)
62	S_ORG_58	Char	12	738	12.	Flag for ORG_58 (Less than DL)
63	S_ORG_59	Char	12	750	12.	Flag for ORG_59 (Less than DL)
65	S_0RG_60	Char	12	774	12.	Flag for ORG_60 (Less than DL)
66	S_ORG_61	Char	12	786	12.	Flag for ORG_61 (Less than DL)
67	S ORG 62	Char	12	798	12.	Flag for ORG 62 (Less than DL)
5.	_ 0 0L	~	•-		•	vvi vvin vm (mese sile)! Vm)

#	Variable	Туре	Len	Pos	Format	Label
68	S_ORG_63	Char	12	810	12.	Flag for ORG_63 (Less than DL)
69	S_ORG_64	Char	12	822	12.	Flag for ORG_64 (Less than DL)
70	S_ORG_66	Char	12	834	12.	Flag for ORG_66 (Less than DL)
71	S_ORG_67	Char	12	846	12.	Flag for ORG_67 (Less than DL)
72	S_ORG_68	Char	12	858	12.	Flag for ORG_68 (Less than DL)
73	S_ORG_69	Char	12	870	12.	Flag for ORG_69 (Less than DL)
75	S_ORG_70	Char	12	894	12.	Flag for ORG_70 (Less than DL)
76	S_ORG_71	Char	12	906	12.	Flag for ORG_71 (Less than DL)
77	S_ORG_72	Char	12	918	12.	Flag for ORG_72 (Less than DL)
78	S_ORG_73	Char	12	930	12.	Flag for ORG_73 (Less than DL)
79	S_ORG_74	Char	12	942	12.	Flag for ORG_74 (Less than DL)
80	S_ORG_75	Char	12	954	12.	Flag for ORG_75 (Less than DL)
81	S_ORG_76	Char	12	966	12.	Flag for ORG_76 (Less than DL)
82	S_ORG_77	Char	12	978	12.	Flag for ORG_77 (Less than DL)
83	S_ORG_78	Char	12	990	12.	Flag for ORG_78 (Less than DL)
84	S_ORG_79	Char	12	1002	12.	Flag for ORG_79 (Less than DL)
86	S_ORG_80	Char	12	1026	12.	Flag for ORG_80 (Less than DL)
87	S_ORG_81	Char	12	1038	12.	Flag for ORG_81 (Less than DL)
88	S_ORG_82	Char	12	1050	12.	Flag for ORG_82 (Less than DL)
89	S_ORG_83	Char	12	1062	12.	Flag for ORG_83 (Less than DL)
90	S_ORG_84	Char	12	1074	12.	Flag for ORG_84 (Less than DL)
91	S_ORG_85	Char	12	1086	12.	Flag for ORG_85 (Less than DL)
92	S_ORG_86	Char	12	1098	12.	Flag for ORG_86 (Less than DL)
93	S_ORG_87	Char	12	1110	12.	Flag for ORG_87 (Less than DL)
167	S_ORG_88	Char	12	1998	12.	Flag for ORG_88 (Less than DL)
94	S_ORG_89	Char	12	1122	12.	Flag for ORG_89 (Less than DL)
96	S_ORG_90	Char	12	1146	12.	Flag for ORG_90 (Less than DL)
97	S_ORG_91	Char	12	1158	12.	Flag for ORG_91 (Less than DL)
98	S_ORG_92	Char	12	1170	12.	Flag for ORG_92 (Less than DL)
99	S_ORG_93	Char	12	1182	12.	Flag for ORG_93 (Less than DL)
100	S_ORG_94	Char	12	1194	12.	Flag for ORG_94 (Less than DL)
101	S_ORG_95	Char	12	1206	12.	Flag for ORG_95 (Less than DL)
102	S_ORG_96	Char	12	1218	12.	Flag for ORG_96 (Less than DL)
103	S_ORG_97	Char	12	1230	12.	Flag for ORG_97 (Less than DL)
168	S_O_194	Char	12	2010	12.	Flag for O_194 (Less than DL)
169	S_O_195	Char	12	2022	12.	Flag for O_195 (Less than DL)
170	S_0_196	Char	12	2034	12.	Flag for O_196 (Less than DL)
171	S_O_200	Char	12	2046	12.	Flag for O_200 (Less than DL)
172	S_O_201	Char	12	2058	12.	Flag for O_201 (Less than DL)
- 173	S_O_203	Char	12	2070	12.	Flag for O_203 (Less than DL)
174	S_O_205	Char	12	2082	12.	Flag for O_205 (Less than DL)
104	S_P1016	Char	12	1242	12.	Flag for P1016 (Less than DL)
105	S_P1221	Char	12	1254	12.	Flag for P1221 (Less than DL)
106	S_P1232	Char	12	1266	12.	Flag for P1232 (Less than DL)
107	S_P1242	Char	12	1278	12.	Flag for P1242 (Less than DL)
108	S_P1248	Char	12	1290	12.	Flag for P1248 (Less than DL)
109	S_P1254	Char	12	1302	12.	Flag for P1254 (Less than DL)
110	_ S_P1260	Char	12	1314	12.	Flag for P1260 (Less than DL)
111	S_PB	Char	12	1326	12.	Flag for PB (Less than DL)
175	S_PCB	Char	12	2094	12.	Flag for PCB (Less than DL)
176	S_PES_1	Char	12	2106	12.	Flag for PES_1 (Less than DL)
180	S PES 2	Char	12	2154	12.	Flag for PES 2 (Less than DL)
_	_		_	-		····· - ··· -

#	Variable	Type	Len	Pos	Format	Label
186	S_PES_3	Char	12	2226	12.	Flag for PES_3 (Less than DL)
124	S_PES_4	Char	12	1482	12.	Flag for PES_4 (Less than DL)
125	S_PES_5	Char	12	1494	12.	Flag for PES_5 (Less than DL)
126	S_PES_6	Char	12	1506	12.	Flag for PES_6 (Less than DL)
127	S_PES_7	Char	12	1518	12.	Flag for PES_7 (Less than DL)
128	S_PES_8	Char	12	1530	12.	Flag for PES_8 (Less than DL)
129	S_PES_9	Char	12	1542	12.	Flag for PES_9 (Less than DL)
112	S_PES_10	Char	12	1338	12.	Flag for PES_10 (Less than DL)
177	S_PES_11	Char	12	2118	12.	Flag for PES_11 (Less than DL)
178	S_PES_12	Char	12	2130	12.	Flag for PES_12 (Less than DL)
113	S_PES_13	Char	12	1350	12.	Flag for PES_13 (Less than DL)
179	S_PES_14	Char	12	2142	12.	Flag for PES_14 (Less than DL)
114	S_PES_15	Char	12	1362	12.	Flag for PES_15 (Less than DL)
115	S_PES_16	Char	12	1374	12.	Flag for PES_16 (Less than DL)
116	S_PES_17	Char	12	1386	12.	Flag for PES_17 (Less than DL)
117	S_PES_18	Char	12	1398	12.	Flag for PES_18 (Less than DL)
118	S_PES_19	Char	12	1410	12.	Flag for PES_19 (Less than DL)
119	S_PES_20	Char	12	1422	12.	Flag for PES_20 (Less than DL)
120	S_PES_21	Char	12	1434	12.	Flag for PES_21 (Less than DL)
121	S_PES_22	Char	12	1446	12.	Flag for PES_22 (Less than DL)
122	S_PES_23	Char	12	1458	12.	Flag for PES_23 (Less than DL)
181	S_PES_24	Char	12	2166	12.	Flag for PES_24 (Less than DL)
182	S_PES_25	Char	12	2178	12.	Flag for PES_25 (Less than DL)
183	S_PES_26	Char	12	2190	12.	Flag for PES_26 (Less than DL)
123	S_PES_27	Char	12	1470	12.	Flag for PES_27 (Less than DL)
184	S_PES_28	Char	12	2202	12.	Flag for PES_28 (Less than DL)
185	S_PES_29	Char	12	2214	12.	Flag for PES_29 (Less than DL)
196	S_P_82	Char	12	2346	12.	Flag for P_82 (Less than DL)
197	S_P_87	Char	12	2358	12.	Flag for P_87 (Less than DL)
198	S_P_95	Char	12	2370	12.	Flag for P_95 (Less than DL)
199	S_P_99	Char	12	2382	12.	Flag for P_99 (Less than DL)
187	S_P_101	Char	12	2238	12.	Flag for P_101 (Less than DL)
188	S_P_105	Char	12	2250	12.	Flag for P_105 (Less than DL)
189	S_P_110	Char	12	2262	12.	Flag for P_110 (Less than DL)
190	S_P_114	Char	12	2274	12.	Flag for P_114 (Less than DL)
191	S_P_118	Char	12	2286	12.	Flag for P_118 (Less than DL)
192	S_P_119	Char	12	2298	12.	Flag for P_119 (Less than DL)
193	S_P_123	Char	12	2310	12.	Flag for P_123 (Less than DL)
194	S_P_126	Char	12	2322	12.	Flag for P_126 (Less than DL)
195	S_P_127	Char	12	2334	12.	Flag for P_127 (Less than DL)
130	S_SB	Char	12	1554	12.	Flag for SB (Less than DL)
131	S_SE	Char	12	1566	12.	Flag for SE (Less than DL)
200	S_SOLID	Char	12	2394	12.	Flag for SOLID (Less than DL)
132	S_TL	Char	12	1578	12.	Flag for TL (Less than DL)
201	s_Toc	Char	12	2406	12.	Flag for TOC (Less than DL)
202	S_TPH	Char	12	2418	12.	Flag for TPH (Less than DL)
203	S_T_18	Char	12	2430	12.	Flag for T_18 (Less than DL)
204	S_T_28	Char	12	2442	12.	Flag for T_28 (Less than DL)
205	S_T_37	Char	12	2454	12.	Flag for T_37 (Less than DL)
206	S_T_44	Char	12	2466	12.	Flag for T_44 (Less than DL)
207	S_T_47	Char	12	2478	12.	Flag for T_47 (Less than DL)
208	S T 49	Char	12	2490	12.	Flag for T_49 (Less than DL)

#	Variable	Туре	Len	Pos	Format	Label
209	S_T_52	Char	12	2502	12.	Flag for T_52 (Less than DL)
210	S_T_60	Char	12	2514	12.	Flag for T_60 (Less than DL)
211	S_T_66	Char	12	2526	12. Flag for T_66 (Less than DL)	
212	S_T_70	Char	12	2538	12.	Flag for T_70 (Less than DL)
213	S_T_74	Char	12	2550	12.	Flag for T_74 (Less than DL)
214	S_T_77	Char	12	2562	12.	Flag for T_77 (Less than DL)
215	S_T_80	Char	12	2574	12.	Flag for T_80 (Less than DL)
216	S_T_81	Char	12	2586	12.	Flag for T_81 (Less than DL)
133	S_ZN	Char	12	1590	12.	Flag for ZN (Less than DL)
341	TL	Num	8	3590		Thallium (mg/kg)
410	TOC	Num	8	4142		Total Organic Carbon (mg/kg)
411	TPH	Num	8	4150		Total Petroleum Hydrocarbons (mg/kg)
5	TRIB	Char	12	40	12.	CR=Christina River,DR=Delaware River
2	TYPE	Char	12	8	12.	B=Backgrnd,M=Mixing Z.,O=Outfall,W=Weir
412	T_18	Num	8	4158		18 Tri (ng/g)
413	T_28	Num	8	4166		28 Tri (ng/g)
414	T_37	Num	8	4174		37 Tri (ng/g)
415	T_44	Num	8	4182		44 Tetra (ng/g)
416	T_47	Num	8	4190		47 Tetra (ng/g)
417	T_49	Num	8	4198		49 Tetra (ng/g)
418	T_52	Num	8	4206		52 Tetra (ng/g)
419	T_60	Num	8	4214		60 Tetra (ng/g)
420	T_66	Num	8	4222		66 Tetra (ng/g)
421	T_70	Num	8	4230		70 Tetra (ng/g)
422	T_74	Num	8	4238		74 Tetra (ng/g)
423	T_77	Num	8	4246		77 Tetra (pg/g)
424	T_80	Num	8	4254		80 Tetra (ng/g)
425	T_81	Num	8	4262		81 Tetra (pg/g)
342	ZN	Num	8	3598		Zinc (mg/kg)

Varia	able	Label	N	Nmiss	Mean	Minimum	Maximum
PAGE		Report Page Number	8	0	714.0000000	669,0000000	849.0000000
DATE		Sampling Date	8	0	12193.75	12122.00	12409.00
AG		Silver (mg/kg)	8	0	1.6350000	1.0000000	4.1000000
AS		Arsenic (mg/kg)	8	0	2.8837500	1.6100000	4.2400000
] BE		Beryllium (mg/kg)	6	2	0.3300000	0.2600000	0.4200000
CD		Cadmium (mg/kg)	8	0	0.9625000	0.5000000	1.2000000
CR		Chromium (mg/kg)	8	0	17.2875000	12.2000000	25.2000000
CU		Copper (mg/kg)	8	0	15.3250000	9.5000000	24.8000000
CY		Cyanide (mg/kg)	6	2	0.0716667	0.0400000	0.1000000
" HG		Mercury (mg/kg)	8	0	0.1100000	0.0700000	0.3300000
NI		Nickel (mg/kg)	8	0	11.3375000	8.0000000	16.3000000
ORG_	10	1,2-Dichloroethene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_	11	1,2-Dichloropropane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		1,2-Diphenyl Hydrazine (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		1,2,4-Trichlorobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		1,3-Dichlorobenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		1,4 & 1,2-Dichlorobenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		1,4-Dichlorobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2-Chloronaphthalene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2-Chlorophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2-Nitrophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4-Dichlorophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4-Dimethylphenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4-Dinitrophenol (ug/kg)	6	2	1700.00	1700.00	1700.00
FORG_		2,4-Dinitrotoluene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4,6-Trichlorophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,6-Dinitrotoluene (ug/kg)	6 6	2 2	330.0000000 25.0000000	330.0000000 25.0000000	330.0000000 25.0000000
ORG_		<pre>1,1-Dichloroethane (ug/kg) 3,3'-Dichlorobenzidine (ug/kg)</pre>	6	2	660.0000000	660.0000000	660,0000000
ORG_ ORG_		4-Bromophenyl-phenylether (ug/kg)	6	2	330.0000000	330,0000000	330.0000000
ORG_		4-Chlorophenyl-phenylether (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	•	4-Nitrophenol (ug/kg)	6	2	1700.00	1700.00	1700.00
ONG_		4,6-Dinitro-2-methylphenol (ug/kg)	6	2	1700.00	1700.00	1700.00
ORG_	-	4,-Chloro-3-methylphenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	-	Acenaphthene (ug/kg)	8	0	330.0000000	330.0000000	330.0000000
ORG_	_	Acenaphthylene (ug/kg)	8	0	330.0000000	330.0000000	330.0000000
ORG_	-	Acrolein (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_		Acrylonitrile (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_		1,1-Dichloroethene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG	-	Anthracene (ug/kg)	8	0	277.5000000	110.0000000	330.0000000
ORG_	•	Benzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		Benzidine (ug/kg)	6	2	2700.00	2700.00	2700.00
ORG_	_	Benzo(a)anthracene (ug/kg)	8	0	161.1250000	72.0000000	330.0000000
ORG		Benzo(a)pyrene (ug/kg)	8	0	175.3750000	68.0000000	330,0000000
ORG_	_	Benzo(b)fluoranthene (ug/kg)	8	0	177.2500000	78.0000000	330.0000000
ORG_	_	Benzo(g,h,i)perylene (ug/kg)	8	0	266.7500000	68.0000000	330,0000000
ORG	-	Benzo(k)fluoranthene (ug/kg)	8	0	167.0000000	50.0000000	330.0000000
ORG	•	1,1,1-Trichloroethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_	_	Bis(2-chloroethoxy)methane (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG	_	Bis(2-chloroethyl)ether (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	_	Bis(2-chloroisopropyl)ether (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	_	Bis(2-ethylhexyl)phthalate (ug/kg)	6	2	340.0000000	220.0000000	530.0000000
ORG_		Bromodichloromethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
		··					

Variable	Label	N	Nmiss	Mean	Minimum	Maximum =
ORG_55	Bromoform (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_56	Bromomethane (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_57	Butlybenzylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_58	Carbon Tetrachloride (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_59	Chlorobenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_6	1,1,2-Trichloroethane (ug/kg)	6	2	25.0000000	25.0000000	25,0000000
ORG_60	Chloroethane (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_61	Chloroform (ug/kg)	6	2	25,0000000	25.0000000	25.0000000
ORG_62	Chloromethane (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_63	Chrysene (ug/kg)	8	0	192.3750000	89.0000000	330.0000000
ORG_64	Cis-1,3-Dichloropropene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_66	Dibenzo(a,h)anthracene (ug/kg)	8	0	330.0000000	330.0000000	330.0000000
ORG_67	Dibromochloromethane (ug/kg)	6	2	25,0000000	25.0000000	25.0000000
ORG_68	Diethylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_69	Dimethylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_7	1,1,2,2-Tetrachloroethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_70	Di-n-butylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_71	Di-n-octylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_72	Ethylbenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_72	Fluoranthene (ug/kg)	8	0	257.1250000	82.0000000	835.0000000
ORG_74	Fluorene (ug/kg)	8	0	272.1250000	87.0000000	330.0000000
ORG_75	Hexachlorobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_76	Hexachlorobutadiene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_77	Hexachlorocyclopentadiene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_78	Hexachloroethane (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_79	Indeno(1,2,3-c,d)pyrene (ug/kg)	8	0	259.1250000	43.0000000	330.0000000
ORG_8	1,2-Dichlorobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_80	Isophorone (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_81	Methylene Chloride (ug/kg)	6	2	30.8333333	29.0000000	33.0000000
ORG_82	Naphthalene (ug/kg)	8	0	330.0000000	330.0000000	330.0000000
ORG_83	Nitrobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_84	N-nitrosodimethylamine (ug/kg)	6	2	330.0000000	330.0000000	330,0000000
ORG_85	N-nitroso-Di-n-propylamine (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_86	N-nitrosodiphenylamine (ug/kg)	6	2	265.0000000	110.0000000	330.0000000
ORG_87	Pentachlorophenol (ug/kg)	6	2	1700.00	1700.00	1700.00
-	Phenanthrene (ug/kg)	8	0	294.7500000	98.0000000	640.0000000
ORG_89	1,2-Dichloroethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_9	Phenol (mg/kg)	6	2	1.5016667	0.1800000	7.8000000
ORG_90	Pyrene (ug/kg)	8	0	184.2500000	74.0000000	320.0000000
ORG_91	Tetrachloroethene (ug/kg)	6	2	23.1666667	14.0000000	25.0000000
ORG_92		6	2	25.0000000	25.0000000	25.0000000
ORG_93	Toluene (ug/kg)		2	25.0000000	25.0000000	25.0000000
ORG_94	Trans-1,3-Dichloropropene (ug/kg)	6 6	2			25.0000000
ORG_95	Trichloroethene (ug/kg)			25.0000000	25.0000000	
ORG_96	Trichlorofluoromethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_97	Vinyl Chloride (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
P1016	PCB-1016 (ug/kg)	8	0	320.0000000	80.0000000	400.0000000
P1221	PCB-1221 (ug/kg)	8	0	320.0000000	80.0000000	400.0000000
P1232	PCB-1232 (ug/kg)	8	0	320.0000000	80.0000000	400.0000000
P1242	PCB-1242 (ug/kg)	8	0	320.0000000	80.0000000	400.0000000
P1248	PCB-1248 (ug/kg)	8	0	320.0000000	80.0000000	400.0000000
P1254	PCB-1254 (ug/kg)	8	0	640.0000000	160.0000000	800.0000000
P1260	PCB-1260 (ug/kg)	8	0	640.0000000	160.0000000	800.0000000
PB	Lead (mg/kg)	8	0 	28.4000000	13.8000000	42.1000000

Maringan Casalini Land	Variable	Label	N	Nmiss	Mean	Minimum	Maximum
	PES_10	Chlordane (ug/kg)	6	2	400.0000000	400.0000000	400.0000000
Stokesmich.	PES_13	D-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
Section 2	PES_15	Dieldrin (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
	PES_16	Endosulfan I (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
- Paritiment	PES_17	Endosulfan II (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
SANSSAN	PES_18	Endosulfan sulfate (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
	PES_19	Endrin (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
N. Spiroto	PES_20	Endrin aldehyde (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
Application of the state of the	PES_21	G-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
,3	PES_22	Heptachlor (ug/kg)	8	0	32,0000000	8.0000000	40.0000000
T g	PES_23	Heptachlor epoxide (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
SECTION SECTIONS	PES_27	Toxaphene (ug/kg)	8	0	640.0000000	160.0000000	800.0000000
.3	PES_4	4,4'-DDD (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
4	PES_5	4,4'-DDE (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
Secure	PES_6	4,4'-DDT (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
À	PES_7	A-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
4	PES_8	Aldrin (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
accessions:	PES_9	B-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
	SB	Antimony (mg/kg)	6	2	0.2000000	0.2000000	0.2000000
	SE	Selenium (mg/kg)	8	0	0.2480000	0.2000000	0.3510000
aparomited.	TL	Thallium (mg/kg)	6	2	0.2000000	0.2000000	0.2000000
Popular Programme Programm	ZN	Zinc (mg/kg)	8	. 0	91.3000000	52.3000000	150.0000000
	D_209	209 Deca (ng/g)	2	6	3.1300000	3.1300000	3,1300000
Sales Andreas	D_8	8 Di (ng/g)	2	6	1.5600000	1.5600000	1.5600000
Augustan A	H38_58	138,158 Hexa (ng/g)	2	6	5.2750000	4.7500000	5.8000000
	H70_90	170,190 Hepta (ng/g)	2	6	3.1300000	3.1300000	3.1300000
S. S. S. Gand	H_128	128 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
and my and	H_137	137 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
,	H_149	149 Hexa (ng/g)	2	6	1.0000000	1.0000000	1.0000000
Sitting	H_151	151 Hexa (ng/g)	2	6	1.5600000	1.5600000	1.5600000
monopole (con	H_153	153 Hexa (ng/g)	2	6	3.3100000	2.9400000	3.6800000
3	H_156	156 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
3	H_157	157 Hexa (ng/g)	2	6	1.2000000	1.2000000	1.2000000
Constitution	H_166	166 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
	H_167	167 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
**	H_168	168 Hexa (ng/g)	2	6	1.0900000	1.0900000	1.0900000
Age Manage	H_169	169 Hexa (pg/g)	2	6	1.6650000	1.4900000	1.8400000
2	H_177	177 Hepta (ng/g)	2	6	1.5000000	1.5000000	1.5000000
	H_179	179 Hepta (ng/g)	2	6	1.5000000	1.5000000	1.5000000
a Sile Constinue	H_180	180 Hepta (ng/g)	2	6	2.0150000	1.7700000	2.2600000
No.	H_183	183 Hepta (ng/g)	2	6	1.8800000	1.8800000	1.8800000
	H_185	185 Hepta (ng/g)	2	6	1.8800000	1.8800000	1.8800000
ettrasion.	H_187	187 Hepta (ng/g)	2	6	1.0380000	0.9560000	1.1200000
	H_189	189 Hepta (ng/g)	2	6	1.8800000	1.8800000	1.8800000
	_ H_191	191 Hepta (ng/g)	2	6	1.3700000	1.3700000	1.3700000
, and the same	N_206	206 Nona (ng/g)	2	6	3.1000000	3.1000000	3.1000000
Asyconomic	N_207	207 Nona (ng/g)	2	6	1.8800000	1.8800000	1.8800000
	N_208	208 Nona (ng/g)	2	6	2.0000000	2.0000000	2.0000000
Accessor.	ORG_1	1-Methylnaphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
Newsons of the second	ORG_2	1-Methylphenanthrene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
A.	ORG_20	2-Methylnaphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
contract	ORG_22	2,3,5-Trimethyl-naphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
* Charles and the Control of the Con	ORG_28	2,6-Dimethylnaphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
ORG_46	Benzo(e)pyrene (ug/kg)	2	6	54.0000000	51.0000000	57.0000000
ORG_49	Biphenyl (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
ORG_88	Perylene (ug/kg)	2	6	330.0000000	330.0000000	330,0000000
0_194	194 Octa (ng/g)	2	6	1.8800000	1.8800000	1.8800000
0_195	195 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_196	196 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_200	200 Octa (ng/g)	2	6	1.8800000	1.8800000	1.8800000
0_201	201 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_203	203 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_205	205 Octa (ng/g)	2	6	1.8800000	1.8800000	1.8800000
PCB	PCB's (ng/g)	2	6	27.4000000	25.6000000	29.2000000
PES_1	2,4'-DDD (ug/kg)	2	6	16.0000000	16.0000000	16.0000000
PES_11	Cis-chlordane (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_12	Cis-nonachlor (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_14	Dicofol (ug/kg)	2	6	0.0800000	0.0800000	0.0800000
PES_2	2,4'-DDE (ug/kg)	2	6	16.0000000	16,0000000	16.0000000
PES_24	Hexychlorobenzene (ug/kg)	2	6	16.0000000	16.0000000	16.0000000
PES_25	Mirex (ug/kg)	2	6	0.0200000	0.0200000	0.0200000
PES_26	Oxychlordane (ug/kg)	2	6	2.3550000	2.3500000	2.3600000
PES_28	Trans-chlordane (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_29	Trans-nonachlor (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_3	2,4'-DDT (ug/kg)	2	´ 6	16.0000000	16.0000000	16.0000000
P_101	101 Penta (ng/g)	2	6	3.4900000	3.3000000	3.6800000
P_105	105 Penta (ng/g)	2	6	1.2500000	1.2500000	1,2500000
P_110	110 Penta (ng/g)	2	6	2.8500000	1.5600000	4.1400000
P_114	114 Penta (ng/g)	2	6	1.2500000	1.2500000	1.2500000
P_118	118 Penta (ng/g)	2	6	4.1100000	3.5900000	4.6300000
P_119	119 Penta (ng/g)	2	6	1.5600000	1.5600000	1.5600000
P_123	123 Penta (ng/g)	2	6	1.0400000	1.0400000	1.0400000
P_126	126 Penta (pg/g)	2	6	11.2500000	11.1000000	11.4000000
P_127	127 Penta (ng/g)	2	6	1.0000000	1.0000000	1.0000000
P_82	82 Penta (ng/g)	2	6	1.5600000	1.5600000	1.5600000
P_87	87 Penta (ng/g)	2	6	1.2500000	1.2500000	1.2500000
P_95	95 Penta (ng/g)	2	6	1.5600000	1.5600000	1.5600000 0.7000000
P_99	99 Penta (ng/g)	2	6 6	0.7000000 27.0000000	0.7000000 27.0000000	27.000000
SOLID	% Solids (%)	2	6	8500.00	8000.00	9000.00
TOC	Total Organic Carbon (mg/kg) Total Petroleum Hydrocarbons (mg/kg)	2	6	242.5000000	228.0000000	257.0000000
TPH	18 Tri (ng/g)	2	6	0.6300000	0.6300000	0.6300000
T_18 T_28	28 Tri (ng/g)	2	6	1.6700000	1.4800000	1.8600000
T_37	37 Tri (ng/g)	2	6	1.5600000	1,5600000	1.5600000
T_44	44 Tetra (ng/g)	2	6	1.2500000	1.2500000	1.2500000
T_47	47 Tetra (ng/g)	2	6	1.4100000	1,4100000	1,4100000
T_49	49 Tetra (ng/g)	2	6	1.5600000	1.5600000	1.5600000
T_52	52 Tetra (ng/g)	2	6	1.2500000	1.2500000	1.2500000
T_60	60 Tetra (ng/g)	2	6	1.5600000	1.5600000	1.5600000
T_66	66 Tetra (ng/g)	2	6	1,6300000	1.6300000	1.6300000
T_70	70 Tetra (ng/g)	2	6	1.4200000	1.4200000	1.4200000
T_74	74 Tetra (ng/g)	2	6	1.2500000	1.2500000	1.2500000
1_7 - 1_77	77 Tetra (ng/g)	2	6	102.0500000	73,1000000	131.0000000
T_80	80 Tetra (ng/g)	2	6	1.5600000	1.5600000	1.5600000
T_81	81 Tetra (pg/g)	2	6	2.6600000	2.0300000	3.2900000
	' (618)			_,		

CONTENTS PROCEDURE

Data Set Name: WORK.SED Observations: 8 Variables: 425 Member Type: DATA Engine: V611 Indexes: 0 4270 10:36 Wednesday, February 19, 1997 Observation Length: Created: Deleted Observations: 0 Last Modified: 10:36 Wednesday, February 19, 1997 Protection: Compressed: NO Sorted: NO Data Set Type:

Label:

-----Engine/Host Dependent Information----

Data Set Page Size: 13312

Number of Data Set Pages: 7

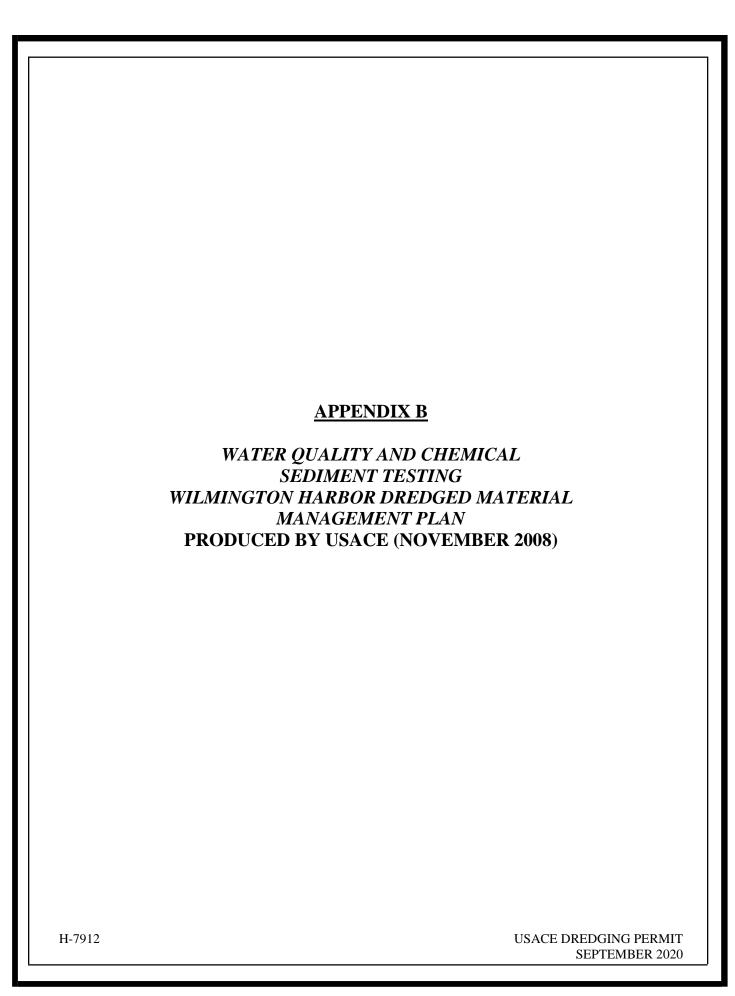
File Format: 607

First Data Page: 5

Max Obs per Page: 3

Obs in First Data Page: 3

-----Alphabetic List of Variables and Attributes-----


			•			
#	Variable	Туре	Len	Pos	Format 	Label
217	AG	Num	8	2598		Silver (mg/kg)
218	AS	Num	8	2606		Arsenic (mg/kg)
219	BE	Num	8	2614		Beryllium (mg/kg)
220	CD	Num	8	2622		Cadmium (mg/kg)
7	COMMENT	Char	26	64	26.	Sample Comment
221	CR	Num	8	2630		Chromium (mg/kg)
222	CU	Num	8	2638		Copper (mg/kg)
223	CY	Num	8	2646		Cyanide (mg/kg)
4	DATE	Num	8	32	MMDDYY8.	Sampling Date
344	D_8	Num	8	3614		8 Di (ng/g)
343	D_209	Num	8	3606		209 Deca (ng/g)
345	H38_58	Num	8	3622		138,158 Hexa (ng/g)
346	H70_90	Num	8	3630		170,190 Hepta (ng/g)
224	HG	Num	8	2654		Mercury (mg/kg)
347	H_128	Num	8	3638		128 Hexa (ng/g)
348	H 137	Num	8	3646		137 Hexa (ng/g)
349	H_149	Num	8	3654		149 Hexa (ng/g)
350	H_151	Num	8	3662		151 Hexa (ng/g)
351	H_153	Num	8	3670		153 Hexa (ng/g)
352	H_156	Num	8	3678		156 Hexa (ng/g)
353	H_157	Num	8	3686		157 Hexa (ng/g)
354	н_166	Num	8	3694		166 Hexa (ng/g)
355	H_167	Num	8	3702		167 Hexa (ng/g)
356	H_168	Num	8	3710		168 Hexa (ng/g)
357	H_169	Num	8	3718		169 Hexa (pg/g)
358	H_1 7 7	Num	8	3726		177 Hepta (ng/g)
359	H_179	Num	8	3734		179 Hepta (ng/g)
360	H_180	Num	8	3742		180 Hepta (ng/g)
361	H_183	Num	8	3750		183 Hepta (ng/g)
362	H_185	Num	8	3758		185 Hepta (ng/g)
363	H_187	Num	8	3766		187 Hepta (ng/g)
364	H_189	Num	8	3774		189 Hepta (ng/g)

#	Variable	Type	Len	Pos	Format	Label
365	H_191	Num	8	3782		191 Hepta (ng/g)
225	NI	Num	8	2662		Nickel (mg/kg)
366	N_206	Num	8	3790		206 Nona (ng/g)
367	N_207	Num	8	3798		207 Nona (ng/g)
368	N_208	Num	8	3806		208 Nona (ng/g)
369	ORG_1	Num	8	3814		i-Methylnaphthalene (ug/kg)
370	ORG_2	Num	8	3822		1-Methylphenanthrene (ug/kg)
242	ORG_3	Num	8	2798		1,1-Dichloroethane (ug/kg)
253	ORG_4	Num	8	2886		1,1-Dichloroethene (ug/kg)
262	ORG_5	Num	8	2958		1,1,1-Trichloroethane (ug/kg)
273	ORG_6	Num	8	3046		1,1,2-Trichloroethane (ug/kg)
283	ORG_7	Num	8	3126		1,1,2,2-Tetrachloroethane (ug/kg)
294	ORG_8	Num	8	3214		1,2-Dichlorobenzene (ug/kg)
304	ORG_9	Num	8	3294		1,2-Dichloroethane (ug/kg)
226	ORG_10	Num	8	2670		1,2-Dichloroethene (ug/kg)
227	ORG_11	Num	8	2678		1,2-Dichloropropane (ug/kg)
228	ORG_12	Num	8	2686		1,2-Diphenyl Hydrazine (ug/kg)
229	ORG_13	Num	8	2694		1,2,4-Trichlorobenzene (ug/kg)
230	ORG_14	Num	8	2702	,	1,3-Dichlorobenzene (ug/kg)
231	ORG_15	Num	8	2710		1,4 & 1,2-Dichlorobenzene (ug/kg)
232	ORG_16	Num	8	2718		1,4-Dichlorobenzene (ug/kg)
233	ORG_18	Num	8	2726		2-Chloronaphthalene (ug/kg)
234	ORG_19	Num	8	2734		2-Chlorophenol (ug/kg)
371	ORG_20	Num	8	3830		2-Methylnaphthalene (ug/kg)
235	ORG_21	Num	8	2742		2-Nitrophenol (ug/kg)
372	ORG_22	Num	8	3838		2,3,5-Trimethyl-naphthalene (ug/kg)
236	ORG_23	Num	8	2750		2,4-Dichlorophenol (ug/kg)
237	ORG_24	Num	8	2758		2,4-Dimethylphenol (ug/kg)
238	ORG_25	Num	8	2766		2,4-Dinitrophenol (ug/kg)
239	ORG_26	Num	8	2774		2,4-Dinitrotoluene (ug/kg)
240	ORG_27	N⊔m	8	2782		2,4,6-Trichlorophenol (ug/kg)
373	ORG_28	Num	8	3846		2,6-Dimethylnaphthalene (ug/kg)
241	ORG_29	Num	8	2790		<pre>2,6-Dinitrotoluene (ug/kg) 3,3'-Dichlorobenzidine (ug/kg)</pre>
243	ORG_30	Num	8	2806		4-Bromophenyl-phenylether (ug/kg)
244	ORG_31	Num	8	2814		
245	ORG_32	Num	8	2822		<pre>4-Chlorophenyl-phenylether (ug/kg) 4-Nitrophenol (ug/kg)</pre>
246	ORG_33	Num	8	2830		4,6-Dinitro-2-methylphenol (ug/kg)
247	ORG_34	Num	8	2838		4,-Chloro-3-methylphenol (ug/kg)
248	ORG_35	Num	8	2846		Acenaphthene (ug/kg)
273	ORG_36	Num	8	2854		Acenaphthene (ug/kg) Acenaphthylene (ug/kg)
250	ORG_37	Num	8	2862		• • • • • • • • • • • • • • • • • • • •
251	ORG_38	Num	8	2870		Acrolein (ug/kg)
252	ORG_39	Num	8	2878		Acrylonitrile (ug/kg)
254	ORG_40	Num	8	2894		Anthracene (ug/kg)
255	ORG_41	Num	8	2902		Benzene (ug/kg)
256	ORG_42	Num	8	2910		Benzidine (ug/kg)
257	ORG_43	Num	8	2918		Benzo(a)anthracene (ug/kg)
258	ORG_44	Num	8	2926		Benzo(a)pyrene (ug/kg)
259	ORG_45	Num	8	2934		Benzo(b)fluoranthene (ug/kg)
374	ORG_46	Num	8	3854		Benzo(e)pyrene (ug/kg)
260	ORG_47	Num	8	2942		Benzo(g,h,i)perylene (ug/kg)

#	Variable	Туре	Len	Pos	Format	Label
375	ORG_49	Num	8	3862	•	Biphenyl (ug/kg)
263	ORG_50	Num	8	2966		Bis(2-chloroethoxy)methane (ug/kg)
264	ORG_51	Num	8	2974		Bis(2-chloroethyl)ether (ug/kg)
265	ORG_52	Num	8	2982		Bis(2-chloroisopropyl)ether (ug/kg)
266	ORG_53	Num	8	2990		Bis(2-ethylhexyl)phthalate (ug/kg)
267	ORG_54	Num	8	2998		Bromodichloromethane (ug/kg)
268	ORG_55	Num	8	3006		Bromoform (ug/kg)
269	ORG_56	Num	8	3014		Bromomethane (ug/kg)
270	ORG_57	Num	8	3022		Butlybenzylphthalate (ug/kg)
271	ORG_58	Num	8	3030		Carbon Tetrachloride (ug/kg)
272	ORG_59	Num	8	3038		Chlorobenzene (ug/kg)
274	ORG_60	Num	8	3054		Chloroethane (ug/kg)
275	ORG_61	Num	8	3062		Chloroform (ug/kg)
276	ORG_62	Num	8	3070		Chloromethane (ug/kg)
277	ORG_63	Num	8	3078		Chrysene (ug/kg)
278	ORG_64	Num	8	3086		Cis-1,3-Dichloropropene (ug/kg)
279	ORG_66	Num	8	3094		Dibenzo(a,h)anthracene (ug/kg)
280	ORG_67	Num	8	3102		Dibromochloromethane (ug/kg)
281	ORG_68	Num	8	3110		Diethylphthalate (ug/kg)
282	ORG_69	Num	8	3118	,	Dimethylphthalate (ug/kg)
284	ORG_70	Num	8	3134		Di-n-butylphthalate (ug/kg)
285	ORG_71	Num	8	3142		Di-n-octylphthalate (ug/kg)
286	ORG_72	Num	8	3150		Ethylbenzene (ug/kg)
287	ORG_73	Num	8	3158		Fluoranthene (ug/kg)
288	ORG_74	Num	8	3166		Fluorene (ug/kg)
289	ORG_75	Num	8	3174		Hexachlorobenzene (ug/kg)
290	ORG_76	Num	8	3182		Hexachlorobutadiene (ug/kg)
291	ORG_77	Num	8	3190		Hexachlorocyclopentadiene (ug/kg)
292	ORG_78	Num	8	3198		Hexachloroethane (ug/kg)
293	ORG_79	Num	8	3206		Indeno(1,2,3-c,d)pyrene (ug/kg)
295	ORG_80	Num	8	3222		Isophorone (ug/kg)
296	ORG_81	Num	8	3230		Methylene Chloride (ug/kg)
297	ORG_82	Num	8	3238		Naphthalene (ug/kg)
298	ORG_83	Num	8	3246		Nitrobenzene (ug/kg)
299	ORG_84	Num	8	3254	•	N-nitrosodimethylamine (ug/kg)
300	ORG_85	Num	8	3262		N-nitroso-Di-n-propylamine (ug/kg)
301	ORG_86	Num	8	3270		N-nitrosodiphenylamine (ug/kg)
302	ORG_87	Num	8	3278		Pentachlorophenol (ug/kg)
376	ORG_88	Num	8	3870		Perylene (ug/kg)
303	ORG_89	Num	8	3286		Phenanthrene (ug/kg)
305	ORG_90	Num	8	3302		Phenol (mg/kg)
306	ORG_91	Num	8	3310		Pyrene (ug/kg)
307	ORG_92	Num	8	3318		Tetrachloroethene (ug/kg)
308	ORG_93	Num	8	3326		Toluene (ug/kg)
309	ORG_94	Num	8	3334		Trans-1,3-Dichloropropene (ug/kg)
310	ORG_95	Num	8	3342		Trichloroethene (ug/kg)
311	ORG_96	Num	8	3350		Trichlorofluoromethane (ug/kg)
312	ORG_97	Num	8	3358		Vinyl Chloride (ug/kg)
377	O_194	Num	8	3878		194 Octa (ng/g)
378	0_195	Num	8	3886		195 Octa (ng/g)
379	0 196	Num	8	3894		196 Octa (ng/g)
380	0 800	Num	8	3902		200 Octa (ng/g)

#	Variable	Туре	Len	Pos	Format	Label
381	0_201	Num	8	3910		201 Octa (ng/g)
382	0_203	Num	8	3918		203 Octa (ng/g)
383	0_205	Num	8	3926		205 Octa (ng/g)
313	P1016	Num	8	3366		PCB-1016 (ug/kg)
314	P1221	Num	8	3374		PCB-1221 (ug/kg)
315	P1232	Num	8	3382		PCB-1232 (ug/kg)
316	P1242	Num	8	3390		PCB-1242 (ug/kg)
317	P1248	Num	8	3398		PCB-1248 (ug/kg)
318	P1254	Num	8	3406		PCB-1254 (ug/kg)
319	P1260	Num	8	3414		PCB-1260 (ug/kg)
1	PAGE	Num	8	0		Report Page Number
320	PB	Num	8	3422		Lead (mg/kg)
384	PCB	Num	8	3934		PCB's (ng/g)
6	PERIOD	Char	12	52	12.	Dredging (PRE,D=During,POST,Drawdown)
385	PES_1	Num	8	3942		2,4'-DDD (ug/kg)
389	PES_2	Num	8	3974		2,4'-DDE (ug/kg)
395	PES_3	Num	8	4022		2,4'-DDT (ug/kg)
333	PES_4	Num	8	3526		4,4'-DDD (ug/kg)
334	PES_5	Num	8	3534		4,4'-DDE (ug/kg)
335	PES_6	Num	8	3542	•	4,4'-DDT (ug/kg)
336	PES_7	Num	8	3550		A-BHC (ug/kg)
337	PES_8	Num	8	3558		Aldrin (ug/kg)
338	PES_9	Num	8	3566		B-BHC (ug/kg)
321	PES_10	Num	8	3430		Chlordane (ug/kg)
386	PES_11	Num	8	3950		Cis-chlordane (ug/kg)
387	PES_12	Num	8	3958		Cis-nonachlor (ug/kg)
322 388	PES_13	Num	8 8	3438 3966		D-BHC (ug/kg) Dicofol (ug/kg)
323	PES_14	Num Num	8	3446		Dieldrin (ug/kg)
323	PES_15	Num	8	3454		Endosulfan I (ug/kg)
325	PES_16 PES_17	Num	8	3462		Endosulfan II (ug/kg)
326	PES_17	Num	8	3470		Endosulfan sulfate (ug/kg)
327	PES_19	Num	8	3478		Endrin (ug/kg)
328	PES_20	Num	8	3486		Endrin aldehyde (ug/kg)
329	PES_21	Num	8	3494		G-BHC (ug/kg)
330	PES_22	Num	8	3502		Heptachlor (ug/kg)
331	PES_23	Num	8	3510		Heptachlor epoxide (ug/kg)
390	PES_24	Num	8	3982		Hexychlorobenzene (ug/kg)
391	PES_25	Num	8	3990		Mirex (ug/kg)
. 392	PES_26	Num	8	3998		Oxychlordane (ug/kg)
332	PES_27	Num	8	3518		Toxaphene (ug/kg)
393	PES_28	Num	8	4006		Trans-chlordane (ug/kg)
394	PES_29	Num	8	4014		Trans-nonachlor (ug/kg)
405	P_82	Num	8	4102		82 Penta (ng/g)
406	P_87	Num	8	4110		87 Penta (ng/g)
407	P_95	Num	8	4118		95 Penta (ng/g)
408	P_99	Num	8	4126		99 Penta (ng/g)
396	P_101	Num	8	4030		101 Penta (ng/g)
397	P_105	Num	8	4038		105 Penta (ng/g)
398	P_110	Num	8	4046		110 Penta (ng/g)
399	P_114	Num	8	4054		114 Penta (ng/g)
400	P 118	Num	8	4062		118 Penta (ng/g)

#	Variable	Туре	Len	Pos	Format	Label
401	P_119	Num	8	4070		119 Penta (ng/g)
402	P_123	Num	8	4078		123 Penta (ng/g)
403	P_126	Num	8	4086		126 Penta (pg/g)
404	P_127	Num	8	4094		127 Penta (ng/g)
339	SB	Num	8	3574		Antimony (mg/kg)
340	SE	Num	8	3582		Selenium (mg/kg)
409	SOLID	Num	8	4134		% Solids (%)
3	STATION	Char	12	20	12.	Sampling Station
8	S_AG	Char	12	90	12.	Flag for AG (Less than DL)
9	s_As	Char	12	102	12.	Flag for AS (Less than DL)
10	S_BE	Char	12	114	12.	Flag for BE (Less than DL)
11	s_cd	Char	12	126	12.	Flag for CD (Less than DL)
12	s_cr	Char	12	138	12.	Flag for CR (Less than DL)
13	s_cu	Char	12	150	12.	Flag for CU (Less than DL)
14	s_cy	Char	12	162	12.	Flag for CY (Less than DL)
135	s_D_8	Char	12	1614	12.	Flag for D_8 (Less than DL)
134	S_D_209	Char	12	1602	12.	Flag for D_209 (Less than DL)
136	S H38_58	Char	12	1626	12.	Flag for H38 58 (Less than DL)
137	S_H70_90	Char	12	1638	12.	Flag for H70_90 (Less than DL)
15	S_HG	Char	12	174	12.	Flag for HG (Less than DL)
138	S_H_128	Char	12	1650	12.	Flag for H_128 (Less than DL)
139	S_H_137	Char	12	1662	12.	Flag for H_137 (Less than DL)
140	S_H_149	Char	12	1674	12.	Flag for H_149 (Less than DL)
141	S_H_151	Char	12	1686	12.	Flag for H_151 (Less than DL)
142	S_H_153	Char	12	1698	12.	Flag for H_153 (Less than DL)
143	S_H_156	Char	12	1710	12.	Flag for H_156 (Less than DL)
144	S_H_157	Char	12	1722	12.	Flag for H_157 (Less than DL)
145	S_H_166	Char	12	1734	12.	Flag for H_166 (Less than DL)
146	S_H_167	Char	12	1746	12.	Flag for H_167 (Less than DL)
147	S_H_168	Char	12	1758	12.	Flag for H_168 (Less than DL)
148		Char	12	1770	12.	Flag for H_169 (Less than DL)
149	S_H_169	Char	12	1782	12.	Flag for H_177 (Less than DL)
	S_H_177	Char	12	1794	12.	Flag for H_179 (Less than DL)
150	S_H_179		12	1806	12.	Flag for H_180 (Less than DL)
151	S_H_180	Char				——————————————————————————————————————
152	S_H_183	Char	12	1818	12.	Flag for H_183 (Less than DL)
153	S_H_185	Char	12	1830	12.	Flag for H_185 (Less than DL)
154	S_H_187	Char	12	1842	12.	Flag for H_187 (Less than DL)
155	S_H_189	Char	12	1854	12.	Flag for H_189 (Less than DL)
156	S_H_191	Char	12	1866	12.	Flag for H_191 (Less than DL)
16	S_NI	Char	12	186	12.	Flag for NI (Less than DL)
157	S_N_206	Char	12	1878	12.	Flag for N_206 (Less than DL)
158	S_N_207	Char	12	1890	12.	Flag for N_207 (Less than DL)
159	S_N_208	Char	12	1902	12.	Flag for N_208 (Less than DL)
160	S_ORG_1	Char	12	1914	12.	Flag for ORG_1 (Less than DL)
161	S_ORG_2	Char	12	1926	12.	Flag for ORG_2 (Less than DL)
33	s_org_3	Char	12	390	12.	Flag for ORG_3 (Less than DL)
44	S_ORG_4	Char	12	522	12.	Flag for ORG_4 (Less than DL)
53	S_ORG_5	Char	12	630	12.	Flag for ORG_5 (Less than DL)
64	S_ORG_6	Char	12	762	12.	Flag for ORG_6 (Less than DL)
74	S_ORG_7	Char	12	882	12.	Flag for ORG_7 (Less than DL)
85	S_ORG_8	Char	12	1014	12.	Flag for ORG_8 (Less than DL)
95	S ORG 9	Char	12	1134	12.	Flag for ORG 9 (Less than DL)
	_ 0		-			<u>.</u>

WATER QUALITY AND
SEDIMENT CHEMICAL TESTING
WILMINGTON HARBOR DREDGED
MATERIAL MANAGEMENT PLAN

WATER QUALITY AND SEDIMENT CHEMICAL TESTING WILMINGTON HARBOR DREDGED MATERIAL MANAGEMENT PLAN

Prepared for

U.S. Army Corps of Engineers Philadelphia District Philadelphia, PA 19107-3390

Prepared by

Katherine Dillow

Versar, Inc. 9200 Rumsey Road Columbia, MD 21045

Prepared Under the Supervision of Principal Investigator

William H. Burton

November 2008

TABLE OF CONTENTS

		Page
STU.	DY OVERVIEW AND ORGANIZATION OF DATA REPORT	1
STIM	IMARY/CONCLUSIONS	2
5011	Christina River Sediments	3
	Wilmington Harbor South CDF Soils	
	Beneficial Use of Material	4
APP:	PENDICES	
A	SEVERN TRENT LABORATORY ANALYSIS CERTIFICATES	A-1
В	GRAIN SIZE AND TOC RESULTS	B-1
Č	CORE LOGS	

LIST OF TABLES

Tabl	le No.	Page
1	Sampling coordinates for the Wilmington Harbor stations	7
2	Sampling coordinates for the Wilmington Harbor CDF stations	7
3	Testing results for sediment samples collected from Wilmington Harbor	9
4	Dissolved modified elutriate testing results for samples collected from Wilmington Harbor	14
5	Background and site water testing results for samples collected from Wilmington Harbor	19
6	Dissolved PCB congener testing results for samples collected from Wilmington Harbor	20
7	Dissolved PCB congeners totals results for samples collected from Wilmington Harbor	24
8	TCLP testing results for samples collected from Wilmington Harbor	28
9	Testing results for samples collected from Wilmington Harbor CDF	32
10	PCB congener testing results for samples collected from Wilmington Harbor CDF	33
11	PCB congener totals testing results for samples collected from Wilmington Harbor CDF	36
12	TCLP testing results for samples collected from Wilmington Harbor CDF	40

STUDY OVERVIEW AND ORGANIZATION OF DATA REPORT

The U.S. Army Corps of Engineers, Philadelphia District is completing a Dredged Material Management Plan (DMMP) for Wilmington Harbor, New Castle County, Delaware. The proposed study is investigating the possibility of beneficial use of dredged material from the federal channel, as well as, from the Wilmington South upland disposal area. The current channel has an authorized depth of 38 from the Delaware River to a point 4,237 feet upstream.

This chemical data report provides baseline conditions of the dredged material at Wilmington Harbor and its potential use in beneficial projects. The data was collected using vibracore sediment samples from eight stations within the federal channel in the Wilmington Harbor and soil cores samples from six locations within the Wilmington Harbor South disposal area (Figures 1 and 2). Soil and sediment coring locations were recorded with differential GPS (Tables 1 and 2) and the sampling was conducted in June 2008.

Vibracoring services were provided by Energy & Environmental Analysts, Inc., from Garden City, New York using a Rossfelder P-1 Electric Vibracorer with a 10' 304 stainless 3" core barrel. The barrel was lined with a 6 mil soft plastic liner that retained in place with a stainless core cutter/catcher. After retrieving the core, the plastic liners were cut longitudinally to remove VOC sub-samples. Sufficient amount of sediment cores were then transferred into 5 gallon bucket (lined with a decontaminated food quality plastic bag) and homogenized. After homogenizing, the sample was put into the appropriate container to conduct bulk sediment analysis. The remainder of the sample was retained in the bucket for modified elutriate and TCLP analysis. Grain size and TOC analysis were also conducted.

Soil sampling was conducted by Versar personnel with a 4-foot soil auger. Cores of approximately 4 feet were collected and put into a stainless steel bowls. All of the stainless steel handling equipment was decontaminated using an alconox detergent wash, DI water rinse, nitric acid rinse, DI water rinse, ethanol rinse, and DI water rinse. Prior to homogenizing, the VOC sub-sample was placed into the appropriate container. The homogenized sample was then placed into appropriate containers for bulk sedimentary chemistry, PCBs, TOC and grain size.

An equipment blank was prepared half way through the field collections by filling a lined 5 gallon bucket with laboratory grade DI water, stirring the field decontaminated stainless steel spoons in the water (the spoons used to composite and transfer sediment to sample jars). The water was then transferred to appropriate jars for later analysis. Site water was collected for testing by filling sample jars opened a few inches under the surface of the Delaware River.

SUMMARY/CONCLUSIONS

The testing for this study was done for two primary reasons: 1) to evaluate the potential environmental impacts on aquatic biota of the next scheduled maintenance dredging operating at Wilmington Harbor, Delaware and 2) to provide data on the contaminant levels within Wilmington Harbor and the Wilmington Harbor South CDF to assess whether the existing material is suitable for beneficial use such as land reclamation, road fill, land fill caps, and other non-residential uses.

Contaminant levels in bulk sediment from the river and CDF soil auger samples were compared to Delaware Natural Resources and Environmental Control (DNREC) Site Investigation and Restoration Branch Uniform Risk Based levels (URS) for soils in non critical drinking water resource protection areas. River sediments were also compared to NOAA concentrations known to cause adverse biological effects to marine organisms as summarized by Long et al. (1995). NOAA guidelines are divided into Effects Range-Low (ER-L) concentrations (where 10% of all the toxicity studies reviewed showed an adverse effect) and Effects Range-Medium (ER-M) concentrations (where 50% of all the toxicity studies showed an adverse effect). The guidelines are listed in the summary tables to provide a measure of the relative toxicity of the Christina River sediments prior to dredging. Assessments of the existing CDF's soils suitability for beneficial use and the new sediments that will be placed in the CDF was based on non-residential contaminant guidelines since it is not anticipated that the material will be used in residential settings. Residential (non-restricted) guidelines were also compared to the observed contaminant concentrations to show a range of potential human health issues. Restricted soil contaminant guidelines are typically higher than un-restricted (residential use) since human exposure to soils used in a residential setting would be higher that in an industrial use like brown field or land fill capping,

Modified elutriated testing was conducted to help assess whether aquatic biota will encounter toxic levels in the surface water during dredging operations. The dissolved contaminant results were compared to DNREC acute and chronic water quality aquatic life criteria for marine waters. Only the dissolved component was measured since water quality criteria are based on dissolved concentrations. Since dredging is a short term activity, potential toxic releases to aquatic biota were weighed against the acute criteria.

In addition, since the river sediment may leach contaminants into the groundwater once it is placed in the CDF and is also subject to acidic rainfall, the Toxicity Characteristic Leaching Procedure (TCLP) was performed on the material. TCLP tests simulate the effects of acid rain (by mixing material with acidified laboratory grade water) and measuring contaminant levels that leach out. TCLP tests were conducted on the river sediments and the existing soils in the Wilmington Harbor South soil auger samples.

Christina River Sediments

Bulk sediment testing revealed that with the exception of arsenic the contaminant levels were all below DNREC restricted URS (Table 3). Residential projects are not recommended for use of the material since a number of inorganics (aluminum, arsenic, iron and manganese) were over criteria as well as a few semivolatile organics (primarily pyrenes or coal tars) particularly from station WH1. Total PCB levels in the sediment samples were mostly below DNREC's restricted criterion of 1000 ng/kg with the exception of sediments from WH1 near the mouth of Lobell Canal (Table 5). Total PCB concentration at sediment sampling stations WH1 and WH8 were also over ER-M sediment guidelines of 180 ng/g while all other stations were over the ER-L levels. Dredging theses sediments will have a net benefit with respect to PCB toxicity since the material will be removed from the aquatic habitat. In addition, previous USACE funded studies on CDF retention rates indicated that over 99% of the PCB in dredged sediment is retained by the CDF1.

Organic and inorganic contaminant levels relative to ER-L and ER-M sediment guidelines indicate that when exceedances occurred, they were mostly below ER-M suggesting that while toxicity exists, the levels would be considered moderate, but not high. Only zinc concentrations at station WH1 were above ER-M guideline values (Table 3).

Modified elutriate testing revealed that with the exception of copper at station WH 7 no water quality exceedances are anticipated during the maintenance dredging (Table 4). The sum of dissolved PCB congeners in the elutriate tests showed that levels were above levels listed for chronic criteria for total PCBs (Table 9). No acute criterion for total PCBs is listed by DNREC. Total dissolved PCBs in the elutriate tests for station WH7 at the mouth of the Christina River had about an order of magnitude higher PCB elutriate concentration than all other river stations.

TCLP testing for potential contaminant leaching into ground water once the material is placed in a CDF and subject to rainfall suggests that no leaching above the regulatory limits is likely (Table 10).

Wilmington Harbor South CDF Soils

Similar to the bulk sediment results for the Christina River sediments, soil testing in the CDF revealed that with the exception of arsenic all contaminant levels were below DNREC's non-residential URS criteria (Table 11). Several inorganics were over the residential criteria in the existing CDF soils (aluminum, arsenic, iron, vanadium, and manganese). In addition, some organics (e.g., Benzo(a)pyrene) were over the criteria. High resolution PBC congener

¹ Burton, W.H., J. Farrar, and J. Pasquale. Contaminant Sequestering and Water Quality Discharges At Confined Disposal Facilities. In: M. Pellei and A. Porta (Eds.), *Remediation of Contaminated Sediments—2003*. Proceedings of the Second International Conference on Remediation of Contaminated Sediments (Venice, Italy; 30 Sep-3 Oct 2003). ISBN 1-57477-143-4, published by Battelle Press, Columbus, OH,

concentrations were below the 1000 μ g/kg PCB URS criteria listed by DNREC (Table 13). TCPL testing of the exiting soils in the CDF resulted in no parameter concentrations above the regulatory limits (Table 14).

Beneficial Use of Material

In conclusion, based on the above discussion, material from Wilmington Harbor and Wilmington Harbor South CDF would be suitable for use in non-residential situations (i.e., brownfields). However, prior to any beneficial use of the material, contaminant testing of the proposed recipient site should be completed. Once that analysis is completed, a comparison of the contaminant levels between the Wilmington Harbor material and the recipient location can then be performed to determine if the two sites are compatible.

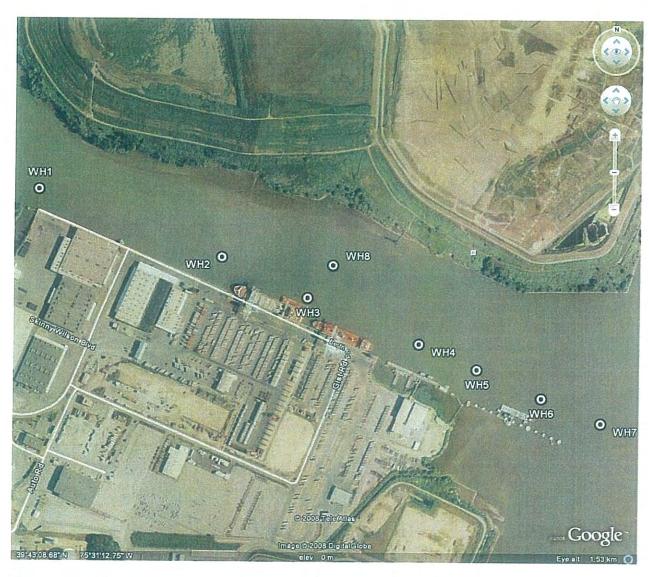


Figure 1. Vibracore station locations for sediment samples taken in June 2008

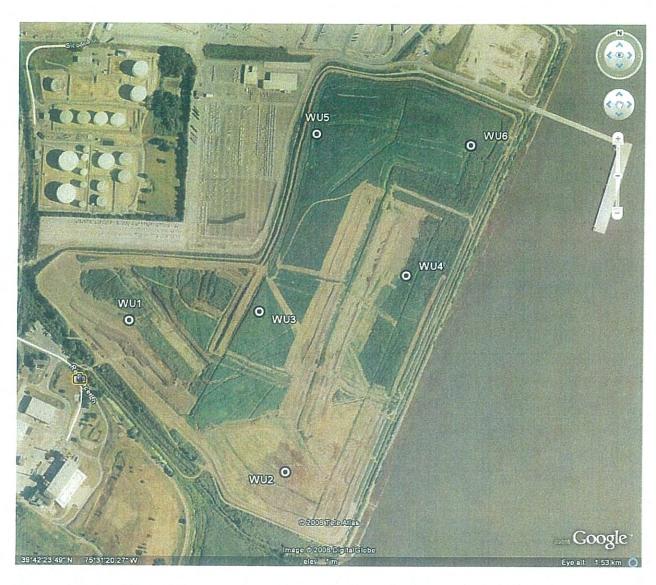


Figure 2. Soil hand auger sampling locations in the Wilmington South CDF collected in June 2008

Table 1. Sar	Table 1. Sampling coordinates for the Wilmington Harbor stations													
Station	Date	Time	I	_atitude	L	ongitude								
WH1	6/6/2008	13:12:25	39	43.300	-75	31.783								
WH2	6/6/2008	12:15:10	39	43.197	-75	31.421								
WH3	6/6/2008	11:22:56	39	43.135	-75	31.251								
WH4	6/6/2008	10:54:43	39	43.065	-75	31.029								
WH5	6/6/2008	14:18:36	39	43.026	-75	30.913								
WH6	6/6/2008	14:53:48	39	42.982	-75	30.784								
WH7	6/6/2008	15:24:25	39	42.944	-75	30.666								
WH8	6/6/2008	16:11:11	39	43.185	-75	31.201								

Station	Date	Time	I	Latitude	L ₀	ongitude		
WU1	6/12/08	8:37	39	42.354	-75	31.734		
WU2	6/12/08	9:35	39	42.122	-75	31.425		
WU3	6/12/08	10:16	39	42.368	-75	31.479		
WU4	6/12/08	12:35	39	42.424	-75	31.188		
WU5	6/12/08	11:15	39	42.64	-75	31.368		
WU6	6/12/08	11:53	39	42.623	-75	31.062		

CHRISTINA RIVER SEDIMENT SAMPLING RESULTS

Table 3. Testing results for sediment samples collected from Wilmington Harbor. Values highlighted in yellow are over DNREC unrestricted criteria, while values in green are over restricted levels. Bolded concentrations are over ER-L sediment guidelines while underlined values are over ER-M levels.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted		ER-L	ER-M
PCBs													
Aroclor 1016	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	5000	82000		
Aroclor 1221	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	300	3000		
Aroclor 1232	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	300	3000		
Aroclor 1242	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	300	3000		
Aroclor 1248	μg/kg	<22	<21	<19	<23	<27	<22	310	<21	300	3000		
Aroclor 1254	μg/kg	150	78	76	<23	<27	<22	310	<21	300	3000		
Aroclor 1260	μg/kg	52	29	27	42	33	49	64	32	300	3000		
Pesticides	17.0												
4,4-DDD	μg/kg	18	11	11	15	20	13	23	11	3,000	24,000		
4,4-DDE	μg/kg	15	7.5	11	16	8.7	16	56	11	2,000	17,000		
4,4-DDT	μg/kg	<11	<11	<9.9	<12	12	<11	<8.2	<10	2,000	17,000	1.58	46.1
Aldrin	μg/kg	<11	1.8	<9.9	<12	<14	<11	<8.2	<10	40	300		
alpha-BHC	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	100	900		
alpha-Chlordane	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10				
beta-BHC	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	400	3,000		
delta-BHC	μg/kg	<11	<11	<9.9	<12	<14	<11	1.7	<10				
Dieldrin	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	40	400		
Endosulfan I	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	47,000	1,200,000		
Endosulfan II	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	47,000	1,200,000		
Endosulfan sulfate	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	47,000	1,200,000		
Endrin	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	2,000	61,000		
Endrin aldehyde	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	2,000	61,000		
Endrin ketone	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10				
gamma-BHC (Lindane)	μg/kg	3.3	1.5	<9.9	<12	<14	<11	<8.2	2	500	4,000		
gamma-Chlordane	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10				
Heptachlor	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	100	1,000		
Heptachlor epoxide	μg/kg	<11	<11	<9.9	<12	<14	<11	3	<10	70	600		
Methoxychlor	μg/kg	<22	<20	<19	<22	<26	<22	<16	<20	39,000	1,000,000		
Toxaphene	μg/kg			<390	<450	<530	<440	<320	<410	600	5,000	-	
Inorganics	MEINE	1,100	120	.570	.130	.550		-520	1110	300	2,000		
Aluminum	mg/kg	14.800	15,600	15,600	15,600	16,600	16,800	14,300	15,700	7,800	200,000		
Antimony	mg/kg			<1.2	<1.4	<1.6	0.3	0.44	<1.2	3	82		
Arsenic	mg/kg		10.6	11.4	11.9	13.4	12.7	13.6	11.8	0.4	4	8.2	70
Barium	mg/kg		110	109	111	110	90.2	66.6	97.7	550	14,000		
Beryllium	mg/kg		1.3	1.3	1.3	1.4	1.4	1.1	1.3	16	410		

1			
A	ζ	_	

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	And the property of the party o	ER-L	ER-M
Inorganics (Continued)													
Cadmium	mg/kg	1.2	0.22	0.27	0.21	< 0.80	< 0.66	< 0.48	0.19	4	100	1.2	9.6
Calcium	mg/kg	2,990	3,260	3,120	3,800	4,110	3,220	2,890	3,310				318
Chromium	mg/kg	64.6	47.6	48.5	48.3	53	53.3	61.3	49.3	270	610	81	370
Cobalt	mg/kg	13.6	13.1	13.6	13.7	14.6	14.5	12.2	13.7	470	12,000		
Copper	mg/kg	44	33.4	35.2	34.5	34.7	33.7	34.4	33	310	8,200	34	270
Iron	mg/kg	28,300		29,300	30,100	32,500	32,100	31,600	30,200	2,300	61,000		
Lead	mg/kg	78.8	46.4	49.5	47.2	49	47.3	89	46.5	400	1,000	47	218
Magnesium	mg/kg	5,250	5,780	5,730	5,840	6,580	6,790	5,730	6,170				
Manganese	mg/kg	908	1,290	1,250	1,430	1,580	1,470	1,020	1,430	160	4,100		
Mercury	mg/kg	0.37	0.34	0.37	0.35	0.36	0.37	0.37	0.32	10	610	0.15	0.71
Nickel	mg/kg	27.5	26.4	27.3	27.3	29.3	29.2	28.4	27.3	160	4,100	20.9	51.6
Potassium	mg/kg		2,160	2,130	2,190	2,420	2,530	2,130	2,260				
Selenium	mg/kg	< 0.69	< 0.62	< 0.58	< 0.68	< 0.80	< 0.66	< 0.48	< 0.62	39	1,000		
Silver	mg/kg	0.43	0.55	0.58	0.58	0.71	0.59	0.56	0.62	39	1,000	1	3.7
Sodium	mg/kg	942	1,030	885	586	751	1,310	512	1,040				
Thallium	mg/kg	<1.4	<1.2	<1.2	<1.4	<1.6	<1.3	< 0.97	<1.2	18	220		
Vanadium	mg/kg	45.9	42.9	45.1	43.6	48	49.1	48.9	44.1	55	1,400		
Zinc	mg/kg	445	221	231	219	223	209	157	214	2,300	61,000	150	410
Semivolatiles													
1,2,4-Trichlorobenzene	μg/kg	<90	<83	<78	<91	<100	<88>	<65	<83				
1,2-Dichlorobenzene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
1,3-Dichlorobenzene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
1,4-Dichlorobenzene	μg/kg	41	<83	<78	<91	<100	<88	20	<83				
2,2-oxybis(1-Chloropropane)	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
2,4,5-Trichlorophenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2,4,6-Trichlorophenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2,4-Dichlorophenol	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
2,4-Dimethylphenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2,4-Dinitrophenol	μg/kg	<2300	<2100	<2000			<2200	<1600	<2100				
2,4-Dinitrotoluene	μg/kg	<440	<410	<390	<450	<510	230	<320	<410				
2,6-Dinitrotoluene	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2-Chloronaphthalene	μg/kg		<83	<78	<91	<100	<88	<65	<83				
2-Chlorophenol	μg/kg		<410	<390	<450		<430	<320	<410				
2-Methylnaphthalene	μg/kg		47	62	57	44	24	27	47				
2-Methylphenol	μg/kg		<410	<390	<450		<430	38	<410				
2-Nitroaniline		<2300						<1600	<2100				
2-Nitrophenol	μg/kg			<390			<430	<320	<410				
3,3-Dichlorobenzidine		<440		<390			<430	<320	<410				

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	A STATE OF THE PARTY OF THE PAR	ER-L	ER-M
Semivolatiles (Continued)											Traditional Property of the Pr	DIC ID	Dicin
3-Nitroaniline	μg/kg	<2300	<2100	<2000	<2300	<2700	<2200	<1600	<2100				
4,6-Dinitro-2-methylphenol	μg/kg					<2700	<2200	<1600	<2100				
4-Bromophenyl phenyl ether	μg/kg		<410	<390	<450	<510	<430	<320	<410				
4-Chloro-3-methylphenol	µ/kg	<440	<410	<390	<450	<510	<430	<320	<410				
4-Chloroaniline	μg/kg		<410	49	45	<510	<430	55	<410				
4-Chlorophenyl phenyl ether	μg/kg		<410	<390	<450	<510	<430	<320	<410				
4-Methylphenol	µg/kg		430	120	680	520	56	37	90				
4-Nitroaniline	μg/kg		<2100	<2000			<2200	<1600	<2100				
4-Nitrophenol	μg/kg		<2100	<2000			<2200	<1600	<2100				
Acenaphthene	μg/kg		21	34	<91	<100	<88	<65	30	470,000	5,000,000	16	500
Acenaphthylene	μg/kg		42	60	53	42	<88	<65	46	170,000	3,000,000	44	640
Anthracene	μg/kg		80	79	68	73	30	21	99	1,000,000	5,000,000	85.3	1,100
Benzo(a)anthracene	μg/kg	1100	220	230	180	140	92	59	190	900	8,000	261	1,600
Benzo(a)pyrene	μg/kg		220	240	180	170	69	35	180	90	800	430	1,600
Benzo(b)fluoranthene	μg/kg		380	430	330	290	130	51	310	900	8,000	730	1,000
Benzo(ghi)perylene	μg/kg	680	230	230	200	170	94	33	190	200	0,000		
Benzo(k)fluoranthene	μg/kg		<83	<78	<91	<100	<88	<65	<83	9,000	78,000		
bis(2-Chloroethoxy)methane	μg/kg		<410	<390	<450	<510	<430	<320	<410	2,000	70,000		
bis(2-Chloroethyl) ether	μg/kg		<83	<78	<91	<100	<88	<65	<83				
bis(2-Ethylhexyl) phthalate	μg/kg	590	420	440	440	390	140	140	290				
Butyl benzyl phthalate	μg/kg	78	<410	48	53	55	37	<320	42				7-
Carbazole	μg/kg	74	39	41	48	<100	<88	16	23				
Chrysene	μg/kg		290	300	230	210	95	48	270	87,000	780,000	384	2,800
Di-n-butyl phthalate	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410	07,000	700,000	304	2,000
Di-n-octyl phthalate	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Dibenz(a,h)anthracene	μg/kg		51	50	44	44	<88	<65	42	90	800	63	260
Dibenzofuran	μg/kg	89	29	41	32	33	<430	<320	28	3.0	900	05	200
Diethyl phthalate	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Dimethyl phthalate	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Fluoranthene	μg/kg		420	470	390	330	140	71	370	310,000	5,000,000	600	5,100
Fluorene	μg/kg	180	47	72	33	<100	74	<65	53	310,000	5,000,000	19	540
Hexachlorobenzene	μg/kg		<83	<78	<91	<100	<88	<65	<83	510,000	2,000,000	1)	340
Hexachlorobutadiene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
Hexachlorocyclopentadiene	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Hexachloroethane	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
Indeno(1,2,3-cd)pyrene	μg/kg	570	170	220	160	130	61	33	160	900	8,000		
Isophorone	µg/kg		<410	<390	<450	<510	<430	<320	<410	700	3,000		-

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	DNREC Non-critical Restricted	ER-L	ER-M
Semivolatiles (Continued)												DAY IS	DIC IVI
N-Nitrosodi-n-propylamine	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
N-Nitrosodiphenylamine	μg/kg	53	<83	<78	<91	<100	<88	<65	<83				
Naphthalene	μg/kg	1100	76	97	94	75	<88	54	79	160,000	4,100,000	160	2,100
Nitrobenzene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83	100,000	1,100,000	100	2,100
Pentachlorophenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
Phenanthrene	μg/kg	980	220	220	190	180	87	56	220	1,000,000	5,000,000	240	1,500
Phenol	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83	2,000,000	2,000,000	210	1,500
Pyrene	μg/kg	1300	330	360	290	240	120	56	290			665	2,600
VOCs	1.00											003	2,000
1,1,1-Trichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	160,000	4,100,000		
1,1,2,2-Tetrachloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	600	29,000		
1,1,2-Trichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	1,000	100,000		
1,1-Dichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	780,000	5,000,000		
1,1-Dichloroethene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	700,000	2,000,000		
1,2-Dichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12				
1,2-Dichloroethene (total)	μg/kg	<27	<25	<23	<27	<32	<26	<19	<25	400	63,000		
1,2-Dichloropropane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	9,000	84,000		
2-Butanone	μg/kg	<14	<12	<12	<14	<16	<13	11	<12	3,000	01,000		
2-Hexanone	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	310,000	5,000,000		
4-Methyl-2-pentanone	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	220,000	2,000,000		
Acetone	μg/kg	15	<50	<47	<54	<64	<53	55	<49	780,000	5,000,000		
Benzene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	800	200,000		
Bromodichloromethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	10,000	92,000		
Bromoform	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	53,000	720,000		
Bromomethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	11,000	290,000		
Carbon disulfide	μg/kg	<14	<12	<12	<14	<16	<1.3	<9.7	<12	780,000	5,000,000		7
Carbon tetrachloride	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	300	44,000		
Chlorobenzene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	130,000	4,100,000		
Chloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	220,000	2,000,000		
Chloroform	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	300	940,000		
Chloromethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	49,000	440,000		
cis-1,3-Dichloropropene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	100	32,000		
Dibromochloromethane	μg/kg		<12	<12	<14	<16	<13	<9.7	<12	8,000	68,000		
Ethylbenzene	μg/kg		<12	<12	<14	<16	<13	<9.7	<12	400,000	5,000,000		
Methylene chloride	μg/kg	16	6	4.5	6.5	5.7	5.8	82	6	13,000	760,000		
Styrene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	1,000,000	5,000,000		
Tetrachloroethene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12		, , , , , , ,		
Toluene	μg/kg		180	2.5	67	77	34	<9.7	21	650,000	5,000,000		

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	DNREC Non-critical Restricted	ER-L	ER-M
VOCs (Continued)													2011
trans-1,3-Dichloropropene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	100	32,000		
Trichloroethene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12				
Vinyl chloride	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	30	3,000		
Xylenes (total)	μg/kg	<41	<37	<35	<41	<48	<40	<29	<37	420,000	5,000,000		
Cyanide, Total	mg/kg	0.27	<1.2	0.61	0.36	0.4	0.28	< 0.97	0.33				
Total Sulfide	mg/kg	110	59.5	<70.2	<81.2	<95.5	<79.1	<58.2	39.5			-	

Table 4. PCB congener testing results for samples collected from Wilmington Harbor sediments													
Scamio	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8				
PCB 1 (BZ)	ng/g	0.34	<0.99	0.11	< 0.14	0.047	0.035	<0.78	0.036				
PCB 2 (BZ)	ng/g	0.13	<0.99	0.053	0.054	0.066	0.063	0.15	0.046				
PCB 3 (BZ)	ng/g	0.69	<0.99	0.09	0.082	0.081	0.065	0.33	0.066				
PCB 4 (BZ)	ng/g	4.4	0.086	0.14	0.18	0.14	0.087	1.5	0.14				
PCB 5 (BZ)	ng/g	<1.1	<0.99	0.0075	0.0074	0.012	0.0053	<0.78	0.0094				
PCB 6 (BZ)	ng/g	3.5	<0.99	0.088	0.09	0.1	0.07	0.68	0.079				
PCB 7 (BZ)	ng/g	0.14	<0.99	0.018	0.016	0.016	0.011	0.13	0.016				
PCB 8 (BZ)	ng/g	4.3	0.27	0.24	0.26	0.23	0.17	1.5	0.24				
PCB 9 (BZ)	ng/g	0.27	<0.99	0.018	0.017	0.011	0.015	0.19	0.014				
PCB 10 (BZ)	ng/g	0.18	<0.99	0.0096	0.01	0.011	< 0.026	0.11	0.0082				
PCB 11 (BZ)	ng/g	0.93	0.47	0.29	0.43	0.63	0.39	0.58	0.42				
PCB 12 (BZ)	ng/g	51	<0.99	0.11	0.078	0.13	0.12	0.56	0.13				
PCB 13 (BZ)	ng/g	51	<0.99	0.11	0.078	0.13	0.12	0.56	0.13				
PCB 14 (BZ)	ng/g	<1.1	<0.99	0.0027	0.0045	0.0059	0.0055	<0.78	<0.025				
PCB 15 (BZ)	ng/g	23	0.49	0.45	0.46	0.55	0.44	2.2	0.47				
PCB 16 (BZ)	ng/g	3.5	<0.99	0.13	0.17	0.18	0.1	4.8	0.16				
PCB 17 (BZ)	ng/g	38	0.18	0.25	0.3	0.33	0.16	6.3	0.26				
PCB 18 (BZ)	ng/g	28	0.32	0.35	0.45	0.6	0.26	15	0.39				
PCB 19 (BZ)	ng/g	12	<0.99	0.089	0.11	0.13	0.051	1.3	0.092				
PCB 20 (BZ)	ng/g	17	0.89	1	1.2	1.4	0.85	18	1.1				
PCB 21 (BZ)	ng/g	4.5	0.16	0.24	0.27	0.27	0.19	5	0.27				
PCB 22 (BZ)	ng/g	2.9	0.16	0.19	0.23	0.26	0.15	3.8	0.23				
PCB 23 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	< 0.026	<0.78	<0.025				
PCB 24 (BZ)	ng/g	<1.1	<0.99	0.0076	< 0.027	<0.032	0.0043	0.11	0.0037				
PCB 25 (BZ)	ng/g	19	0.13	0.17	0.18	0.28	0.12	1.3	0.16				
PCB 26 (BZ)	ng/g	47	0.19	0.24	0.25	0.46	0.17	2.5	0.23				
PCB 27 (BZ)	ng/g	38	<0.99	0.11	0.053	0.12	0.061	0.76	0.098				
PCB 28 (BZ)	ng/g	17	0.89	1	1.2	1.4	0.85	18	1.1				
PCB 29 (BZ)	ng/g	47	0.19	0.24	0.25	0.46	0.17	2.5	0.23				
PCB 30 (BZ)	ng/g	28	0.32	0.35	0.45	0.6	0.26	15	0.39				
PCB 31 (BZ)	ng/g	27	0.51	0.68	0.81	0.96	0.55	17	0.7				
PCB 32 (BZ)	ng/g	67	0.2	0.22	0.28	0.37	0.16	4.7	0.25				
PCB 33 (BZ)	ng/g	4.5	0.16	0.24	0.27	0.27	0.19	5	0.27				
PCB 34 (BZ)	ng/g	0.64	< 0.99	0.0091	0.01	0.012	0.0068	0.2	0.011				
PCB 35 (BZ)	ng/g	0.33	< 0.99	0.056	0.086	0.068	0.061	0.33	0.057				
PCB 36 (BZ)	ng/g	0.16	<0.99	0.0073	0.012	0.012	0.012	<0.78	0.0097				
PCB 37 (BZ)	ng/g	2.2	0.3	0.35	0.42	0.47	0.37	3_	0.4				
PCB 38 (BZ)	ng/g	<1.1	< 0.99	<0.023	<0.027	< 0.032	<0.026	<0.78	<0.025				
PCB 39 (BZ)	ng/g	0.25	<0.99	0.0092	0.013	0.014	0.0071	0.13	0.011				
PCB 40 (BZ)	ng/g	12	0.61	0.72	0.82	1.2	0.52	13	0.73				
PCB 41 (BZ)	ng/g	12	0.61	0.72	0.82	1.2	0.52	13	0.73				
PCB 42 (BZ)	ng/g	9.5	0.4	0.34	0.41	0.54	0.27	8.4	0.37				
PCB 43 (BZ)	ng/g	<1.1	<0.99	0.041	0.05	0.086	0.019	0.89	0.044				
PCB 44 (BZ)	ng/g	90	1.4	1.5	1.6	2.2	0.99	31	1.4				
PCB 45 (BZ)	ng/g	55	<0.99	0.34	0.34	0.45	0.19	5.5	0.31				
PCB 46 (BZ)	ng/g	10	<0.99	0.086	0.093	0.13	0.052	2	0.09				
0 ()			1.4	1.5	1.6	2.2	0.99	31	1.4				
PCB 47 (BZ)	ng/o	90	1.4	1.5	1.0		, ,,,,		1				
PCB 47 (BZ) PCB 48 (BZ)	ng/g ng/g	90 3.1	< 0.99	0.14	0.17	0.23	0.097	4.9	0.18				

WCI-S311 inc.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 50 (BZ)	ng/g	63	0.15	0.27	0.27	0.33	0.16	4.4	0.23
PCB 51 (BZ)	ng/g	55	<0.99	0.34	0.34	0.45	0.19	5.5	0.31
PCB 52 (BZ)	ng/g	88	1.4	1.8	1.9	2.6	1.1	40	1.7
PCB 53 (BZ)	ng/g	63	0.15	0.27	0.27	0.33	0.16	4.4	0.23
PCB 54 (BZ)	ng/g	6.5	<0.99	0.023	<0.027	0.024	0.015	<0.78	0.015
PCB 55 (BZ)	ng/g	0.13	<0.99	0.028	0.032	0.025	0.015	0.27	0.012
PCB 56 (BZ)	ng/g	3.8	0.43	0.5	0.59	0.64	0.38	9.6	0.50
PCB 57 (BZ)	ng/g	0.55	< 0.99	0.011	0.013	0.026	0.0082	<0.78	0.013
PCB 58 (BZ)	ng/g	0.2	<0.99	<0.023	0.011	0.015	< 0.026	0.29	0.0
PCB 59 (BZ)	ng/g	2.8	<0.99	0.13	0.15	0.19	0.092	2.7	0.1
PCB 60 (BZ)	ng/g	0.97	<0.99	0.16	0.2	0.22	0.13	0.54	0.2
PCB 61 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 62 (BZ)	ng/g	2.8	<0.99	0.13	0.15	0.19	0.092	2.7	0.1
PCB 63 (BZ)	ng/g	0.92	< 0.99	0.05	0.059	0.081	0.037	0.88	0.05
PCB 64 (BZ)	ng/g	4.9	, 0.4	0.49	0.57	0.71	0.37	11	0.5
PCB 65 (BZ)	ng/g	90	1.4	1.5	1.6	2.2	0.99	31	1.
PCB 66 (BZ)	ng/g	11	1.3	1.3	1.5	1.7	1.1	25	1.
PCB 67 (BZ)	ng/g	0.52	<0.99	0.048	0.059	0.076	0.037	0.49	< 0.02
PCB 68 (BZ)	ng/g	2.8	<0.99	0.039	0.033	0.041	0.025	0.4	0.03
PCB 69 (BZ)	ng/g	150	0.92	1.1	1.2	1.6	0.71	23	1.
PCB 70 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 71 (BZ)	ng/g	12	0.61	0.72	0.82	1.2	0.52	13	0.7
PCB 72 (BZ)	ng/g	3.4	< 0.99	0.044	0.051	0.067	0.027	0.76	0.04
PCB 73 (BZ)	ng/g	<1.1	<0.99	0.041	0.05	0.086	0.019	0.89	0.04
PCB 74 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 75 (BZ)	ng/g	2.8	< 0.99	0.13	0.15	0.19	0.092	2.7	0.1
PCB 76 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 77 (BZ)	ng/g	0.71	0.15	0.22	0.28	0.27	0.19	1.8	0.2
PCB 78 (BZ)	ng/g	<1.1	<0.99	<0.023	< 0.027	< 0.032	<0.026	<0.78	< 0.02
PCB 79 (BZ)	ng/g	0.24	<0.99	0.025	0.024	0.027	0.019	0.26	0.0
PCB 80 (BZ)	ng/g	<1.1	<0.99	0.016	< 0.027	<0.032	<0.026	< 0.78	< 0.02
PCB 81 (BZ)	ng/g	<1.1	< 0.99	0.0046	0.0055	< 0.032	0.0072	< 0.78	< 0.02
PCB 82 (BZ)	ng/g	2.4	0.34	0.25	0.37	0.35	0.17	3	0.3
PCB 83 (BZ)	ng/g	14	1.3	1.8	2.1	2.1	1.3	26	1
PCB 84 (BZ)	ng/g	6.7	0.63	0.66	0.75	0.88	0.43	10	0
PCB 85 (BZ)	ng/g	3.6	0.51	0.4	0.47	0.5	0.26	4.5	0.3
PCB 86 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1
PCB 87 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1
PCB 88 (BZ)	ng/g	5.3	0.36	0.48	0.55	0.62	0.35	5.8	0.4
PCB 89 (BZ)	ng/g	<1.1	<0.99	0.019	0.037	0.032	0.016	0.52	0.02
PCB 90 (BZ)	ng/g	23	2.5	2.6	3	3.2	1.7	38	2
PCB 91 (BZ)	ng/g	5.3	0.36	0.48	0.55	0.62	0.35	5.8	0.4
PCB 92 (BZ)	ng/g	6.1	0.46	0.55	0.66	0.69	0.37	7.9	0.5
PCB 93 (BZ)	ng/g	2.6	<0.99	0.12	0.15	0.12	0.066	0.92	0.1
PCB 94 (BZ)	ng/g	0.87	<0.99	0.029	0.041	0.038	0.021	<0.78	0.03
PCB 95 (BZ)	ng/g	19	2	2	2.3	2.6	1.3	32	
PCB 96 (BZ)	ng/g	0.38	<0.99	0.026	0.031	0.039	0.015	0.51	0.02
PCB 97 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1
PCB 98 (BZ)	ng/g	1.8	<0.99	0.13	0.15	0.16	0.088	1.5	0.1
~ ~~ ~ ~ (1/2)	1 498	1.0	3.77	1.8	2.1	2.1	1.3	26	1

WCI-SOI INC.

Table 4. (Contin	nued)	· · · · · · · · · · · · · · · · · · ·					<u> </u>		
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 100 (BZ)	ng/g	2.6	<0.99	0.12	0.15	0.12	0.066	0.92	0.12
PCB 101 (BZ)	ng/g	23	2.5	2.6	3	3.2	1.7	38	2.8
PCB 102 (BZ)	ng/g	1.8	<0.99	0.13	0.15	0.16	0.088	1.5	0.14
PCB 103 (BZ)	ng/g	2.8	<0.99	0.077	0.075	0.093	0.054	0.89	0.067
PCB 104 (BZ)	ng/g	0.27	<0.99	0.0063	< 0.027	<0.032	< 0.026	<0.78	< 0.025
PCB 105 (BZ)	ng/g	4.3	0.69	0.77	0.91	0.94	0.54	5.2	0.89
PCB 106 (BZ)	ng/g	<1.1	<0.99	<0.023	< 0.027	<0.032	<0.026	<0.78	< 0.02
PCB 107 (BZ)	ng/g	1.4	0.16	0.21	0.25	0.25	0.17	3.2	0.2
PCB 108 (BZ)	ng/g	0.49	<0.99	0.075	0.1	0.099	0.06	0.54	0.
PCB 109 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1.
PCB 110 (BZ)	ng/g	25	2.6	3.1	3.6	3.8	2	39	3.
PCB 111 (BZ)	ng/g	<1.1	<0.99	<0.023	0.012	< 0.032	0.009	0.1	<0.02
PCB 112 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	<0.026	<0.78	< 0.02
PCB 113 (BZ)	ng/g	23	2.5	2.6	3	3.2	1.7	38	2.
PCB 114 (BZ)	ng/g	0.19	<0.99	0.043	0.055	0.063	0.023	0.26	0.04
PCB 115 (BZ)	ng/g	25	2.6	3.1	3.6	3.8	2	39	3.
PCB 116 (BZ)	ng/g	3.6	0.51	0.4	0.47	0.5	0.26	4.5	0.3
PCB 117 (BZ)	ng/g	3.6	0.51	0.4	0.47	0.5	0.26	4.5	0.3
PCB 118 (BZ)	ng/g	15	2	2.3	2.4	2.5	1.5	30	2.
PCB 118 (BZ)		13	1.1	1.5	1.8	1.9	0.93	19	1.
PCB 119 (BZ)	ng/g	0.27	<0.99	0.026	0.035	0.022	0.018	0.27	0.02
	ng/g		<0.99	<0.023	<0.027	<0.022	< 0.016	<0.78	< 0.02
PCB 121 (BZ)	ng/g	<1.1	~		0.027	0.032	0.020	0.78	0.04
PCB 122 (BZ)	ng/g	<1.1	<0.99	0.042			0.019	0.24	0.04
PCB 123 (BZ)	ng/g	0.2	<0.99	0.053	0.05	0.041		0.13	0.03
PCB 124 (BZ)	ng/g	0.49	<0.99	0.075	0,1	0.099	0.06 0.93	19	1.
PCB 125 (BZ)	ng/g	13	1.1	1.5	1.8	1.9			
PCB 126 (BZ)	ng/g	<1.1	<0.99	0.016	0.02	0.019	0.012	<0.78	0.01
PCB 127 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	<0.026	<0.78	<0.02
PCB 128 (BZ)	ng/g	2.7	0.5	0.52	0.58	0.63	0.36	3.7	0.5
PCB 129 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3.
PCB 130 (BZ)	ng/g	1.4	<0.99	0.21	0.26	0.25	0.18	2.2	0.2
PCB 131 (BZ)	ng/g	<1.1	<0.99	0.031	0.05	0.053	0.025	0.18	0.04
PCB 132 (BZ)	ng/g	6.7	0.97	1.1	1.2	1.3	0.76	11	1.
PCB 133 (BZ)	ng/g	0.46	<0.99	0.1	0.12	0.14	0.08	0.56	0.08
PCB 134 (BZ)	ng/g	1.5	<0.99	0.21	0.25	0.23	0.14	2.2	0.2
PCB 135 (BZ)	ng/g	7.9	1	1.3	1.6	1.7	0.92	11	1.
PCB 136 (BZ)	ng/g	3.1	0.32	0.48	0.58	0.62	0.35	4.2	0.
PCB 137 (BZ)	ng/g	0.68	< 0.99	0.11	0.12	0.12	0.082	0.9	0.1
PCB 138 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3
PCB 139 (BZ)	ng/g	0.3	<0.99	0.06	0.061	0.08	0.037	0.59	0.07
PCB 140 (BZ)	ng/g	0.3	<0.99	0.06	0.061	0.08	0.037	0.59	0.07
PCB 141 (BZ)	ng/g	3.3	0.34	0.52	0.64	0.67	0.35	3.6	0.5
PCB 142 (BZ)	ng/g	<1.1	<0.99	<0.023	< 0.027	< 0.032	<0.026	< 0.78	< 0.02
PCB 143 (BZ)	ng/g	1.5	<0.99	0.21	0.25	0.23	0.14	2.2	0.2
PCB 144 (BZ)	ng/g	0.78	<0.99	0.13	0.17	0.19	0.11	0.81	0.1
PCB 145 (BZ)	ng/g	<1.1	<0.99	<0.023	< 0.027	< 0.032	<0.026	<0.78	< 0.02
PCB 146 (BZ)	ng/g	3.5	0.61	0.71	0.8	0.86	0.57	6.4	0.7
PCB 147 (BZ)	ng/g	15	2.6	2.9	3.4	3.6	2.3	24	2.
		<1.1	<0.99	0.026	0.029	0.028	0.022	<0.78	0.02
PCB 148 (BZ)	ng/g						2.3	24	2.
PCB 149 (BZ)	ng/g	15	2.6	2.9	3.4	3.6	2.5	24	-

Wel-Sale

Table 4. (Contin	ued)								
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 150 (BZ)	ng/g	<1.1	<0.99	0.025	0.032	0.036	0.021	<0.78	0.029
PCB 151 (BZ)	ng/g	7.9	1	1.3	1.6	1.7	0.92	11	1.4
PCB 152 (BZ)	ng/g	<1.1	<0.99	0.0027	<0.027	<0.032	<0.026	<0.78	<0.025
PCB 153 (BZ)	ng/g	15	2.8	3.1	3.6	3.8	2.4	24	3.2
PCB 154 (BZ)	ng/g	0.6	<0.99	0.16	0.19	0.22	0.16	0.72	0.15
PCB 155 (BZ)	ng/g	<1.1	<0.99	0.012	<0.027	<0.032	0.013	<0.78	0.015
PCB 156 (BZ)	ng/g	1.5	0.23	0.3	0.37	0.37	0.22	2.6	0.34
PCB 157 (BZ)	ng/g	1.5	0.23	0.3	0.37	0.37	0.22	2.6	0.34
PCB 158 (BZ)	ng/g	1.6	0.28	0.28	0.34	0.37	0.19	2.1	0.3
PCB 159 (BZ)	ng/g	<1.1	<0.99	0.026	0.026	0.045	0.018	0.14	0.033
PCB 160 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3.7
PCB 161 (BZ)	ng/g	<1.1	<0.99	0.0043	< 0.027	<0.032	<0.026	<0.78	<0.025
PCB 162 (BZ)	ng/g	<1.1	<0.99	0.018	0.018	0.027	0.017	< 0.78	0.027
PCB 163 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3.7
PCB 164 (BZ)	ng/g	1.4	0.11	0.28	0.31	0.33	0.2	2.1	0.3
PCB 165 (BZ)	ng/g	<1.1	< 0.99	0.0041	< 0.027	< 0.032	<0.026	< 0.78	<0.025
PCB 166 (BZ)	ng/g	2.7	0.5	0.52	0.58	0.63	0.36	3.7	0.55
PCB 167 (BZ)	ng/g	0.58	<0.99	0.13	0.15	0.17	0.096	0.89	0.13
PCB 168 (BZ)	ng/g	15	2.8	3.1	3.6	3.8	2.4	24	3.2
PCB 169 (BZ)	ng/g	<1.1	<0.99	<0.023	0.0037	< 0.032	<0.026	<0.78	0.0058
PCB 170 (BZ)	ng/g	3.4	0.58	0.86	1	1.1	0.59	4.7	0.94
PCB 171 (BZ)	ng/g	1.1	0.16	0.27	0.32	0.33	0.2	1.5	0.3
PCB 172 (BZ)	ng/g	0.53	0.2	0.17	0.18	0.22	0.12	0.8	0.17
PCB 173 (BZ)	ng/g	1.1	0.16	0.27	0.32	0.33	0.2	1.5	0.3
PCB 174 (BZ)	ng/g	3.6	0.69	0.89	1.1	1.1	0.66	5.5	0.97
PCB 175 (BZ)	ng/g	0.17	<0.99	0.044	0.058	0.062	0.035	0.16	0.048
PCB 176 (BZ)	ng/g	0.53	<0.99	0.12	0.13	0.16	0.097	0.68	0.13
PCB 177 (BZ)	ng/g	2.5	0.35	0.61	0.74	0.77	0.44	3.4	0.63
PCB 178 (BZ)	ng/g	1.1	0.17	0.26	0.33	0.37	0.21	1.3	0.28
PCB 179 (BZ)	ng/g	1.7	0.4	0.48	0.56	0.59	0.36	2.6	0.5
PCB 180 (BZ)	ng/g	7.2	1.8	1.9	2.3	2.4	1.3	10	2
PCB 181 (BZ)	ng/g	<1.1	<0.99	0.0089	<0.027	<0.032	<0.026	<0.78	0.01
PCB 182 (BZ)	ng/g	<1.1	<0.99	0.021	0.037	0.032	0.02	0.11	<0.025
PCB 183 (BZ)	ng/g	2.5	0.39	0.64	0.79	0.81	0.51	3.3	0.74
PCB 184 (BZ)	ng/g	<1.1	<0.99	0.0089	0.019	0.015	0.009	<0.78 3.3	0.0091
PCB 185 (BZ)	ng/g	2.5	0.39	0.64	0.79	0.81	0.51	<0.78	<0.025
PCB 186 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	<0.026	7.5	1.5
PCB 187 (BZ)	ng/g	4.7	1.6	1.5	0.032	0.037	0.037	<0.78	0.025
PCB 188 (BZ)	ng/g	<1.1	<0.99	0.023		0.037		0.17	0.023
PCB 189 (BZ)	ng/g	0.13	<0.99	0.039	0.046	0.043	0.03	0.17	0.047
PCB 190 (BZ)	ng/g	0.48	<0.99	0.17	0.2	0.22	0.024	0.91	0.18
PCB 191 (BZ)	ng/g	0.18	<0.99	0.038 <0.023	0.043 <0.027	<0.033	<0.024	<0.78	<0.025
PCB 192 (BZ)	ng/g	<1.1	<0.99			2.4	1.3	10	2
PCB 193 (BZ)	ng/g	7.2	0.69	1.9	2.3 0.73	0.81	0.51	3.2	0.66
PCB 194 (BZ)	ng/g	2.3		0.61	0.73	0.81	0.31	0.95	0.00
PCB 195 (BZ)	ng/g	0.67	<0.99	0.22			0.19	1.3	0.22
PCB 196 (BZ)	ng/g	1.2	0.49	0.47	0.56	0.61	0.069	0.21	0.06
PCB 197 (BZ)	ng/g	<1.1	<0.99	0.059	0.078	0.073	1.6	5.9	1.7
PCB 198 (BZ)	ng/g	3.7	1.5	1.6	1.9			0.3	0.081
PCB 199 (BZ)	ng/g	0.31	0.088	0.074	0.1	0.11	0.061	U.3	160.0

WCI-SSII INC.

Table 4. (Contin	iued)								
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 200 (BZ)	ng/g	0.31	0.14	0.2	0.25	0.27	0.22	0.57	0.2
PCB 201 (BZ)	ng/g	3.7	1.5	1.6	1.9	2.2	1.6	5.9	1.7
PCB 202 (BZ)	ng/g	1	0.54	0.54	0.65	0.75	0.61	1.6	0.55
PCB 203 (BZ)	ng/g	1.5	0.8	0.7	0.8	0.85	0.6	2.1	0.74
PCB 204 (BZ)	ng/g	<1.1	<0.99	0.0087	< 0.027	<0.032	< 0.026	<0.78	<0.025
PCB 205 (BZ)	ng/g	<1.1	<0.99	0.037	0.043	0.058	0.027	<0.78	0.04
PCB 206 (BZ)	ng/g	7.2	5.6	5.9	6.1	7.7	7.4	14	5.5
PCB 207 (BZ)	ng/g	0.83	0.64	0.48	0.55	0.7	0.64	1.2	0.47
PCB 208 (BZ)	ng/g	3	2.4	2.5	2.8	3.5	3.4	6.1	2.4
PCB 209 (BZ)	ng/g	21	11	10	11	13	11	88	9.2

Table 5. PCB congener totals testing results for samples collected from Wilmington Harbor sediments. Values highlighted in yellow are over DNREC unrestricted criteria while values in green are over restricted levels. Bolded concentrations are over ER-L sediment guidelines while underlined values are over ER-M levels

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Un-restricted	DNREC Non-critical Restricted	ER-L	ER-M
Monochlorobiphenyl	ng/g	1.2	< 0.99	0.25	0.14	0.19	0.16	0.47	0.15				
Dichlorobiphenyl	ng/g	88	1.3	1.4	1.5	1.8	1.3	7.5	1.5				
Trichlorobiphenyl	ng/g	310	3	4.1	4.9	5.9	3.3	84	4.4				
Tetrachlorobiphenyl	ng/g	530	8.9	11	13	16	8	230	11				
Pentachlorobiphenyl	ng/g	150	15	17	20	21	12	230	18				
Hexachlorobiphenyl	ng/g	87	13	16	19	20	12	130	17				
Heptachlorobiphenyl	ng/g	30	6.4	8	9.6	10	5.9	43	8.6				
Octachlorobiphenyl	ng/g	11	4.2	4.6	5.4	6	4.3	16	4.7				
Nonachlorobiphenyl	ng/g	11	8.6	8.9	9.5	12	11	21	8.3				
Decachlorobiphenyl	ng/g	21	11	10	11	13	11	88	9.2				
Total		1239.2	71.4	81.3	94.0	105.9	69.0	850.0	82.9	1000	1000	22.7	180

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
PCBs											
Aroclor 1016	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38		
Aroclor 1221	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38		
Aroclor 1232	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38		
Aroclor 1242	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38		
Aroclor 1248	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	0.8	<0.38		
Aroclor 1254	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	1.9	<0.38		
Aroclor 1260	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	<0.38	=====	
Pesticides				7					7.00		
4,4-DDD	μg/L	< 0.050	< 0.050	< 0.050	0.0075	< 0.048	< 0.048	0.021	< 0.048	0.13	0.001
4,4-DDE	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	0.045	< 0.048	0.13	0.001
4,4-DDT	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.13	0.001
Aldrin	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.15	0.001
alpha-BHC	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	<0.048		
alpha-Chlordane	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	<0.048		
beta-BHC	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	<0.048	< 0.048	< 0.048	< 0.048		
delta-BHC	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	<0.048		
Dieldrin	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.71	0.0019
Endosulfan I	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	<0.048	<0.048	< 0.048	<0.048	0.034	0.0087
Endosulfan II	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0,02,	0.0007
Endosulfan sulfate	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	<0.048		
Endrin	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	<0.048	0.037	0.0023
Endrin aldehyde	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.007	0.0025
Endrin ketone	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	<0.048	< 0.048	< 0.048	< 0.048		
gamma-BHC (Lindane)	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
gamma-Chlordane	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	0.037	< 0.048		
Heptachlor	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	0.01	< 0.048	0.053	0.0036
Heptachlor epoxide	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		0.0000
Methoxychlor	μg/L	< 0.099	< 0.099	<0.099	< 0.096	< 0.097	< 0.096	<0.097	< 0.096		0.03
Toxaphene	μg/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	0.21	0.002

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Inorganics											
Aluminum	μg/L	336	105	973	119	95.7	62.3	51.5	52.7		
Antimony	μg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	6.1	<10.0		
Arsenic	μg/L	13.6	32.3	30.3	27	23.7	35.4	29.1	29.6	69	36
Barium	μg/L	66.9	112	71	104	115	48	13.1	78.9	0,	30
Beryllium	μg/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0		
Cadmium	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	40	8.8
Calcium	μg/L	17,900	44,700	26,100	43,800	54,600	22,400	6,010	32,800	40	0.0
Chromium	μg/L	2.9	2.2	4.2	2.4	3.8	2.1	2.9	1.6	1100	50
Cobalt	μg/L	2	2.3	2.3	2.6	2.5	2.2	1.9	2.3	1100	30
Copper	μg/L	1.1	1.1	2.5	<25.0	1.4	2.4	6.2	1.1	4.8	3.1
Iron	μg/L	929	197	1190	639	85.5	<100	47.9	<100	4.0	5.1
Lead	μg/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	210	8.1
Magnesium	μg/L	16,200	39,700	29,300	27,900	32,500	27,300	7,380	33,100	210	0.1
Manganese	μg/L	1590	3810	1980	4470	6740	1740	86.6	2530		
Mercury	μg/L	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1.8	0.94
Nickel	μg/L	9.3	10	9.4	8	9.7	7.9	7.1	7.8	74	8.2
Potassium	μg/L	13,800	16,700	15,300	11,300	10,900	16,500	8,380	15,400	13	0.2
Selenium	μg/L	3.1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	290	71
Silver	μg/L	0.77	<5.0	0.76	1	1.7	<5.0	<5.0	0.81	1.9	/1
Sodium	μg/L	142,000	175,000	161,000	94,200	96,300	165,000	71,800	161,000	1.7	-
Thallium	μg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0		
Vanadium	μg/L	4.7	4.5	9.2	4.7	4.8	10.2	20.2	5.5		
Zinc	μg/L	14.2	11	25.8	7.5	6.8	10.6	26.7	6.7	90	81
Semivolatiles	1 0			20.0	7.10	0.0	10.0	20.7	0.7	70	01
1,2,4-Trichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
1,2-Dichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
1,3-Dichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
1,4-Dichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2,2-oxybis(1-Chloropropane)	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2,4,5-Trichlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2,4,6-Trichlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2,4-Dichlorophenol	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2,4-Dimethylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Semivolatiles (Continued)						.,,	1122	11.221	11110	Criteria	Citteria
2,4-Dinitrophenol	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
2,4-Dinitrotoluene	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2,6-Dinitrotoluene	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2-Chloronaphthalene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2-Chlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2-Methylnaphthalene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2-Methylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2-Nitroaniline	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
2-Nitrophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
3,3-Dichlorobenzidine	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
3-Nitroaniline	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
4,6-Dinitro-2-methylphenol	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
4-Bromophenyl phenyl ether	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Chloro-3-methylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Chloroaniline	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Chlorophenyl phenyl ether	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Methylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Nitroaniline	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
4-Nitrophenol	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
Acenaphthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Acenaphthylene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Anthracene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(a)anthracene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(a)pyrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(b)fluoranthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(ghi)perylene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(k)fluoranthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
bis(2-Chloroethoxy)methane	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
bis(2-Chloroethyl) ether	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
bis(2-Ethylhexyl) phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Butyl benzyl phthalate	μg/L	<9.5	<9.6	<9.7	2.1	<9.6	<9.8	<9.5	<9.4		
Carbazole	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Chrysene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Semivolatiles (Continued)											
Di-n-butyl phthalate	μg/L	<9.5	<9.6	<9.7	0.56	<9.6	<9.8	<9.5	<9.4		
Di-n-octyl phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Dibenz(a,h)anthracene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Dibenzofuran	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4	7	
Diethyl phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Dimethyl phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Fluoranthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Fluorene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Hexachlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Hexachlorobutadiene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Hexachlorocyclopentadiene	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Hexachloroethane	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Indeno(1,2,3-cd)pyrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Isophorone	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
N-Nitrosodi-n-propylamine	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
N-Nitrosodiphenylamine	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Naphthalene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Nitrobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Pentachlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Phenanthrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Phenol	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Pyrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
VET											
Dissolved Cyanide	μg/L	2.4	5.4	2.8	3	4.9	4.8	3.8	3.7		
Dissolved Sulfide	mg/L	<3.0	<3.0	<3.0	1.6	<3.0	<3.0	<3.0	<3.0		
Total Suspended Solids	mg/L	16	102	13	62	46	218	7	20		

	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
PCBs					
Aroclor 1016	μg/L	< 0.39	< 0.38		
Aroclor 1221	μ g/L	< 0.39	< 0.38		
Aroclor 1232	μ g/L	<0.39	< 0.38		
Aroclor 1242	μ g/L	< 0.39	< 0.38		
Aroclor 1248	μ g/L	< 0.39	< 0.38		
Aroclor 1254	μ g/L	< 0.39	< 0.38		
Aroclor 1260	g/L	< 0.39	< 0.38		
Pesticides					
4,4-DDD	μ g/L	< 0.048	< 0.048	0.13	0.001
4,4-DDE	μ g/L	< 0.048	< 0.048	0.13	0.001
4,4-DDT .	μg/L	< 0.048	< 0.048	0.13	0.001
Aldrin	μg/L	< 0.048	< 0.048		
alpha-BHC	μ g/L	< 0.048	< 0.048		
alpha-Chlordane	μg/L	< 0.048	< 0.048		
beta-BHC	μg/L	< 0.048	< 0.048		
delta-BHC	μg/L	< 0.048	< 0.048		
Dieldrin	μg/L	< 0.048	< 0.048	0.71	0.0019
Endosulfan I	μg/L	< 0.048	< 0.048	0.034	0.0087
Endosulfan II	μg/L	< 0.048	< 0.048		
Endosulfan sulfate	μg/L	< 0.048	< 0.048		
Endrin	μg/L	< 0.048	< 0.048	0.037	0.0023
Endrin aldehyde	μ g/L	< 0.048	< 0.048		
Endrin ketone	μg/L	< 0.048	< 0.048		
gamma-BHC (Lindane)	μg/L	< 0.048	< 0.048		
gamma-Chlordane	μg/L	< 0.048	< 0.048		
Heptachlor	μg/L	< 0.048	< 0.048	0.053	0.0036
Heptachlor epoxide	μg/L	< 0.048	< 0.048		
Methoxychlor	μg/L	< 0.097	< 0.095		0.03
Toxaphene	μg/L	<1.9	<1.9	0.21	0.002
Dissolved Inorganics	1 / 3 - 1				
Aluminum	μg/L	436	34.6		
Antimony	μg/L	<10.0	<10.0		111 - 31
Arsenic	μg/L	2.2	<10.0	69	36
Barium	μg/L	31	<200		
Beryllium	μg/L	0.77	0.97		
Cadmium	μg/L	<5.0	<5.0	40	8.8
Calcium	μg/L	20400	<5000		
Chromium	μg/L	1.3	<5.0	1100	50
Cobalt	μg/L	0.78	<50.0		
Copper	μg/L	<25.0	<25.0	4.8	3.1
Iron	μg/L	630	<100	1.0	J.1
Lead	μg/L	<3.0	<3.0	210	8.1
Magnesium		9070	<5000	210	0.1
Manganese	μg/L	56.2	<15.0		
Mercury	μg/L μg/L	<0.20	<0.20	1.8	0.94

	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Dissolved Inorganics (Continue					
Nickel	μg/L	2.3	<40.0	75	8.2
Potassium	μg/L	2950	< 5000		
Selenium	μg/L	<5.0	<5.0	290	71
Silver	μg/L	<5.0	<5.0	1.9	
Sodium	μg/L	32800	< 5000		
Thallium	μg/L	<10.0	<10.0		
Vanadium	μg/L	2.6	< 50.0		
Zinc	μg/L	11.7	1.4	90	81
Semivolatiles					
1,2,4-Trichlorobenzene	μg/L	<1.9	<1.9		
1,2-Dichlorobenzene	μg/L	<1.9	<1.9		
1,3-Dichlorobenzene	μg/L	<1.9	<1.9		
1,4-Dichlorobenzene	μg/L	<1.9	<1.9		
2,2-oxybis(1-Chloropropane)	μg/L	<1.9	<1.9		
2,4,5-Trichlorophenol	μg/L	<9.6	<9.4		
2,4,6-Trichlorophenol	μg/L	<9.6	<9.4		
2,4-Dichlorophenol	μg/L	<1.9	<1.9		
2,4-Dimethylphenol	μg/L	<9.6	<9.4		
2,4-Dinitrophenol	μg/L	<48	<47		
2,4-Dinitrotoluene	μg/L	<9.6	<9.4		
2,6-Dinitrotoluene	μg/L	<9.6	<9.4		
2-Chloronaphthalene	μg/L	<1.9	<1.9		
2-Chlorophenol	μg/L	<9.6	<9.4	3	
2-Methylnaphthalene	μg/L	<1.9	<1.9		
2-Methylphenol	$\mu g/L$	<9.6	<9.4		
2-Nitroaniline	μg/L	<48	<47		
2-Nitrophenol	μg/L μg/L	<9.6	<9.4		
3,3-Dichlorobenzidine		<9.6	<9.4		
3-Nitroaniline	μg/L	<48	<47	-	
	μg/L				
4,6-Dinitro-2-methylphenol	μg/L	<48	<47		
4-Bromophenyl phenyl ether	μg/L	<9.6	<9.4		
4-Chloro-3-methylphenol	μg/L	<9.6	<9.4		
4-Chloroaniline	μg/L	<9.6	<9.4		
4-Chlorophenyl phenyl ether	μg/L	<9.6	<9.4		
4-Methylphenol	μg/L	<9.6	<9.4		
4-Nitroaniline	μg/L	<48	<47		
4-Nitrophenol	μg/L	<48	<47		
Acenaphthene	μg/L	<1.9	<1.9		
Acenaphthylene	μg/L	<1.9	<1.9		
Anthracene	μ g/L	<1.9	<1.9		
Benzo(a)anthracene	μ g/L	<1.9	<1.9		
Benzo(a)pyrene	μ g/L	<1.9	<1.9		
Benzo(b)fluoranthene	μ g/L	<1.9	<1.9		
Benzo(ghi)perylene	μ g/L	<1.9	<1.9		
Benzo(k)fluoranthene	μ g/L	<1.9	<1.9		
bis(2-Chloroethoxy)methane	μ g/L	<9.6	<9.4		
bis(2-Chloroethyl) ether	μ g/L	<1.9	<1.9		

	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Semivolatiles (Continued)					
bis(2-Ethylhexyl) phthalate	μg/L	<9.6	<9.4		
Butyl benzyl phthalate	μg/L	<9.6	<9.4		
Carbazole	μg/L	<1.9	<1.9		
Chrysene	μg/L	<1.9	<1.9		
Di-n-butyl phthalate	μg/L	<9.6	<9.4		
Di-n-octyl phthalate	μg/L	<9.6	<9.4		
Dibenz(a,h)anthracene	μg/L	<1.9	<1.9		
Dibenzofuran	μg/L	<9.6	<9.4		
Diethyl phthalate	μg/L	<9.6	<9.4		
Dimethyl phthalate	μg/L	<9.6	<9.4		
Fluoranthene	μg/L	<1.9	<1.9		
Fluorene	μg/L	<1.9	<1.9		
Hexachlorobenzene	μg/L	<1.9	<1.9		
Hexachlorobutadiene	μg/L	<1.9	<1.9	9	
Hexachlorocyclopentadiene	μg/L	<9.6	<9.4		
Hexachloroethane	μg/L	<9.6	<9.4		
Indeno(1,2,3-cd)pyrene	μg/L	<1.9	<1.9		
Isophorone	μg/L	<9.6	<9.4		
N-Nitrosodi-n-propylamine	μg/L	<1.9	<1.9		
N-Nitrosodiphenylamine	μg/L	<1.9	<1.9		
Naphthalene	μg/L	<1.9	<1.9		
Nitrobenzene	μg/L	<1.9	<1.9		
Pentachlorophenol	μg/L	<9.6	<9.4		
Phenanthrene	μg/L	<1.9	<1.9		
Phenol	μg/L	<1.9	<1.9		
Pyrene	μg/L	<1.9	<1.9		
VOCs					
1,1,1-Trichloroethane	μg/L	< 5.0	<5.0		
1,1,2,2-Tetrachloroethane	μg/L	<5.0	<5.0		
1,1,2-Trichloroethane	μg/L	<5.0	<5.0		
1,1-Dichloroethane	μg/L	<5.0	<5.0		
1,1-Dichloroethene	μg/L	<5.0	<5.0		
1,2-Dichloroethane	μg/L	<5.0	1.7		
1,2-Dichloroethene (total)	μg/L	<10	<10		
1,2-Dichloropropane	μg/L	<5.0	<5.0		
2-Butanone	μg/L	<5.0	<5.0		
2-Hexanone	μg/L	<5.0	<5.0		
4-Methyl-2-pentanone	μg/L	<5.0	<5.0		
Acetone	μg/L	<20	<20		
Benzene	μg/L	<5.0	<5.0		
Bromodichloromethane	μg/L	<5.0	<5.0		
Bromoform	μg/L	<5.0	<5.0		
Bromomethane	μg/L	<5.0	<5.0		
Carbon disulfide	μg/L	<5.0	<5.0		
Carbon tetrachloride	μg/L	<5.0	<5.0		
Chlorobenzene	μg/L	<5.0	<5.0		
Chloroethane	μg/L	<5.0	< 5.0		

	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
VOCs (Continued)					
Chloroform	μg/L	<5.0	< 5.0		
Chloromethane	μg/L	<5.0	<5.0		
cis-1,3-Dichloropropene	μg/L	<5.0	<5.0		
Dibromochloromethane	μg/L	<5.0	<5.0		
Ethylbenzene	μg/L	<5.0	<5.0		
Methylene chloride	μg/L	<5.0	3.7		
Styrene	μg/L	<5.0	<5.0		
Tetrachloroethene	μg/L	<5.0	<5.0		
Toluene	μg/L	<5.0	<5.0		
trans-1,3-Dichloropropene	μg/L	<5.0	<5.0		
Trichloroethene	μg/L	<5.0	3.1		
Vinyl chloride	μg/L	<5.0	<5.0		
Xylenes (total)	μg/L	<15	<15		
WET					
Cyanide, Total	μg/L	<10.0	<10.0	1.0	
Total Sulfide	mg/L	<3.0	<3.0		

Table 8. Elutriate result			PCB c	ongener	testing	results	for samp	oles coll	ected
from Wilming	ton Ha	rbor	······						·····
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
Congener Elutriates									
PCB 1 (BZ)	ng/L	0.26	0.019	0.012	0.013	0.011	<0.038	0.23	<0.038
PCB 2 (BZ)	ng/L	0.027	0.016	0.018	0.0087	0.0072	0.013	0.068	0.0059
PCB 3 (BZ)	ng/L	0.041	0.018	0.019	0.011	0.0086	0.012	0.091	<0.038
PCB 4 (BZ)	ng/L	2	0.12	0.1	0.12	0.099	0.062	1.9	0.045
PCB 5 (BZ)	ng/L	0.0095	0.0059	0.0042	0.0025	0.003	<0.038	0.071	0.0031
PCB 6 (BZ)	ng/L	0.53	0.042	0.056	0.027	0.024	0.064	0.92	0.015
PCB 7 (BZ)	ng/L	0.037	0.0072	0.017	0.0044	0.0069	0.0097	0.11	0.0033
PCB 8 (BZ)	ng/L	0.77	0.1	0.11	0.067	0.061	0.091	2.1	0.038
PCB 9 (BZ)	ng/L	0.048	0.0051	0.012	0.0056	0.011	0.0075	0.21	0.0062
PCB 10 (BZ)	ng/L	0.059	0.0084	<0.038	0.0074	0.0068	<0.038	0.15	0.0028
PCB 11 (BZ)	ng/L	0.14	0.14	0.13	0.1	0.086	0.16	0.33	0.077
PCB 12 (BZ)	ng/L	0.19	0.038	0.034	0.026	0.016	0.04	0.36	0.016
PCB 13 (BZ)	ng/L	0.19	0.038	0.034	0.026	0.016	0.04	0.36	0.016
PCB 14 (BZ)	ng/L	0.0024	0.0039	<0.038	0.0019	<0.038	0.0035	0.036	0.0022
PCB 15 (BZ)	ng/L	0.35	0.13	0.12	0.086	0.071	0.1	1.2	0.059
PCB 16 (BZ)	ng/L	0.4	0.076	0.11	0.072	0.062	0.088	5.8	0.042
PCB 17 (BZ)	ng/L	1.4	0.16	0.2	0.14	0.11	0.16	7.4	0.073
PCB 18 (BZ)	ng/L	1.4	0.21	0.3	0.19	0.15	0.23	16	0.12
PCB 19 (BZ)	ng/L	0.63	0.073	0.086	0.06	0.057	0.047	1.8	0.037
PCB 20 (BZ)	ng/L	1.5	0.39	0.45	0.31	0.29	0.4	19	0.22
PCB 21 (BZ)	ng/L	0.36	0.095	0.12	0.076	0.062	0.11	5.8	0.057
PCB 22 (BZ)	ng/L	0.25	0.073	0.076	0.057	0.055	0.069	4.1	0.039
PCB 23 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.038
PCB 24 (BZ)	ng/L	0.014	0.0067	< 0.038	0.0059	<0.038	<0.038	0.23	<0.038
PCB 25 (BZ)	ng/L	0.55	0.077	0.1	0.062	0.048	0.11	1.5	0.038
PCB 26 (BZ)	ng/L	0.85	0.12	0.14	0.083	0.068	0.15	2.9	0.055
PCB 27 (BZ)	ng/L	0.6	0.064	0.081	0.053	0.037	0.051	1	0.031
PCB 28 (BZ)	ng/L	1.5	0.39	0.45	0.31	0.29	0.4	19	0.22
PCB 29 (BZ)	ng/L	0.85	0.12	0.14	0.083	0.068	0.15	2.9	0.055
PCB 30 (BZ)	ng/L	1.4	0.21	0.3	0.19	0.15	0.23	16	0.12
PCB 31 (BZ)	ng/L	1.3	0.28	0.32	0.22	0.2	0.3	17	0.15
PCB 32 (BZ)	ng/L	0.89	0.13	0.16	0.11	0.09	0.13	5	0.063
PCB 33 (BZ)	ng/L	0.36	0.095	0.12	0.076	0.062	0.11	5.8	0.057
PCB 34 (BZ)	ng/L	0.033	0.0049	0.0063	0.0043	<0.038	0.007	0.33	<0.038
PCB 35 (BZ)	ng/L	0.025	0.016	0.013	0.0093	0.0079	0.02	0.33	0.01
PCB 36 (BZ)	ng/L	<0.038	0.0036	<0.038	0.0035	<0.038	0.0068	<0.19	0.0034
PCB 37 (BZ)	ng/L	0.18	0.11	0.095	0.075	0.067	0.088	2.3	0.051
PCB 38 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	0.029	<0.038
PCB 39 (BZ)	ng/L	0.013	0.01	0.0097	0.0041	0.0053	0.0067	0.23	0.0036
PCB 40 (BZ)	ng/L	1.4	0.45	0.56	0.38	0.36	0.57	16	0.24
PCB 41 (BZ)	ng/L	1.4	0.45	0.56	0.38	0.36	0.57	16	0.24
PCB 42 (BZ)	ng/L	0.63	0.19	0.25	0.19	0.16	0.26	10	0.12
PCB 43 (BZ)	ng/L	0.068	0.022	0.019	0.02	0.019	0.017	1.1	0.01
PCB 44 (BZ)	ng/L	3.2	0.91	1.1	0.82	0.71	0.96	38	0.5
PCB 45 (BZ)	ng/L	0.96	0.21	0.27	0.21	0.18	0.19	7.1	0.12
PCB 46 (BZ)	ng/L	0.24	0.063	0.075	0.052	0.046	0.057	2.5	0.034
PCB 47 (BZ)	ng/L	3.2	0.91	1.1	0.82	0.71	0.96	38	0.5
PCB 48 (BZ)	ng/L	0.27	0.087	0.092	0.078	0.072	0.069	6.4	0.038
PCB 49 (BZ)	ng/L	2.7	0.67	0.91	0.61	0.49	0.83	29	0.35

able 8. (Continued)	1		7				T	V-1LAFT	
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 50 (BZ)	ng/L	0.83	0.19	0.22	0.16	0.14	0.17	5.7	0.094
PCB 51 (BZ)	ng/L	0.96	0.21	0.27	0.21	0.18	0.19	7.1	0.12
PCB 52 (BZ)	ng/L	3.7	1.1	1.4	0.93	0.81	1.2	49	0.56
PCB 53 (BZ)	ng/L	0.83	0.19	0.22	0.16 0.14 0.17 0.011 <0.038		5.7	0.094	
PCB 54 (BZ)	ng/L	0.076	0.019	0.016	0.011	<0.038		<0.19	<0.03
PCB 55 (BZ)	ng/L	0.028	0.017	0.0081		0.0066		0.35	0.012
PCB 56 (BZ)	ng/L	0.47	0.23	0.24	0.19	0.18	0.2	11	0.14
PCB 57 (BZ)	ng/L	0.03	0.009	0.012	0.0057	0.0058	0.0064	0.14	< 0.03
PCB 58 (BZ)	ng/L	<0.038	0.0083	<0.038	0.0051	0.0052	0.0095	0.34	<0.03
PCB 59 (BZ)	ng/L	0.24	0.078	0.098	0.071	0.063	0.087	3.3	0.04
PCB 60 (BZ)	ng/L	0.12	0.077	0.062	0.057	0.057	0.044	0.71	0.04
PCB 61 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48
PCB 62 (BZ)	ng/L	0.24	0.078	0.098	0.071	0.063	0.087	3.3	0.04
PCB 63 (BZ)	ng/L	0.079	0.026	0.034	0.023	0.024	0.024	1.1	0.013
PCB 64 (BZ)	ng/L	0.69	0.27	0.32	0.25	0.23	0.28	14	0.16
PCB 65 (BZ)	ng/L	3.2	0.91	1.1	0.82	0.71	0.96	38	0.5
PCB 66 (BZ)	ng/L	1.4	0.62	0.69	0.52	0.45	0.56	28	0.34
PCB 67 (BZ)	ng/L	0.063	0.025	0.028	0.025	0.02	0.021	0.67	0.013
PCB 68 (BZ)	ng/L	0.079	0.023	0.034	0.022	0.016	0.027	0.6	0.018
PCB 69 (BZ)	ng/L	2.7	0.67	0.91	0.61	0.49	0.83	29	0.35
PCB 70 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48
PCB 71 (BZ)	ng/L	1.4	0.45	0.56	0.38	0.36	0.57	16	0.24
PCB 72 (BZ)	ng/L	0.11	0.027	0.046	0.028	0.016	0.035	0.95	0.01
PCB 73 (BZ)	ng/L	0.068	0.022	0.019	0.02	0.019	0.017	1.1	0.01
PCB 74 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48
PCB 75 (BZ)	ng/L	0.24	0.078	0.098	0.071	0.063	0.087	3.3	0.04
PCB 76 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48
PCB 77 (BZ)	ng/L	0.097	0.071	0.067	0.047	0.044	0.058	1.6	0.04
PCB 78 (BZ)	ng/L	<0.038	< 0.038	<0.038	<0.038	<0.038	<0.038	0.032	<0.03
PCB 79 (BZ)	ng/L	0.031	0.018	0.016	0.014	0.0097	0.0068	0.38	0.008
PCB 80 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 81 (BZ)	ng/L	<0.038	0.0066	<0.038	<0.038	<0.038	<0.038	<0.19	< 0.02
PCB 82 (BZ)	ng/L	0.26	0.16	0.17	0.1	0.13	0.11	3.1	0.1
PCB 83 (BZ)	ng/L	2.2	1.1	1.4	0.98	0.88	1.1	30	0.74
PCB 84 (BZ)	ng/L	0.83	0.37	0.44	0.32		0.36	11	<0.03
PCB 85 (BZ)	ng/L	0.42	0.23	0.25	0.21	0.19	0.17	4.6	0.16
PCB 86 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 87 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 88 (BZ)		0.66	0.3	0.90	0.06	0.00	0.4	6.7	<0.03
PCB 89 (BZ)	ng/L ng/L	0.025	<0.038	<0.038	<0.038	0.017	<0.038	0.6	0.01
PCB 90 (BZ)		3.3	1.6	1.9	1.4	1.3	1.4	42	1.1
PCB 91 (BZ)	ng/L	0.66	0.3	0.4	0.26	0.22	0.4	6.7	<0.03
	ng/L				0.20	0.22	0.4	9.2	0.24
PCB 92 (BZ)	ng/L	0.73	0.36	0.45	0.061	0.041	0.079	0.68	0.04
PCB 93 (BZ)	ng/L	0.21	0.076	0.08	1		0.079	0.68	0.04
PCB 94 (BZ)	ng/L	0.064	0.024	0.026	0.023	0.017		36	0.01
PCB 95 (BZ)	ng/L	2.8	1.2	1.5	1 0.010	0.95	1.2		1
PCB 96 (BZ)	ng/L	0.042	0.012	0.014	0.012	0.0096	0.013	0.59	0.0
		1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 97 (BZ)	ng/L		·			1	0.000		0.0-
PCB 97 (BZ) PCB 98 (BZ)	ng/L	0.19	0.081	0.11	0.077	0.063	0.076	2	0.05
PCB 97 (BZ)			·			1	0.076 1.1 0.079		0.05 0.74 0.04

Table 8. (Continued)		1						-1	
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 102 (BZ)	ng/L	0.19	0.081	0.11	0.077	0.063	0.076	2	0.058
PCB 103 (BZ)	ng/L	0.13	0.043	0.062	0.048	0.039	0.081	1.1	0.027
PCB 104 (BZ)	ng/L	0.016	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.038
PCB 105 (BZ)	ng/L	0.57	0.37	0.35	0.28	0.29	0.22	4.7	0.23
PCB 106 (BZ)	IZ) ng/L <0.038 <0.038 IZ) ng/L 0.23 0.11 IZ) ng/L 0.067 0.038 IZ) ng/L 1.6 0.84 IZ) ng/L 3.2 1.7 IZ) ng/L 0.013 <0.038		<0.038	<0.038	<0.038	<0.038	<0.19	<0.038	
PCB 107 (BZ)	ng/L	0.23	0.11	0.14	0.11	0.088	0.11	3.2	0.072
PCB 108 (BZ)	ng/L	0.067	0.038	0.046	0.034	0.037	0.027	0.64	0.021
PCB 109 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 110 (BZ)	ng/L	3.2	1.7	2	1.4	1.3	1.4	42	1.2
PCB 111 (BZ)		0.013	<0.038	<0.038	0.0068	<0.038	0.0063	0.14	0.0052
PCB 112 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.038
PCB 113 (BZ)	ng/L	3.3	1.6	1.9	1.4	1.3	1.4	42	1.1
PCB 114 (BZ)	ng/L	0.036	0.022	0.021	0.017	0.025	<0.038	0.32	0.016
PCB 115 (BZ)	ng/L	3.2	1.7	2	1.4	1.3	1.4	42	1.2
PCB 116 (BZ)	ng/L	0.42	0.23	0.25	0.21	0.19	0.17	4.6	0.16
PCB 117 (BZ)	ng/L	0.42	0.23	0.25	0.21	0.19	0.17	4.6	0.16
PCB 118 (BZ)	ng/L	2.1	1.1	1.2	0.91	0.86	0.78	28	0.65
PCB 119 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 120 (BZ)	ng/L	0.037	0.019	0.021	0.017	0.012	0.016	0.48	0.013
PCB 121 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.033
PCB 122 (BZ)	ng/L	0.028	0.016	0.013	0.014	0.019	0.014	0.26	0.014
PCB 123 (BZ)	ng/L	0.033	0.027	0.017	0.012	0.011	0.015	0.29	0.015
PCB 124 (BZ)	ng/L	0.067	0.038	0.046	0.034	0.037	0.027	0.64	0.021
PCB 125 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 126 (BZ)	ng/L	0.0095	0.0054	<0.038	0.004	0.0032	0.0076	0.034	<0.03
PCB 127 (BZ)	ng/L	0.0036	<0.038	< 0.038	<0.038	< 0.038	<0.038	< 0.19	<0.03
PCB 128 (BZ)	ng/L	0.46	0.32	0.34	0.26	0.27	0.2	3.9	0.2
PCB 128 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 130 (BZ)	ng/L	0.27	0.17	0.18	0.15	0.16	0.14	2.3	0.1
PCB 131 (BZ)	ng/L	0.04	0.028	0.026	0.026	0.025	0.016	0.42	0.015
PCB 131 (BZ)	ng/L	1.1	0.68	0.72	0.58	0.6	0.5	11	0.4
PCB 132 (BZ)	ng/L	0.11	0.074	0.095	0.073	0.076	0.071	0.98	0.053
PCB 134 (BZ)	ng/L	0.11	0.13	0.14	0.12	0.12	0.082	2.1	0.072
PCB 135 (BZ)	ng/L	1.3	0.13	0.94	0.74	0.7	0.73	13	0.57
PCB 136 (BZ)	ng/L	0.5	0.29	0.34	0.25	0.25	0.3	5.1	0.19
PCB 137 (BZ)	ng/L	0.14	0.082	0.093	0.077	0.073	0.043	1.1	0.047
PCB 138 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 139 (BZ)	ng/L	0.073	0.05	0.049	0.05	0.044	0.047	0.77	0.028
PCB 140 (BZ)	ng/L	0.073	0.05	0.049	0.05	0.044	0.047	0.77	0.028
PCB 141 (BZ)	ng/L	0.52	0.34	0.37	0.32	0.32	0.21	3.9	0.19
PCB 142 (BZ)	ng/L	<0.038	<0.038	< 0.038	<0.038	<0.038	<0.038	<0.19	< 0.03
PCB 142 (BZ)	ng/L	0.038	0.038	0.038	0.12	0.12	0.082	2.1	0.072
		0.21	0.13	0.098	0.12	0.081	0.12	1	0.06
PCB 144 (BZ)	ng/L	<0.14	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 145 (BZ)	ng/L		0.038	0.62	0.038	0.038	0.51	7.6	0.31
PCB 146 (BZ)	ng/L	0.77	1	2.3	1.9	1.8	1.9	28	1.2
PCB 147 (BZ)	ng/L	3.1	1.9		0.016	0.019	0.024	0.22	0.009
PCB 148 (BZ)	ng/L	<0.038	<0.038	0.028			1.9	28	1.2
PCB 149 (BZ)	ng/L	3.1	1.9	2.3	1.9	1.8			1
PCB 150 (BZ)	ng/L	0.02	0.012	0.022	0.018	0.013	0.039	0.12	0.01
PCB 151 (BZ)	ng/L	1.3	0.84	0.94	0.74	0.7	0.73	13	0.57
PCB 152 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03

able 8. (Continued)	 _								
33 T 10 T.	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 153 (BZ)	ng/L	3.4	2.1	2.7	2.1	2	1.9	29	1.3
PCB 154 (BZ)	ng/L	0.14	0.11	0.14	0.095	0.086	0.17	1.2	0.076
PCB 155 (BZ)	ng/L	0.016	0.011	0.017	0.0086	<0.038	0.021	0.042	<0.03
PCB 156 (BZ)	ng/L	0.29	0.19	0.21	0.17	0.17	0.13	2.5	0.11
PCB 157 (BZ)	ng/L	0.29	0.19	0.21	0.17	0.17	0.13	2.5	0.11
PCB 158 (BZ)	ng/L	0.29	0.19	0.2	0.17	0.17	0.11	2.4	0.11
PCB 159 (BZ)	ng/L	0.035	0.02	0.029	0.019	0.018	0.017	0.24	0.01:
PCB 160 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 161 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	< 0.03
PCB 162 (BZ)	ng/L	0.019	0.019	0.016	0.018	0.015	0.012	0.14	0.01
PCB 163 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 164 (BZ)	ng/L	0.26	0.16	0.19	0.15	0.16	0.1	2.4	0.11
PCB 165 (BZ)	ng/L	<0.038	<0.038	<0.038	0.0049	<0.038	<0.038	< 0.19	<0.03
PCB 166 (BZ)	ng/L	0.46	0.32	0.34	0.26	0.27	0.2	3.9	0.2
PCB 167 (BZ)	ng/L	0.13	0.086	0.09	0.08	0.074	0.058	0.93	0.05
PCB 168 (BZ)	ng/L	3.4	2.1	2.7	2.1	2	1.9	29	1.3
PCB 169 (BZ)	ng/L	0.0057	<0.038	<0.038	<0.038	0.0061	<0.038	< 0.19	< 0.03
PCB 170 (BZ)	ng/L	0.84	0.59	0.67	0.55	0.54	0.5	5.4	0.35
PCB 171 (BZ)	ng/L	0.28	0.2	0.25	0.19	0.18	0.2	1.9	0.12
PCB 172 (BZ)	ng/L	0.18	0.13	0.15	0.12	0.12	0.13	1.2	0.08
PCB 173 (BZ)	ng/L	0.28	0.2	0.25	0.19	0.18	0.2	1.9	0.12
PCB 174 (BZ)	ng/L	0.92	0.62	0.79	0.62	0.58	0.61	6.5	0.39
PCB 175 (BZ)	ng/L	0.046	0.038	0.048	0.037	0.033	0.033	0.28	0.02
PCB 176 (BZ)	ng/L	0.13	0.098	0.12	0.083	0.087	0.094	0.9	0.05
PCB 177 (BZ)	ng/L	0.59	0.43	0.51	0.41	0.38	0.33	3.9	0.28
PCB 177 (BZ)	ng/L	0.29	0.43	0.26	0.71	0.2	0.2	1.8	0.13
PCB 179 (BZ)	ng/L	0.46	0.36	0.41	0.33	0.33	0.29	3.2	0.2
PCB 180 (BZ)	ng/L	2.1	1.3	1.7	1.4	1.2	1.3	13	0.87
PCB 181 (BZ)	ng/L	0.0077	<0.038	<0.038	0.0088	<0.038	<0.038	0.071	<0.03
PCB 182 (BZ)	ng/L	0.014	0.016	0.026	0.012	0.018	0.021	0.13	0.009
PCB 182 (BZ)	ng/L	0.72	0.010	0.61	0.51	0.51	0.54	4.4	0.33
PCB 184 (BZ)	ng/L	0.0063	<0.038	0.01	0.0059	0.0089	0.016	<0.19	0.000
PCB 185 (BZ)	ng/L	0.0003	0.5	0.61	0.51	0.51	0.54	4.4	0.33
		<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 186 (BZ)	ng/L				 	1	0.9	9.5	0.6
PCB 187 (BZ)	ng/L	1.5 0.018	0.022	0.033	0.026	0.026	0.04	0.048	0.01
PCB 188 (BZ)	ng/L		0.022	0.033	0.020	0.023	0.026	0.048	0.01
PCB 189 (BZ)	ng/L	0.04		0.029	0.022	0.023	0.020	1	0.01
PCB 190 (BZ)	ng/L	0.17	0.12	·	0.12	0.12	0.11	0.3	0.07
PCB 191 (BZ)	ng/L	0.04	0.025	0.025		<0.023	<0.024	<0.19	<0.01
PCB 192 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038		1.3	13	0.8
PCB 193 (BZ)	ng/L	2.1	1.3	1.7	1.4	1.2	0.48	3.2	0.3
PCB 194 (BZ)	ng/L	0.64	0.48	0.58	0.49	0.46	0.48	3.2	0.3
PCB 195 (BZ)	ng/L	0.19	0.15	0.19	0.16	0.15		2	0.1
PCB 196 (BZ)	ng/L	0.43	0.36	0.48	0.42	0.36	0.49		
PCB 197 (BZ)	ng/L	0.045	0.048	0.058	0.041	0.039	0.074	0.16	0.03
PCB 198 (BZ)	ng/L	1.4	1.2	1.6	1.4	1.2	1.5	6.4	0.9
PCB 199 (BZ)	ng/L	0.071	0.061	0.071	0.071	0.048	0.079	0.39	0.04
PCB 200 (BZ)	пg/L	0.14	0.16	0.19	0.16	0.15	0.24	0.63	0.12
PCB 201 (BZ)	ng/L	1.4	1.2	1.6	1.4	1.2	1.5	6.4	0.9
PCB 202 (BZ)	ng/L	0.44	0.49	0.57	0.51	0.47	0.55	2	0.3
PCB 203 (BZ)	ng/L	0.59	0.51	0.69	0.61	0.56	0.57	2.8	0.42
PCB 204 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	0.011	< 0.19	< 0.03

Table 8. (Continued)											
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8		
PCB 205 (BZ)	ng/L	0.035	0.038	0.047	0.042	0.041	0.034	0.18	0.018		
PCB 206 (BZ)	ng/L	3.8	5	6.3	5.6	5	5.8	13	3.4		
PCB 207 (BZ)	ng/L	0.34	0.42	0.5	0.43	0.39	0.45	1.1	0.28		
PCB 208 (BZ)	ng/L	1.7	2.3	2.9	2.6	2.4	2.7	6.4	1.7		
PCB 209 (BZ)	ng/L	8.5	8	9.5	7.5	6.6	7.9	32	5		

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Congener Elutriates											
Monochlorobiphenyl	ng/L	0.33	0.052	0.049	0.032	0.027	0.025	0.39	0.0059		
Dichlorobiphenyl	ng/L	4.1	0.6	0.58	0.45	0.39	0.53	7.4	0.27		
Trichlorobiphenyl	ng/L	10	1.9	2.3	1.5	1.3	2	92	1		
Tetrachlorobiphenyl	ng/L	20	6.2	7.5	5.5	4.8	6.4	270	3.4		
Pentachlorobiphenyl	ng/L	20	9.8	12	8.3	7.8	8.5	250	6		
Hexachlorobiphenyl	ng/L	17	11	12	9.9	9.8	8.3	150	6.6		
Heptachlorobiphenyl	ng/L	8.3	5.8	7.2	5.7	5.4	5.3	54	3.7		
Octachlorobiphenyl	ng/L	4	3.5	4.5	3.9	3.5	4.1	19	2.7		
Nonachlorobiphenyl	ng/L	5.9	7.8	9.7	8.7	7.8	8.9	21	5.4		
Decachlorobiphenyl	ng/L	8.5	8	9.5	7.5	6.6	7.9	32	5		
Total	ng/L	98	55	65	51	47	52	896	34		30

Table 10. TCLP testing results for sediment samples collected from Wilmington Harbor. Values highlighted in yellow are over regulatory limits.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	TCLP Regulator Limit
Inorganics										
Arsenic	mg/L	0.16	0.16	0.14	0.11	0.12	0.13	0.16	0.12	5
Barium	mg/L	0.48	0.49	0.36	0.47	0.43	0.34	0.21	0.31	100
Cadmium	mg/L	0.0054	0.005	0.0056	0.0065	0.0057	0.005	< 0.10	0.0054	1
Chromium	mg/L	0.0053	0.0054	0.004	0.0062	0.0043	0.0052	0.0043	0.0041	5
Lead	mg/L	0.061	0.027	0.03	0.022	0.014	0.024	0.053	0.02	5
Mercury	mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.2
Selenium	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	<0.25	1
Silver	mg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5
Semi-volatile Organics										
1,4-Dichlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	7.5
2,4,5-TP (Silvex)	mg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	1
2,4,5-Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	400
2,4,6-Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
2,4-Dinitrotoluene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
2,4-D	mg/L	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	10
3-Methylphenol & 4-Methylphenol	mg/L	NA								
Chlordane (technical)	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.03
Cresols (total)	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	200
Endrin	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.02
Heptachlor epoxide	mg/L	< 0.00050	< 0.00050	0.0002	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Heptachlor	mg/L	< 0.00050	< 0.00050	0.00016	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Hexachlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
Hexachlorobutadiene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.5
Hexachloroethane	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	3
Lindane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.4
Methoxychlor	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	10
Nitrobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
Pentachlorophenol	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	100
Pyridine	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	5
Toxaphene	mg/L	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.5
Volatile Organics										
1,1-Dichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
1,2-Dichloroethane	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
2-Butanone	mg/L	< 0.20	< 0.20	< 0.20	1.6	< 0.20	< 0.20	< 0.20	< 0.20	200

Table 10. TCLP testing results for sediment samples collected from Wilmington Harbor. Values highlighted in yellow are over regulatory limits.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	TCLP Regulator Limit
Volatile Onorganics (Continu	ied)									
Benzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Carbon tetrachloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Chlorobenzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	100
Chloroform	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	6
Tetrachloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
Trichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Vinyl chloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.2

SOIL SAMPLING RESULTS FROM WILMINGTON HARBOR SOUTH CDF

	l in yellov	v are o						oor CDF. Va while values	in green
	Units	WU1	WU2	WU3	WU4	WU5	WU6	DNREC Non-critical Unrestricted	DNREC Non-critica Restricted
PCBs									
Aroclor 1016	μg/kg	<33	<35	<34	<36	<32	<31	5000	82000
Aroclor 1221	μg/kg	<33	<35	<34	<36	<32	<31	300	3000
Aroclor 1232	μg/kg	<33	<35	<34	<36	<32	<31	300	3000
Aroclor 1242	μg/kg	<33	<35	<34	<36	<32	<31	300	3000
Aroclor 1248	μg/kg	13	17	15	14	13	15	300	3000
Aroclor 1254	μg/kg	18	48	33	31	44	43	300	3000
Aroclor 1260	μg/kg	21	28	19	18	26	25	300	3000
Pesticides	1700	1., 5.0							
4,4-DDD	μg/kg	7.4	11	6.1	5.3	8.1	6.6	3,000	24,000
4,4-DDE	μg/kg	6.5	10	5.1	5	7.6	5.7	2,000	17,000
4,4-DDT	μg/kg	<3.4	9.1	<3.5	<3.6	<3.3	<3.2	2,000	17,000
Aldrin	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	40	300
alpha-BHC	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	100	900
alpha-Chlordane	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	200	
beta-BHC	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	400	3,000
delta-BHC	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2		2,000
Dieldrin	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	40	400
Endosulfan I	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	47,000	1,200,000
Endosulfan II	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	47,000	1,200,000
Endosulfan sulfate	μg/kg	<3.4	0.8	<3.5	<3.6	0.55	<3.2	47,000	1,200,000
Endrin	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	2,000	61,000
Endrin aldehyde	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	2,000	61,000
Endrin ketone	μg/kg μg/kg	1.3	1.7	<3.5	0.73	1.6	0.9	2,000	01,000
gamma-BHC (Lindane)	μg/kg μg/kg	<3.4	<3.6	<3.5	0.75	<3.3	0.71	500	4,000
gamma-Chlordane	μg/kg μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	500	4,000
Heptachlor	μg/kg μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	100	1,000
Heptachlor epoxide	μg/kg μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	70	600
								39,000	1,000,000
Methoxychlor	μg/kg	<6.6	<7.0	<6.7	<7.0	<6.4	<6.2		
Toxaphene	μg/kg	<130	<140	<140	<140	<130	<130	600	5,000
Inorganics									
Aluminum						20,100		7,800	200,000
Antimony	mg/kg	0.24	0.28	0.22	0.32	0.2	0.21	3	82
Arsenic	mg/kg	12.3	12.6	11.8	13	14.4	11.8	0.4	4
Barium	mg/kg	114	132	127	145	131	135	550	14,000
Beryllium	mg/kg	1.3	1.4	1.3	1.5	1.4	1.3	16	410
Cadmium	mg/kg	0.26	0.42	0.36	0.39	0.26	0.43	4	100
Calcium	mg/kg	3530	3750	3540	3580	3370	3320		
Chromium	mg/kg	51.6	55	53.2	60	61.4	53.6	270	610
Cobalt	mg/kg	15.4	16.4	15.6	16.7	17.3	15.8	470	12,000
Copper	mg/kg	36.9	41.3	39.8	45.2	42.7	41.4	310	8,200
Iron	mg/kg					37,000		2,300	61,000
Lead	mg/kg	52	57.1	55.8	63.3	59.6	57.9	400	1,000
Magnesium	mg/kg	6020	6240	5920	6430	6660	5780		
Manganese	mg/kg	1,520	1,540	1,390	1,380	1,500	1,270	160	4,100
Mercury	mg/kg	0.27	0.29	0.26	0.32	0.31	0.29	10	610

								DNREC	DNREC
		1						Non-critical	Non-critic
	Units	WU1	WU2	WU3	WU4	WU5	WU6	Unrestricted	Restricted
Inorganics (Continued)									
Nickel	mg/kg	29.8	31.9	30.6	33.3	33.4	30.4	160	4,100
Potassium	mg/kg		2380	2300	2520	2760	2050		
Selenium	mg/kg		< 0.53	< 0.51	< 0.53	< 0.49	< 0.47	39	1,000
Silver	mg/kg	0.72	0.73	0.7	0.74	0.79	0.66	39	1,000
Sodium	mg/kg	635	648	605	711	568	471		
Thallium	mg/kg	0.72	0.71	<1.0	<1.1	0.57	0.69	18	220
Vanadium	mg/kg	47.1	50.3	48.8	54.8	57.6	48.5	55	1,400
Zinc	mg/kg	237	275	270	302	271	278	2,300	61,000
Semivolatiles									
1,2,4-Trichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
1,2-Dichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
1,3-Dichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
1,4-Dichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
2,2-oxybis(1-Chloropropane)	μg/kg	<67	<71	<68	<71	<65	<63		
2,4,5-Trichlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
2,4,6-Trichlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
2,4-Dichlorophenol	μg/kg	<67	<71	<68	<71	<65	<63		
2,4-Dimethylphenol	μg/kg	<330	<350	<340	<350	<320	<310		
2,4-Dinitrophenol	μg/kg		<1800	<1700	<1800	<1700	<1600		
2,4-Dinitrotoluene	μg/kg	<330	<350	<340	<350	<320	<310		
2,6-Dinitrotoluene	μg/kg	<330	<350	<340	<350	<320	<310		
2-Chloronaphthalene	μg/kg	<67	<71	<68	<71	<65	<63		
2-Chlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
2-Methylnaphthalene	μg/kg	47	43	44	24	30	21		
2-Methylphenol	μg/kg	<330	<350	<340	<350	<320	<310		
2-Nitroaniline	μg/kg	<1700	<1800	<1700	<1800	<1700	<1600		
2-Nitrophenol	μg/kg	<330	<350	<340	<350	<320	<310		
3,3-Dichlorobenzidine	μg/kg	<330	<350	<340	<350	<320	<310		
3-Nitroaniline	μg/kg	<1700	<1800	<1700	<1800	<1700	<1600		
4,6-Dinitro-2-methylphenol	μg/kg	<1700	<1800	<1700	<1800		<1600		
4-Bromophenyl phenyl ether	μg/kg	<330	<350	<340	<350	<320	<310		
4-Chloro-3-methylphenol		<330	<350		<350		<310		
4-Chloroaniline	μg/kg	<330	<350	<340	<350	<320	<310		
4-Chlorophenyl phenyl ether	μg/kg	<330	<350	<340	<350	<320	<310		
4-Methylphenol	μg/kg	45	<350	<340	<350	<320	<310		
4-Nitroaniline	μg/kg	<1700	<1800	<1700	<1800		<1600		
4-Nitrophenol		<1700	<1800	<1700	<1800	<1700	<1600		_
Acenaphthene	μg/kg	<67	<71	21	<71	<65	<63	470,000	5,000,000
Acenaphthylene	μg/kg	<67	<71	40	<71	<65	<63	470,000	3,000,000
	μg/kg		47		49		39	1,000,000	5,000,000
Anthracene Renzo(a)anthracene	μg/kg	52		57		36			
Benzo(a)anthracene	μg/kg	150	140	150	100	100	120	900	8,000
Benzo(a)pyrene	μg/kg	130	140	150	100	83	140	90	800
Benzo(b)fluoranthene	μg/kg	260	270	200	130	130	150	900	8,000
Benzo(ghi)perylene	μg/kg	270	130	120	100	71	110	0.000	-0.55
Benzo(k)fluoranthene	μg/kg	<67	<71	94	89	<65	95	9,000	78,000
bis(2-Chloroethoxy)methane	μg/kg	<330	<350	<340	<350	<320	<310		
bis(2-Chloroethyl) ether	μg/kg	<67	<71	<68	<71	<65	<63		
bis(2-Ethylhexyl) phthalate	μg/kg	680	270	230	170	140	160		

								DNREC	DNREC
	XT	*****	TTITIO	******	******	ANINIM	TAIRT	Non-critical	Non-critic
	Units	WU1	WU2	WU3	WU4	WU5	WU6	Unrestricted	Restricte
Semivolatiles (Continued)	1 4	-220	1 .0.50	210	2.50		1 242		
Butyl benzyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Carbazole	μg/kg	<67	<71	<68	<71	<65	<63		
Chrysene	μg/kg	150	180	220	150	110	170	87,000	780,00
Di-n-butyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Di-n-octyl phthalate	μg/kg	130	<350	<340	<350	<320	<310		
Dibenz(a,h)anthracene	μg/kg	<67	57	<68	<71	<65	32	90	80
Dibenzofuran	μg/kg	25	<350	25	<350	<320	<310		
Diethyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Dimethyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Fluoranthene	μg/kg	240	290	280	200	160	230	310,000	5,000,00
Fluorene	μg/kg	<67	<71	<68	<71	<65	<63	310,000	5,000,00
Hexachlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
Hexachlorobutadiene	μg/kg	<67	<71	<68	<71	<65	<63		
Hexachlorocyclopentadiene	μg/kg	<330	<350	<340	<350	<320	<310	1	
Hexachloroethane	μg/kg	<330	<350	<340	<350	<320	<310		
Indeno(1,2,3-cd)pyrene	μg/kg	130	130	120	87	79	110	900	8,00
Isophorone	μg/kg	<330	<350	<340	<350	<320	<310		
N-Nitrosodi-n-propylamine	μg/kg	<67	<71	<68	<71	<65	<63		
N-Nitrosodiphenylamine	μg/kg	<67	<71	<68	<71	<65	<63		
Naphthalene	μg/kg	85	<71	<68	<71	<65	59	160,000	4,100,00
Nitrobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
Pentachlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
Phenanthrene	μg/kg	130	140	140	94	78	100	1,000,000	5,000,00
Phenol	μg/kg	250	210	180	180	96	140		
Pyrene	μg/kg	220	240	230	170	130	170		
'OCs									
1,1,1-Trichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	160,000	4,100,00
1,1,2,2-Tetrachloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	600	29,00
1,1,2-Trichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	1,000	100,00
1,1-Dichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	780,000	5,000,00
1,1-Dichloroethene	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
1,2-Dichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
1,2-Dichloroethene (total)	μg/kg	<20	<21	<20	<21	<18	<19	400	63,00
1,2-Dichloropropane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	9,000	84,00
2-Butanone	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
2-Hexanone	μg/kg	<10	<11	<10	<11	<8.8	<9.3	310,000	5,000,00
4-Methyl-2-pentanone	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
Acetone	μg/kg	<40	<43	<41	<43	<35	<37	780,000	5,000,00
Benzene	μg/kg	<10	<11	<10	<11	<8.8	<9.3	800	200,00
Bromodichloromethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	10,000	92,00
Bromoform	μg/kg	<10	<11	<10	<11	<8.8	<9.3	53,000	720,00
Bromomethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	11,000	290,00
Carbon disulfide	μg/kg	<10	<11	<10	<11	<8.8	<9.3	780,000	5,000,00
Carbon distinde Carbon tetrachloride	μg/kg μg/kg	<10	<11	<10	<11	<8.8	<9.3	300	44,00
Chlorobenzene	μg/kg μg/kg	<10	<11	<10	<11	<8.8	<9.3	130,000	4,100,00
Chloroethane	μg/kg μg/kg	<10	<11	<10	<11		<9.3		
Chloroform						<8.8		220,000	2,000,00
Chloromethane	μg/kg μg/kg	<10 <10	<11	<10	<11	<8.8 <8.8	<9.3 <9.3	300 49,000	940,000

	Units	WU1	WU2	WU3	WU4	WU5	WU6	DNREC Non-critical Unrestricted	DNREC Non-critical Restricted
VOCs (Continued)									
cis-1,3-Dichloropropene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	100	32,000
Dibromochloromethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	8,000	68,000
Ethylbenzene	μg/kg	<10	<11	<10	<11	<8.8	<9.3	400,000	5,000,000
Methylene chloride	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	13,000	760,000
Styrene	μg/kg	<10	<11	<10	<11	<8.8	<9.3	1,000,000	5,000,000
Tetrachloroethene	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
Toluene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	650,000	5,000,000
trans-1,3-Dichloropropene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	100	32,000
Trichloroethene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3		
Vinyl chloride	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	30	3,000
Xylenes (total)	μg/kg	<30	<32	<31	<32	<27	<28	420,000	5,000,000
Cyanide, Total	mg/kg	0.32	0.42	0.34	0.5	0.88	0.61		
Total Sulfide	mg/kg	80.1	68.1	32.6	119	28.3	<56.0		

Table 12. PCB congener	testing re	esults for	samples co	ollected fr	om Wilmi	ington Harb	or CDF
	Units	WU1	WU2	WU3	WU4	WU5	WU6
PCB 1 (BZ)	ng/g	0.056	0.062	0.065	0.049	0.051	0.1
PCB 2 (BZ)	ng/g	0.059	0.06	0.12	0.059	0.066	0.063
PCB 3 (BZ)	ng/g	0.085	0.084	0.099	0.076	0.087	0.083
PCB 4 (BZ)	ng/g	0.16	0.19	0.21	0.14	0.2	0.22
PCB 5 (BZ)	ng/g	0.0098	0.013	< 0.020	0.0084	0.012	0.0044
PCB 6 (BZ)	ng/g	0.093	0.13	0.12	0.093	0.13	0.11
PCB 7 (BZ)	ng/g	0.015	0.02	0.022	0.011	0.017	0.014
PCB 8 (BZ)	ng/g	0.25	0.34	0.29	0.26	0.25	0.3
PCB 9 (BZ)	ng/g	0.023	0.02	0.026	0.017	0.022	0.018
PCB 10 (BZ)	ng/g	0.011	0.014	0.012	0.0072	0.011	0.012
PCB 11 (BZ)	ng/g	0.32	0.35	0.39	0.36	0.49	0.3
PCB 12 (BZ)	ng/g	0.15	0.17	0.16	0.15	0.16	0.16
PCB 13 (BZ)	ng/g	0.15	0.17	0.16	0.15	0.16	0.16
PCB 14 (BZ)	ng/g	0.0051	0.0049	< 0.020	0.0064	0.0099	<0.019
PCB 15 (BZ)	ng/g	0.6	0.64	0.57	0.6	0.54	0.58
PCB 16 (BZ)	ng/g	0.14	0.2	0.18	0.15	0.14	0.17
PCB 17 (BZ)	ng/g	0.27	0.37	0.33	0.27	0.29	0.36
PCB 18 (BZ)	ng/g	0.43	0.49	0.46	0.39	0.42	0.46
PCB 19 (BZ)	ng/g	0.13	0.17	0.11	0.14	0.13	0.18
PCB 20 (BZ)	ng/g	1.2	1.4	1.3	1.3	11	1.3
PCB 21 (BZ)	ng/g	0.26	0.32	0.3	0.28	0.21	0.28
PCB 22 (BZ)	ng/g	0.22	0.24	0.24	0.21	0.19	0.23
PCB 23 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	<0.018	<0.019
PCB 24 (BZ)	ng/g	0.0075	0.0098	<0.020	0.01	<0.018	0.011
PCB 25 (BZ)	ng/g	0.18	0.24	0.21	0.19	0.16	0.22
PCB 26 (BZ)	ng/g	0.25	0.34	0.31	0.29	0.24	0.34
PCB 27 (BZ)	ng/g	0.12	0.19	0.13	0.13	0.16	0.21
PCB 28 (BZ)	ng/g	1.2	1.4	1.3	1.3	1	1.3
PCB 29 (BZ)	ng/g	0.25	0.34	0.31	0.29	0.24	0.34
PCB 30 (BZ)	ng/g	0.43	0.49	0.46	0.39	0.42	0.46
PCB 31 (BZ)	ng/g	0.77	0.89	0.81	0.82	0.68	0.84
PCB 32 (BZ)	ng/g	0.27	0.36	0.36	0.3	<0.018	0.36
PCB 33 (BZ)	ng/g	0.26	0.32	0.3	0.28	0.21	0.28
PCB 34 (BZ)	ng/g	0.012	0.014	<0.020	0.011	0.0073	0.01
PCB 35 (BZ)	ng/g	0.082	0.084	0.077	0.064	0.086	0.071
PCB 36 (BZ)	ng/g	0.017	0.013	0.011	0.006	0.0082	0.0062
PCB 37 (BZ)	ng/g	0.44	0.48	0.46	0.46	0.43	0.47
PCB 38 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	<0.018	<0.019
PCB 39 (BZ)	ng/g	0.016	0.014	<0.020	0.013	0.012	0.015
PCB 40 (BZ)	ng/g	0.9	1.1	0.96	0.92	0.83	11
PCB 41 (BZ)	ng/g	0.9	1.1	0.96	0.92	0.83	1
PCB 42 (BZ)	ng/g	0.43	0.5	0.41	0.44	0.4	0.45
PCB 43 (BZ)	ng/g	0.053	0.066	0.048	0.043	0.039	0.044
PCB 44 (BZ)	ng/g	1.7	2.2	1.9	1.8	1.6	2.2
PCB 45 (BZ)	ng/g	0.39	0.53	0.45	0.43	0.38	0.53
PCB 46 (BZ)	ng/g	0.11	0.15	0.11	0.12	0.11	0.13
PCB 47 (BZ)	ng/g	1.7	2.2	1.9	1.8	1.6	2.2
PCB 48 (BZ)	ng/g	0.17	0.2	0.17	0.16	0.16	0.16
PCB 49 (BZ)	ng/g	1.2	1.7	1.4	1.4	1.3	1.7
PCB 50 (BZ)	ng/g	0.31	0.44	0.35	0.35	0.31	0.42
PCB 51 (BZ)	ng/g	0.39	0.53	0.45	0.43	0.38	0.53
PCB 52 (BZ)	ng/g	2	2.7	2.2	2.3	2	2.7
PCB 53 (BZ)	ng/g	0.31	0.44	0.35	0.35	0.31	0.42

	Units	WU1	WU2	WU3	WU4	WU5	WU6
PCB 54 (BZ)	ng/g	0.033	0.043	0.03	0.033	0.021	0.038
PCB 55 (BZ)	ng/g	0.037	0.039	0.032	0.028	< 0.018	< 0.019
PCB 56 (BZ)	ng/g	0.59	0.67	0.63	0.61	0.56	0.63
PCB 57 (BZ)	ng/g	0.016	0.017	0.019	0.012	0.0092	0.033
PCB 58 (BZ)	ng/g	0.018	0.021	0.08	0.014	0.012	0.013
PCB 59 (BZ)	ng/g	0.15	0.2	0.18	0.16	0.13	0.17
PCB 60 (BZ)	ng/g	0.2	0.23	0.2	0.21	0.16	0.21
PCB 61 (BZ)	ng/g	2.2	2.6	2.4	2.3	2.1	2.5
PCB 62 (BZ)	ng/g	0.15	0.2	0.18	0.16	0.13	0.17
PCB 63 (BZ)	ng/g	0.056	0.073	0.071	0.059	0.054	0.06
PCB 64 (BZ)	ng/g	0.58	0.7	0.67	0.6	0.54	0.61
PCB 65 (BZ)	ng/g	1.7	2.2	1.9	1.8	1.6	2.2
PCB 66 (BZ)	ng/g	1.6	1.9	1.6	1.7	1.5	1.8
PCB 67 (BZ)	ng/g	0.058	0.065	0.049	0.054	0.05	0.058
PCB 68 (BZ)	ng/g	0.039	0.067	0.052	0.048	0.044	0.063
PCB 69 (BZ)	ng/g	1.2	1.7	1.4	1.4	1.3	1.7
PCB 70 (BZ)	ng/g	2.2	2.6	2.4	2.3	2.1	2.5
PCB 71 (BZ)	ng/g	0.9	1.1	0.96	0.92	0.83	1
PCB 72 (BZ)	ng/g	0.051	0.086	0.051	0.06	0.059	0.077
PCB 73 (BZ)	ng/g	0.053	0.066	0.048	0.043	0.039	0.044
PCB 74 (BZ)	ng/g	2.2	2.6	2.4	2,3	2.1	2.5
PCB 75 (BZ)	ng/g	0.15	0.2	0.18	0.16	0.13	0.17
PCB 76 (BZ)	ng/g	2.2	2.6	2.4	2.3	2.1	2.5
PCB 77 (BZ)	ng/g	0.26	0.27	0.24	0.26	0.26	0.24
PCB 78 (BZ)	ng/g	<0.020	<0.021	< 0.020	< 0.021	< 0.018	< 0.019
PCB 79 (BZ)	ng/g	0.029	0.031	0.036	0.034	0.031	0.035
PCB 80 (BZ)	ng/g	< 0.020	< 0.021	<0.020	< 0.021	<0.018	< 0.01
PCB 81 (BZ)	ng/g	0.0067	0.0066	<0.020	0.0066	0.0028	0.006
PCB 82 (BZ)	пд/д	0.36	0.42	0.33	0.4	0.33	0.43
PCB 83 (BZ)	ng/g	2.3	2.8	2.2	2.6	< 0.018	2.8
PCB 84 (BZ)	ng/g	0.78	1	0.84	0.95	0.81	1
PCB 85 (BZ)	ng/g	0.53	0.64	0.52	0.57	0.49	0.63
PCB 86 (BZ)	ng/g	1.9	2.3	1.9	2	1.9	2.3
PCB 87 (BZ)	ng/g	1.9	2.3	1.9	2	1.9	2.3
PCB 88 (BZ)	ng/g	0.57	0.74	0.59	0.64	0.59	0.72
PCB 89 (BZ)	ng/g	0.035	0.031	0.046	0.038	0.03	0.041
PCB 90 (BZ)	ng/g_	3.3	4	3.2	3.7	3.3	4.2
PCB 91 (BZ)	ng/g	0.57	0.74	0.59	0.64	0.59	0.72
PCB 92 (BZ)	ng/g	0.68	0.85	0.69	0.81	0.7	1.1
PCB 93 (BZ)	ng/g	0.15	0.17	0.16	0.19	0.13	0.24
PCB 94 (BZ)	ng/g	0.042	0.056	<0.020	0.048	0.037	0.076
PCB 95 (BZ)	ng/g	2.4	3.2	2.5	2.8	2.4	3
PCB 96 (BZ)	ng/g	0.034	0.033	<0.020	0.038	0.032	0.037
PCB 97 (BZ)	пд/д	1.9	2.3	1.9	2	1.9	2.3
PCB 98 (BZ)	ng/g	0.16	0.23	0.16	0.17	0.15	0.27
PCB 99 (BZ)	ng/g	2.3	2.8	2.2	2.6	<0.018	2.8
PCB 100 (BZ)	ng/g	0.15	0.17	0.16	0.19	0.13	0.24
PCB 101 (BZ)	ng/g	3.3	4	3.2	3.7	3.3	4.2
PCB 102 (BZ)	ng/g	0.16	0.23	0.16	0.17	0.15	0.27
PCB 103 (BZ)	ng/g	0.094	0.12	0.075	0.1	0.088	0.13
PCB 104 (BZ)	ng/g	<0.020	0.0068	<0.020	0.0088	<0.018	0.009
PCB 105 (BZ)	ng/g	0.96	1	0.9	1	0.88	1.1
PCB 106 (BZ)	ng/g	<0.020	< 0.021	<0.020	<0.021	<0.018	<0.01
B 107 (BZ)/109 (TUPA	C) ng/g	0.28	0.32	0.3	0.3	0.28	0.33

	¥1-:40	WUI	WU2	WU3	WU4	WU5	WU6
	Units		W				*****
PCB 108 (BZ)/107 (IUPAC)	ng/g	0.11	0.12	0.11	0.1	0.088	0.12 2.3
PCB 109 (BZ)/108 (IUPAC)	ng/g	1.9	2.3	1.9	2	1.9	4.8
PCB 110 (BZ)	ng/g	3.9	4.8	3.8	4.4	0.013	0.012
PCB 111 (BZ)	ng/g	0.014	0.015	<0.020	0.0093 <0.021	1.7	< 0.012
PCB 112 (BZ)	ng/g	<0.020	<0.021	<0.020	3.7	3.3	4.2
PCB 113 (BZ)	ng/g	3.3	4	3.2		0.044	0.047
PCB 114 (BZ)	ng/g	0.049	0.065	0.044	0.053	4	4.8
PCB 115 (BZ)	ng/g	3.9	4.8	3.8	4.4	0.49	0.63
PCB 116 (BZ)	ng/g	0.53	0.64	0.52	0.57	0.49	0.63
PCB 117 (BZ)	ng/g	0.53	0.64	0.52	0.57	2.7	3.2
PCB 118 (BZ)	ng/g	2.8	3.2	2.6	2.9	1.9	2.3
PCB 119 (BZ)	ng/g	1.9	2.3	1.9		0.034	0.044
PCB 120 (BZ)	ng/g	0.039	0.04	0.041	0.04 <0.021	<0.034	< 0.019
PCB 121 (BZ)	ng/g	<0.020	<0.021	<0.020	0.044	0.04	0.019
PCB 122 (BZ)	ng/g	0.053	0.057	0.056	0.044	0.049	0.043
PCB 123 (BZ)	ng/g	0.029	0.05	0.044		0.049	0.032
PCB 124 (BZ)	ng/g	0.11	0.12	0.11	0.1	1.9	2.3
PCB 125 (BZ)	ng/g	1.9	2.3	1.9	0.02	0.014	0.016
PCB 126 (BZ)	ng/g	0.016	0.014	0.029	0.02	<0.014	< 0.010
PCB 127 (BZ)	ng/g	<0.020	0.0077	<0.020	0.65	0.63	0.019
PCB 128 (BZ)	ng/g	0.68	0.74	0.65	4.6	4.3	5.1
PCB 129 (BZ)	ng/g	4.5	5	4.5		0.3	0.36
PCB 130 (BZ)	ng/g	0.31	0.36	0.32	0.31		0.051
PCB 131 (BZ)	ng/g	0.054	0.054	0.074	0.045	0.04 1.3	1.6
PCB 132 (BZ)	ng/g	1.4	1.6	1.5	1.4 0.13	0.12	0.17
PCB 133 (BZ)	ng/g	0.15	0.16	0.16		0.12	0.17
PCB 134 (BZ)	ng/g	0.26	0.31	0.34	0.26	1.9	2.3
PCB 135 (BZ)	ng/g	1.9	2.2	1.7	1.9	0.67	0.77
PCB 136 (BZ)	ng/g	0.64	0.74	0.6	0.7	0.07	0.17
PCB 137 (BZ)	ng/g	0.18	0.14	0.13	0.14	4.3	5.1
PCB 138 (BZ)	ng/g	4.5	5	4.5	4.6	0.077	0.092
PCB 139 (BZ)	ng/g	0.082	0.11	0.079	0.084		0.092
PCB 140 (BZ)	ng/g	0.082	0.11	0.079	0.084	0.077 0.64	0.092
PCB 141 (BZ)	ng/g	0.67	0.76	0.59	0.67	<0.018	< 0.019
PCB 142 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021		0.29
PCB 143 (BZ)	ng/g	0.26	0.31	0.34	0.26	0.24	0.29
PCB 144 (BZ)	ng/g	0.19	0.25	0.17	0.2	0.18	< 0.019
PCB 145 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	<0.018	1.1
PCB 146 (BZ)	ng/g	0.91	1	1	0.92	0.9	4.2
PCB 147 (BZ)	ng/g	3.7	4.3	4	3.8	3.5	0.049
PCB 148 (BZ)	ng/g	0.043	0.028	0.031	0.027	0.032	4.2
PCB 149 (BZ)	ng/g	3.7	4.3	4	3.8	3.5	
PCB 150 (BZ)	ng/g	0.044	0.041	0.037	0.033	0.047	0.042 2.3
PCB 151 (BZ)	ng/g	1.9	2.2	1.7	1.9	1.9	
PCB 152 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	<0.018	<0.019
PCB 153 (BZ)	ng/g	4	4.4	3.9	4.1	3.8	4.4
PCB 154 (BZ)	пд/д	0.23	0.25	0.17	0.2	0.22	0.29
PCB 155 (BZ)	ng/g	0.017	0.016	<0.020	0.015	0.014	0.0091
PCB 156 (BZ)	ng/g	0.44	0.45	0.36	0.43	0.39	0.47
PCB 157 (BZ)	ng/g	0.44	0.45	0.36	0.43	0.39	0.47
PCB 158 (BZ)	ng/g	0.39	0.39	0.35	0.38	0.34	0.4
PCB 159 (BZ)	ng/g	0.034	0.029	0.032	0.033	0.028	0.027
PCB 160 (BZ)	ng/g	4.5	5	4.5	4.6	4.3	5.1
PCB 161 (BZ)	ng/g_	<0.020	<0.021	<0.020	<0.021	<0.018	<0.019

Table 12. (Continued)							
	Units	WU1	WU2	WU3	WU4	WU5	WU6
PCB 162 (BZ)	ng/g	0.028	0.025	0.046	0.032	0.031	0.031
PCB 163 (BZ)	ng/g	4.5	5	4.5	4.6	4.3	5.1
PCB 164 (BZ)	ng/g	0.33	0.38	0.36	0.35	0.32	0.37
PCB 165 (BZ)	ng/g	< 0.020	0.017	<0.020	< 0.021	< 0.018	0.011
PCB 166 (BZ)	ng/g	0.68	0.74	0.65	0.65	0.63	0.71
PCB 167 (BZ)	ng/g	0.17	0.18	0.15	0.17	0.17	0.19
PCB 168 (BZ)	ng/g	4	4.4	3.9	4.1	3.8	4.4
PCB 169 (BZ)	ng/g	0.0053	0.003	<0.020	0.0041	0.0075	0.016
PCB 170 (BZ)	ng/g	1.1	1.2	1	1.2	1.1	1.2
PCB 171 (BZ)	ng/g	0.36	0.39	0.37	0.38	0.34	0.38
PCB 172 (BZ)	ng/g	0.21	0.25	0.27	0.24	0.22	0.24
PCB 173 (BZ)	ng/g	0.36	0.39	0.37	0.38	0.34	0.38
PCB 174 (BZ)	ng/g	1.2	1.4	1.1	1.3	1.2	1.3
PCB 175 (BZ)	ng/g	0.058	0.066	0.094	0.057	0.055	0.065
PCB 176 (BZ)	ng/g	0.17	0.18	0.16	0.16	0.15	0.17
PCB 177 (BZ)	ng/g	0.78	0.89	0.8	0.85	0.75	0.88
PCB 178 (BZ)	ng/g	0.35	0.39	0.44	0.38	0.35	0.4
PCB 179 (BZ)	ng/g	0.61	0.73	0.65	0.64	0.6	0.68
PCB 180 (BZ)	ng/g	2.4	2.7	2.2	2.8	2.5	2.8
PCB 181 (BZ)	ng/g	0.01	0.01	<0.020	0.014	0.0095	0.0088
PCB 182 (BZ)	ng/g	<0.020	< 0.021	0.047	< 0.021	0.035	< 0.019
PCB 183 (BZ)	ng/g	0.85	0.96	0.92	0.94	0.8	0.93
PCB 184 (BZ)	ng/g	0.013	0.013	< 0.020	0.013	0.015	0.0097
PCB 185 (BZ)	ng/g	0.85	0.96	0.92	0.94	0.8	0.93
PCB 186 (BZ)	ng/g	< 0.020	<0.021	<0.020	< 0.021	< 0.018	< 0.019
PCB 187 (BZ)	ng/g	1.9	2.1	1.8	2	1.9	2
PCB 188 (BZ)	ng/g	0.041	0.04	0.046	0.037	0.041	0.031
PCB 189 (BZ)	ng/g	0.047	0.056	0.047	0.052	0.048	0.044
PCB 190 (BZ)	ng/g	0.22	0.24	0.14	0.25	0.21	0.25
PCB 191 (BZ)	ng/g	0.057	0.061	0.062	0.052	0.038	0.051
PCB 192 (BZ)	ng/g	<0.020	<0.021	<0.020	< 0.021	< 0.018	< 0.019
PCB 193 (BZ)	ng/g	2.4	2.7	2.2	2.8	2.5	2.8
PCB 194 (BZ)	ng/g	0.79	0.87	1.3	0.89	0.78	0.87
PCB 195 (BZ)	ng/g	0.26	0.29	0.4	0.29	0.23	0.3
PCB 196 (BZ)	ng/g	0.63	0.65	1.1	0.69	0.66	0.63
PCB 197 (BZ)	ng/g	0.073	0.078	0.23	0.065	0.08	0.076
PCB 198 (BZ)	ng/g	2.2	2.1	2.4	2.4	2.2	2
PCB 199 (BZ)/200 (IUPAC)	ng/g	0.1	0.12	0.13	0.12	0.11	0.11
PCB 200 (BZ)/201 (IUPAC)	ng/g	0.25	0.26	0.76	0.28	0.26	0.22
PCB 201 (BZ)/199 (IUPAC)	ng/g	2.2	2.1	2,4	2.4	2.2	2
PCB 202 (BZ)	ng/g	0.71	0.75	1	0.8	0.76	0.67
PCB 203 (BZ)	ng/g	0.88	0.97	0.62	1	0.9	0.89
PCB 204 (BZ)	ng/g	0.011	0.01	<0.020	0.0088	0.0085	< 0.019
PCB 205 (BZ)	лg/g	0.055	0.054	<0.020	0.063	0.044	0.051
PCB 206 (BZ)	ng/g	7.4	7.7	8.1	8.5	7.7	6.3
PCB 207 (BZ)	ng/g	0.59	0.65	2	0.74	0.68	0.57
PCB 208 (BZ)	ng/g	3.3	3.4	4.5	3.9	3.5	2.7

Table 13. PCB congener totals testing results for samples collected from Wilmington Harbor CDF. Values highlighted in yellow are over DNREC unrestricted criteria while values in green are over restricted levels.

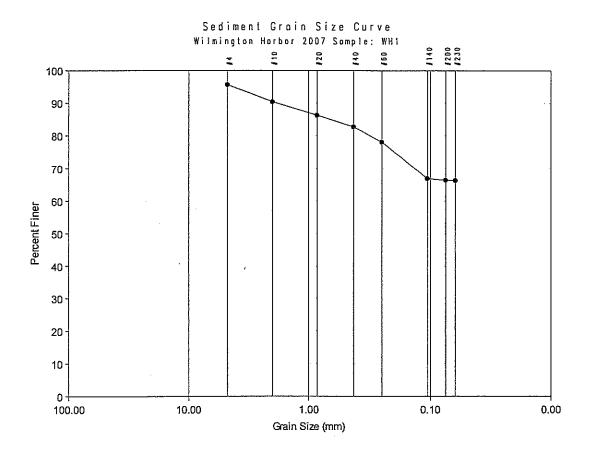
	Units	WU1	WU2	WU3	WU4	WU5	WU6	DNREC Non-critical Unrestricted	DNREC Non-critica Restricted
Monochlorobiphenyl	ng/g	0.2	0.21	0.28	0.18	0.2	0.25		
Dichlorobiphenyl	ng/g	1.6	1.9	1.8	1.7	1.9	1.7		
Trichlorobiphenyl	ng/g	4.8	5.8	5.3	5	4.2	5.6		
Tetrachlorobiphenyl	ng/g	13	17	14	14	13	16		
Pentachlorobiphenyl	ng/g	21	26	21	24	21	27		
Hexachlorobiphenyl	ng/g	21	24	21	22	20	24		
Heptachlorobiphenyl	ng/g	10	12	10	11	10	12		
Octachlorobiphenyl	ng/g	5.9	6.1	8	6.6	6.1	5.8		1
Nonachlorobiphenyl	ng/g	11	12	15	13	12	9.6		
Decachlorobiphenyl	ng/g	12	16	12	16	15	14		
Total		101	121	108	113	103	116	1000	1000

	Units	WU1	WU2	WU3	WU4	WU5	WU6	TCLP Regulatory Limit
Inorganics								
Arsenic	mg/L	0.17	0.15	0.18	0.18	0.17	< 0.50	5
Barium	mg/L	0.37	0.45	0.48	0.52	0.33	<10.0	100
Cadmium	mg/L	0.0047	0.0047	0.0074	0.0062	0.0028	< 0.10	1
Chromium	mg/L	0.0024	0.0034	0.004	0.0039	0.0036	< 0.50	5
Lead	mg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5
Mercury	mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		0.2
Selenium	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	1
Silver	mg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5
Semivolatile Organics								
1,4Dichlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	7.5
2,4,5TP (Silvex)	mg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	1
2,4,5Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	400
2,4,6Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
2,4Dinitrotoluene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
2,4D	mg/L	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	10
3Methylphenol & 4Methylphenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Chlordane (technical)	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.03
Cresols (total)	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	200
Endrin	mg/L		< 0.00050					
Heptachlor epoxide	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Heptachlor	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Hexachlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
Hexachlorobutadiene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.5
Hexachloroethane	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	3
Lindane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.4
Methoxychlor	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	10
Nitrobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
Pentachlorophenol	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	100
Pyridine	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	5
Toxaphene	mg/L	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.5
Volatile Organics								
1,1Dichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
1,2Dichloroethane	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
2Butanone	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	200
Benzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Carbon tetrachloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Chlorobenzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	100
Chloroform	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	6
Tetrachloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
Trichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Vinyl chloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.2

APPENDIX A

Severn Trent Laboratory Analysis Certificates

APPENDIX B


Grain Size and TOC Results

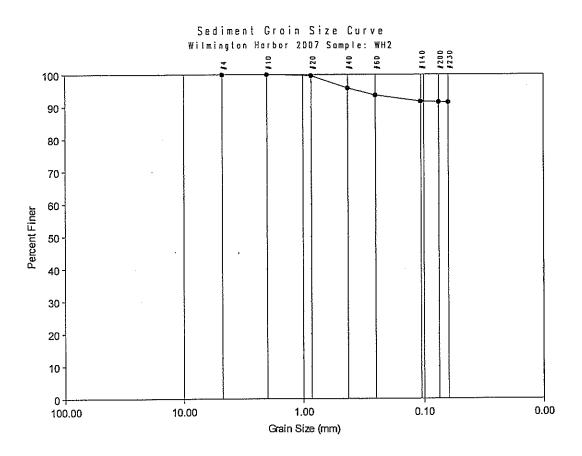
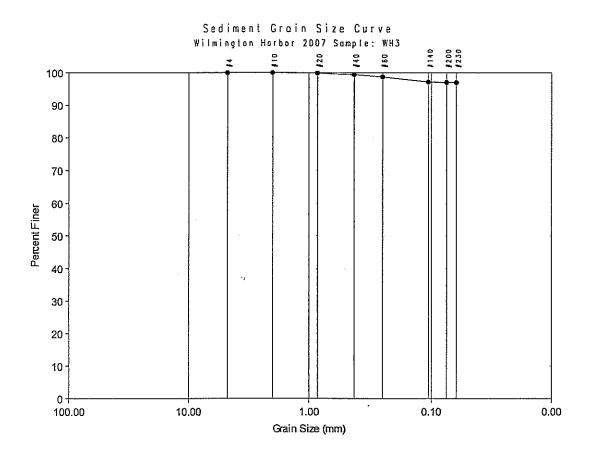
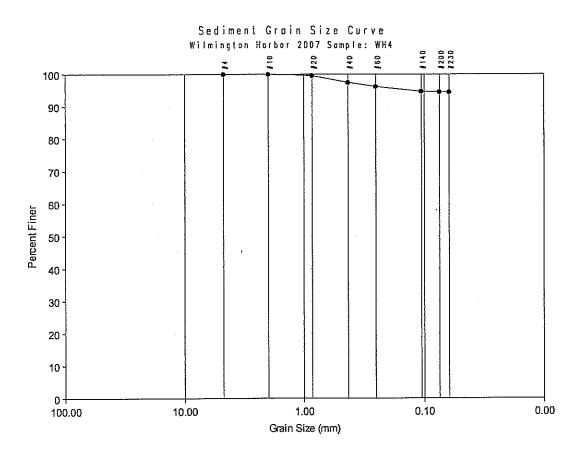
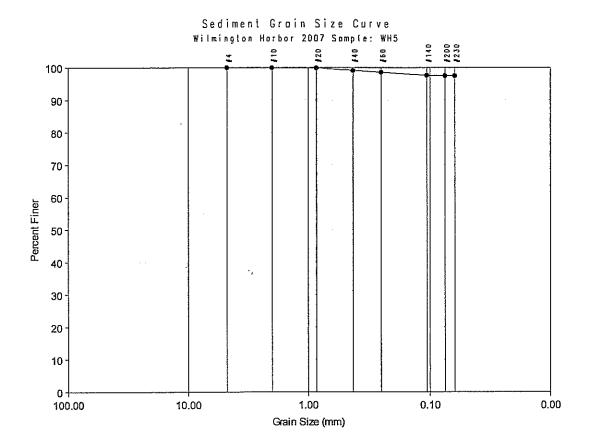
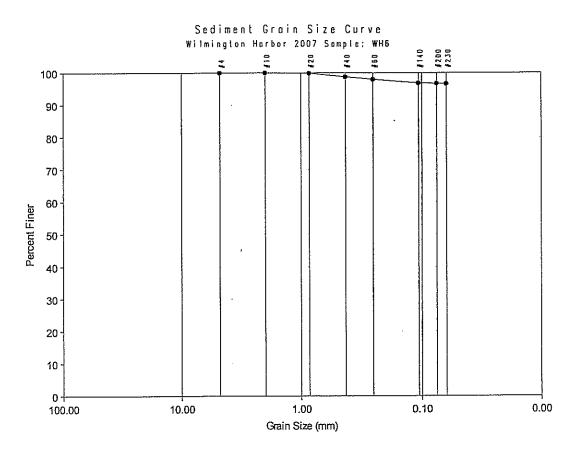

Table B-1. Total organic carbon and percent silt/clay for the eight cores collected at Wilmington Harbor									
Station	Gravel (%)	Sand (%)	Silt/clay (%)	TOC (%)					
WH1	9.6	24.0	66.45	13.7					
WH2	0.0	8.50	91.50	9.01					
WH3	0.0	2.98	97.02	8.35					
WH4	0.0	5.47	94.53	8.40					
WH5	0.03	2.44	97.53	8.70					
WH6	0.0	3.32	96.68	8.74					
WH7	5.5	9.62	84.85	5.39					
WH8	0.0	3.65	96.35	7.87					

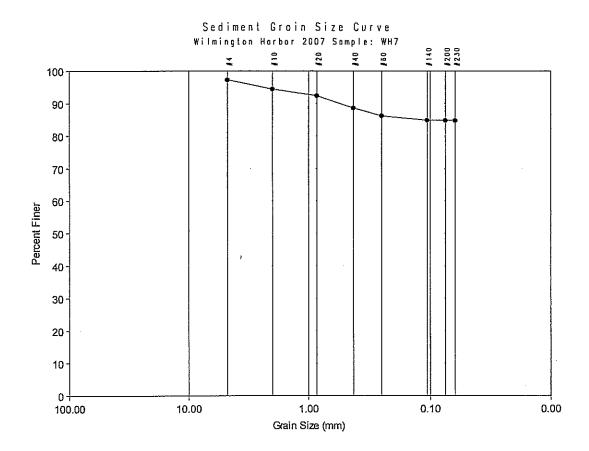
Table B-2. Total organic carbon and percent silt/clay for the six cores collected at Wilmington Harbor CDF									
Station	Gravel (%)	Sand (%)	Silt/clay (%)	TOC (%)					
WU1	0.0	2.53	97.47	7.94					
WU2	0.0	3.31	96.69	8.81					
WU3	0.15	3.13	96.73	8.22					
WU4	0.0	4.32	95.68	10.00					
WU5	0.0	3.05	96.95	7.33					
WU6	0.0	8.31	91.69	9.52					

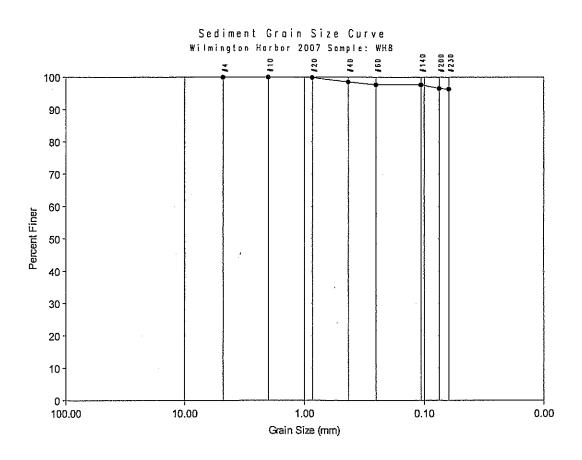


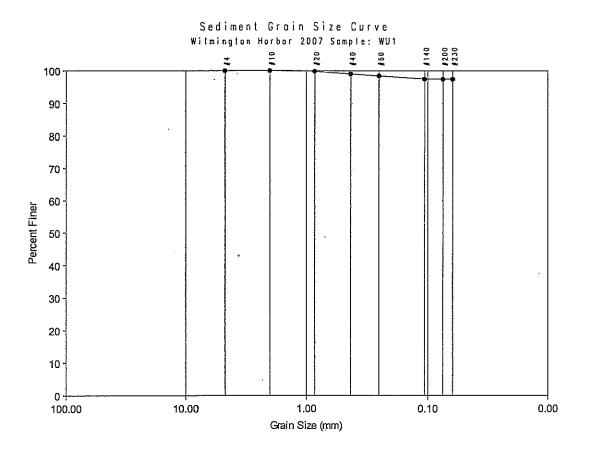


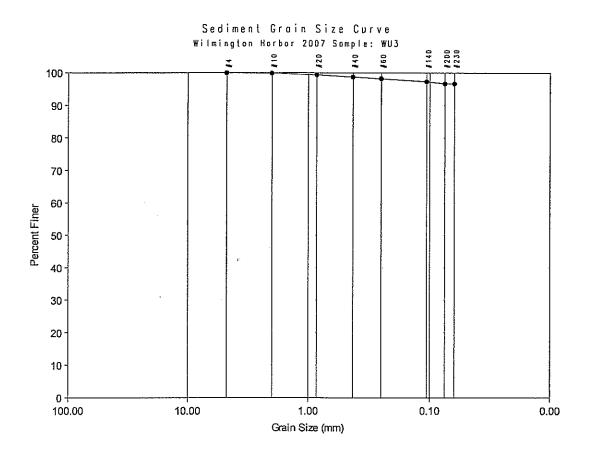


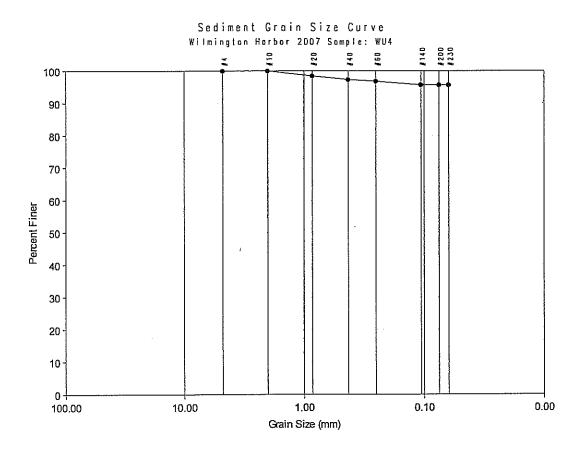












APPENDIX C

Core Logs

Springize THE Spring Coolers Wilmington

Sediment Project

Stati	1011 7 F:	VU MI				. 0	re #s				
Date	: 6/ ₆	, 20 0	72008			Tide:					
Start	t Time:	13:15	-			We	eather: <u>OC</u>	<u>^</u>	<u>. </u>		
Com	posite	Time:	- :								
Folk log Land Sa	i di				,						
	mple #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments		
2013		43`	17/1			Ulian	eth green	\$480"			
V			1900				3		_		
			177				3	42"			
Com	nments\	Description	ns:24"	•	(10 ft. c		. 3	2	Depths measured in fact		
Se	dime	ent in	To the M.	relation, and 500	ne detritus é	alittle	Sandy -	•			
5tat	tion a	t con "	name	of Drainge	ne detritus é	100K 1	bottom :	i Federalization	,		
<u> Gr</u>	* 4. · ·		6		•		-		·		
			357				. 5	35 ^{\(\)}			

C

Sediment Project

٠	Station #:_	WH2			Core #'s						
	Date: 6/	6 , 200	7 2008°		Tide:						
	Start Time	**	- ,			Weather: OC					
1	Composite	Time:	•	ķ	•			•			
集	Sample #	Station Depth	every tim droppe Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Bepth	Comments		
(2:15, (<u>)</u> .	36°,S	4.5			.5	7	4.5			
W. I.			25	,		•	<i>G</i> ,				
		•	244				ess _e				
	Comments	s\ Descriptio	ons40 "		(10 ft. cores) + + 5				Dapiha maasutsid in fe		
125	Sellmen	T - E.m.	r, mansasil								
136	<u> </u>	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<u>r, rantari</u> (
		The same of the sa	*			,					

Sediment Project

	Station#:_	3/3/3 6 , 20 (Core #'s						
*#		g, , zur			Tide: Weather:_ <i>○ C</i>						
		Time;	-			. —	DRYSH-Z-ACMA				
	Sample #	Station Depth	Sample Length	Latitude	Longitude ·	Target Depth	Pen. Depth	Çore Dêpth	Comment		
14 96		43	7	<u> </u>	-	2" j	8	124			
E3 == 2300						W/ T-10-001-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1	5	2.			
1							<i>5</i>	 ,15			
	Comments\ Descriptions:					C(4.5 \$)	د ا الله الله	22 W	Coptus rease.cod in i		
•	<u> </u>		Transcoller State	<u> </u>	v ² 3						
	······	1									
	THE WASHINGTON	i Carantago, portar de 1877 e 1980 de 1	ayan da gara sa ka ka		245						

5

Sediment Project

	Station #:_	WHH				Co	Core #'s				
	Date:	6/6, 20 0	17208								
	Start Time:	: 10:40	-			We	Weather:_OC				
	Composite	Time:	<u>:</u>		,	,					
	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments		
10,38.80	FF.	36	3.5			if .	10'				
10,38.50 40:54 3	3		1, 5				_IO				
			1.5				9				
•	Comments	s\ Descriptio	ons:	· · · · · · · · · · · · · · · · · · ·	(10 ft.	cores)	10		Depths measured in feet		
*	Sedina	cay - 1	TIME M	ud							
e		•	ons: 14 / 19 / 16 / 16 / 16 / 16 / 16 / 16 / 16						•		
			1811	<u> </u>	*	,			·		

10:54

Sediment Project

	Station #:_	WHS_			Core #'s							
	Date: 6	/G , -20 1	372008		Tide:							
	Start Time:	•	 		•	We	ather: ½	Cloudy	fe			
	Composite	Time:	- 1									
						- 		,				
	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments			
13.55		40	4.3			4	9.	4.3				
			18"				8	46"				
			251		<u>.</u>			Ø.				
	Comments	\ Descriptle	ons:25		(10 ft. c	cores)	9	64	Daphs measured in lea			
	redio	rien t	Fine m	itel								

C-7

Sediment Project

		Station #:_	WH6	· · · · · · · · · · · · · · · · · · ·		Core #'s						
		Date: 6	, 20(72008								
		Start Time:		-			Weather: Programme County					
		Composite	Time:	<u>-:</u>								
		Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments		
Ç- %	14,53,48	3	43	50 1			2.	9	5213			
				481				Ġ	Gg "			
				25"								
		Comments	s\ Descriptio	ons 30 %	• .	· (10 ft.	cores)			Dapthe measured in fee		
		Sectime	'nt -	Fine m	welst.				· , , = 			
			•		Post							
				•					,			
						1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1						
	•								:			
							A.		•			
						Nie.	j.			•		
						الزغ	39F · '					

Wilmington

Sediment Project

	Station #:_	WHZ				Coi	re #'s	* .	
	Date:	, 20 0	972008			Tid	e;		
	Start Time	·	_	•	·	We	ather: 1/2	Cloudy	<u> </u>
3 0	Composite	Time:	* ************************************						
	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core "Depth	Comments
15,24, 25		511	710			21	5^.	71	
			51				3,	511	
			6411			<u> </u>	£.f.	674	
	Comments	\ Description	ons:	¥	" (10 ft, c	cores)		·	Dapiha measurad in ia
	Concre.	mudé	Same 5	and foramt	,,,,				
		,	• • •	5- F.W	-	•		•	
								4	
			in the same		: .				*****

Ċ

Sediment Project

	Station #:_	WH8				Co	re:#'s		
	Date: 6	∕€ , '20 1	372008			Tic	le:		
	Start Time:	:;	 ·			We	eather: 🏄 🐴	Er boundary	·
	Composite	Time:	•				•	· · · · · · · · · · · · · · · · · · ·	
«	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
16.41.11		411	613		•	5'	arity 1	61	and the second s
		, ,	525				الم الم	54	
			53"		-		8	55"	
	Comments	\ Descriptio	ons:		. (10	Off. cores)		•	Depths measured in feet
Echana	7 100	MM 42	0		•				
					· · · · · · · · · · · · · · · · · · ·			ź:	
, ¯*.		ķ	All esc	. i.	·				
	•	, <u>.</u>	,	- • <u>-</u>		ge by	`~ v	** ·	
	·	•	·	**************************************		#	* 2	. 2	Server and Control of the Control of

C-TO

Sediment Project

Station #:	, /2 , 200	3008	S. mp fe	taken 160ft		Coi Tid We	e: #'s e: #		
Composite			From	n Port	· .			•	•
Sample #	Station Depth	Sample Length	Latitude	Longitude	•	Target Depth	Pen. Depth	Core Depth	Comments
			39042.354	075031734			41		1
						•			Depths measured in feet
Sediments'	•		1 Clay	(1t)) ft. co	res)	· · · · · · · · · · · · · · · · · · ·		
				-14	· · ·	`			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

39:

Wilmington

Station #:_	<u>WHU 2</u>				Co	ore #'s	· · · · · · · · · · · · · · · · · · ·	
Date: 6/	12- ; 20 0	7720C8	بند ،	1234	Tio	de:		
Start Time:	9:35	-	Sample	uken 1234 way point	W	eather: <u>೨</u> ೪	nny	•
Composite	Time:	·			-			
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			39° 42, 122	w 75°31.425		4'		
Comments	\ Descriptio	ons:		(10 fl.	cores)			Depths measured in feet
Sedime	MT 5%.	Ity cr	candy prant	t butter				
14:1	mater	at 3f	eanny prome + depth of	sampling		•		-

Wilmington CDF Sediment Project

Station #:_	WU3				Co	re #'s		·
Date: 6	12 , 200	372008	1896+ to et	•	·Tla	ê:		
Start Time:	10:16	-	18744		We	eather:_ <i>F.l.</i>	7-	
Composite	Time:	·	open are	ea in mildle of phraj	-			
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			390 42,368	75° 31,479		4'		
.s.								Depihs measured in fee
Comments		ons:		· (10 ft, ¢	ores)	•		C18-bit in bitoetabil and its road
						•		
		-		•	_			•
	-				-			

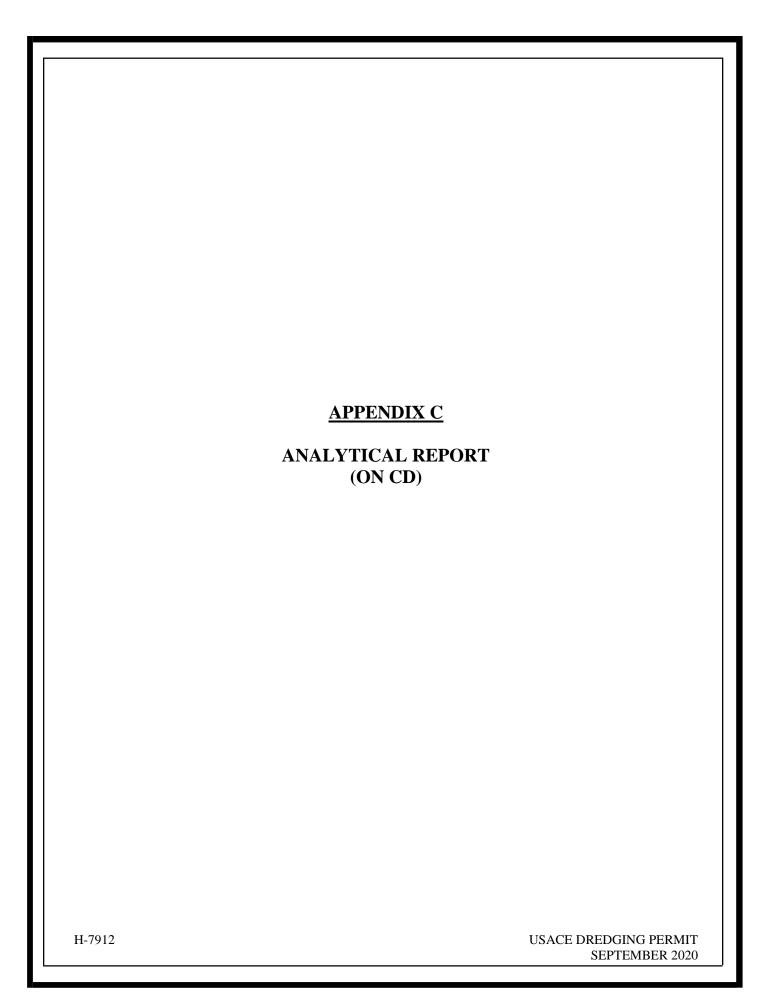
713

38° 39' 42,642 75° 78' 31.314

Wilmington

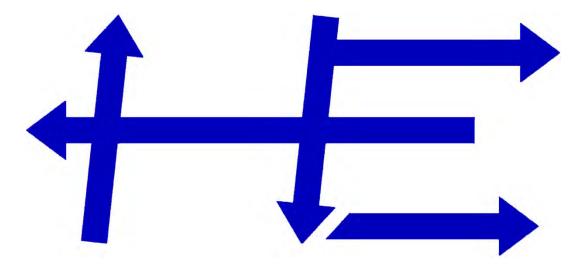
Station #:_					, Co	re #'s		
Date: 6 /	2. , 20 0	72008	·	•	Tid	e:		
Start Time:	11:15				We	eather:		
Composite	Time:			-				
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			39° 42,640	75° 31.368		4		
Comments		ons: Next 1	o moat	(10 ft	. cores)			Depliys measured in (eet
		ilty Clay	ŕ	ling in hole				

C-13


Wilmington

Date: ど人						e: ather:_ <i></i>		
Composite	'l'ime:	-		¢	1311M			
Sample ∦	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			39042424	75 8 31.188		ij. %		
								S THE STREET STREET STREET STREET STREET
							<u> </u>	Depterment of Intest
Comments	-			()a n	ന്രഭ്രം)			
5012	ar -	5,749	Clay					
			1			•		
	· · · · · · · · · · · · · · · · · · ·	gegen gener, milyand vide ij nak same videbild i is v	पण्डम्प्रहासम्बन्धाः स्थापनाः स्थापनाः स्थापनाः स्थापनाः स्थापनाः स्थापनाः स्थापनाः स्थापनाः स्थापनाः स्थापना	14-254				
mgratis upomed bitation villand british ex								

C-16


Wilmington

Station #:_	1/{/ 5	2			Co	re #s		Production Address to the Market Annual Control
Date: 6	2 ,20	77- 608			Tid	e:	mayor ni maka zako a na ncimban yanza	TO STATE THE PARTY OF THE PARTY
Start Time:	11.53	~			W€	eather:		****
Composite	Time:	4					THE PROPERTY CONTRACTOR SHEET SHEET SHEET	Makata Bata di Mininga di Makata Makatan, a salah sa makata di Amerika di Makata di Makata di Makata di Makata
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			390 42.623	75° 31.06 Z		*/3		
						1		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		region with property from the desired to the latest the				
Comments	\ Descriptio	រាន:	<u> </u>	110 ft. c	Soresii			Conclus melication before
	4		hiotes about	+ 3 100 het	•			
	_; >4 }	h/Clay						
		7						
	**************************************	11,						

PHONE 856-342-6600

FAX 856-342-8323

S.T. HUDSON ENGINEERS, INC.

PROFESSIONAL ENGINEERS & CONSULTANTS

900 DUDLEY AVENUE, CHERRY HILL, NEW JERSEY 08002

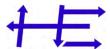
VISIT OUR WEBSITE AT WWW.STHE.COM

DELAWARE DEPARTMENT OF NATURIAL RESOURCES AND ENVIRONMENTAL CONTROL

APPLICATION FOR AN

INDIVIDUAL PERMIT

FOR


MAINTENANCE DREDGING

AT THE

PORT OF WILMINGTON

ON BEHALF OF DIAMOND STATE PORT CORPORATION 1 HAUSEL ROAD WILMINGTON, DE 19801

S. T. HUDSON ENGINEERS, INC.

900 DUDLEY AVENUE CHERRY HILL, NEW JERSEY 08002 PHONE (856) 342-6600 FAX (856) 342-8323

www.STHE.COM

SEPTEMBER 2020

H-7912

September 30, 2020

Delaware Dept. of Natural Resources and Environmental Control Wetlands and Subaqueous Lands Section 89 Kings Highway Dover, DE 19901

Attention: Mr. Steve Smailer

Environmental Program Administrator & Section Manager

Reference: Diamond State Port Corporation (Port of Wilmington)

Subject: Joint Permit Application

Maintenance Dredging at Port of Wilmington

Berths 1 - 7

Dear Mr. Smailer:

S. T. Hudson Engineers, Inc. has been retained by Diamond State Port Corporation to assist them in obtaining the necessary approvals for maintenance dredging at the Port of Wilmington, Berths 1-7, to occur concurrently with the Christina River Main Channel Maintenance Dredging by the U.S. Army Corps of Engineers.

Herein, please find a complete application for a Wetlands and Subaqueous Lands Permit and a 401 Water Quality Certification.

Included in this submittal is a check in the amount of \$1,300.00 made payable to *State of Delaware*.

Should you have any questions or require additional information, please do not hesitate to contact us.

Sincerely,

Paul T. Ferry

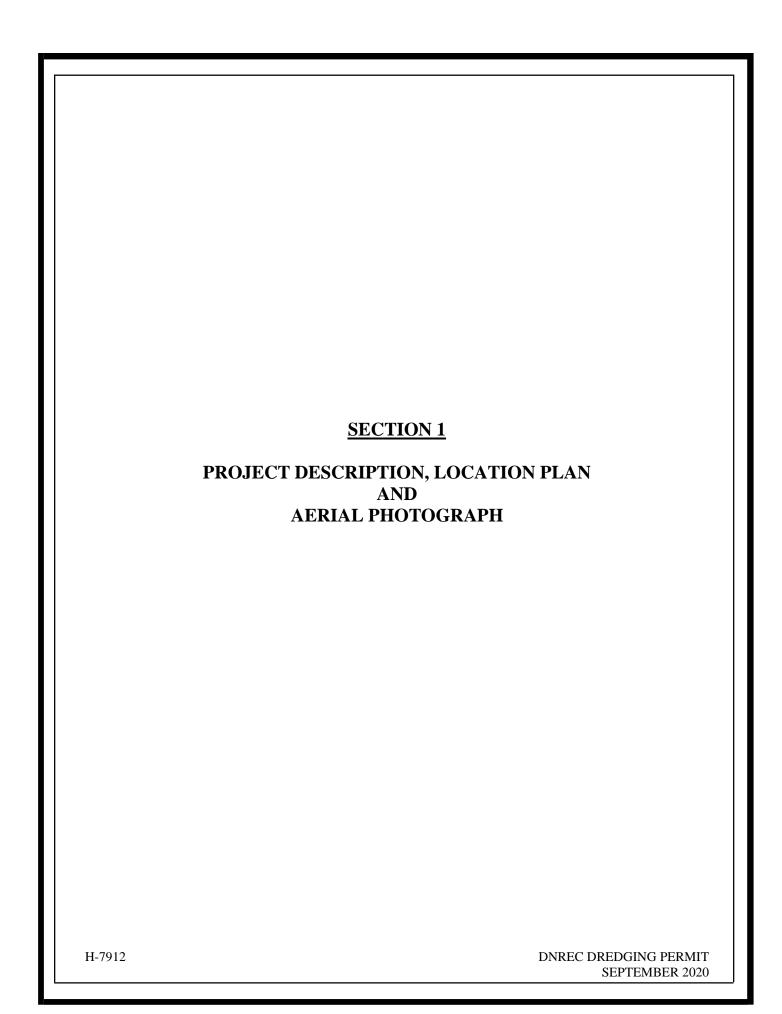
Environmental Specialist

PTF/mle Enclosures

H-7912-00

TABLE OF CONTENTS

SECTION


- 1 PROJECT DESCRIPTION, LOCATION PLAN, AND AERIAL PHOTO
- 2 BASIC APPLICATION FORM WITH APPENDIX R
- 3 COASTAL ZONE MANAGEMENT ACT FEDERAL CONSISTENCY FORM AND ADDENDUM
- 4 SEDIMENT ANALYSIS COMPARATIVE TABLES, CORE PHOTOGRAPHS, CHAIN OF CUSTODY, AND CORE LOGS
- 5 SAMPLING PLAN APPROVAL PERMIT AND SAMPLING METHODOLOGY
- 6 PREVIOUSLY ISSUED DNREC PERMIT
- 7 PERMIT DRAWINGS, SAMPLING PLAN, AND U.S. ARMY CORPS OF ENGINEERS DISPOSAL SITE PLANS

APPENDIX ALL ON ENCLOSED CD

- A WILMINGTON HARBOR DREDGING ENVIRONMENTAL EFFECTS
 COMPILATION REPORT AND HISTORICAL DATABASE
 PRODUCED BY U.S. ARMY CORPS OF ENGINEERS
 (FEBRUARY 1997)
- B WATER QUALITY AND CHEMICAL SEDIMENT TESTING WILMINGTON HARBOR DREDGED MATERIAL MANAGEMENT PLAN PRODUCED BY U.S. ARMY CORPS OF ENGINEERS (NOVEMBER 2008)
- C ANALYTICAL RESULTS

DNREC DREDGING PERMIT SEPTEMBER 2020

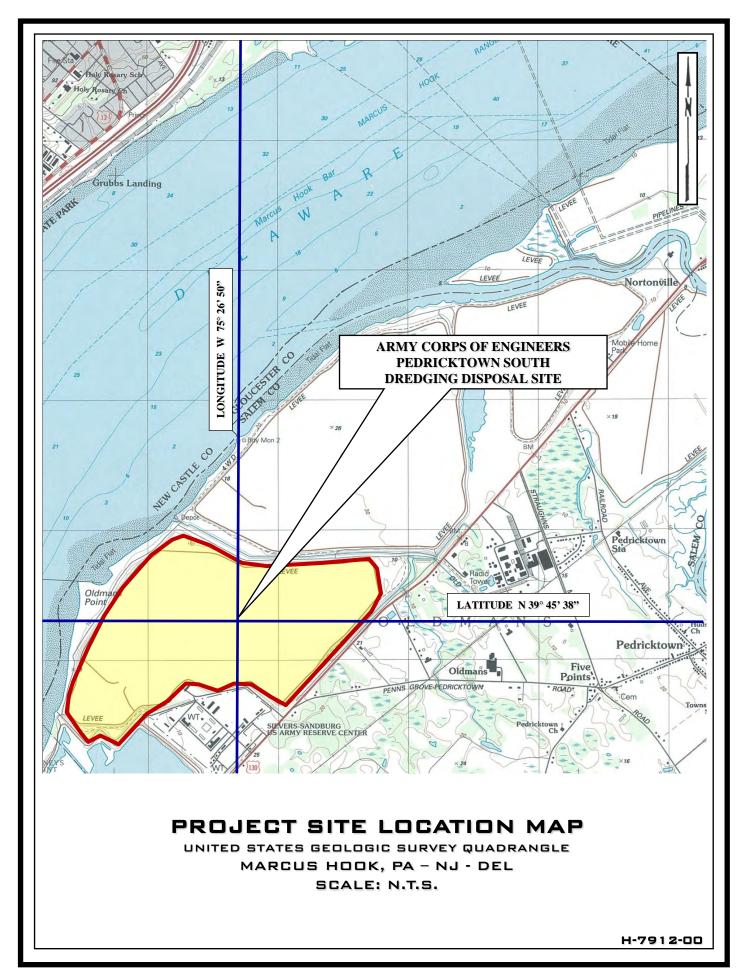
H-7912

SECTION 1

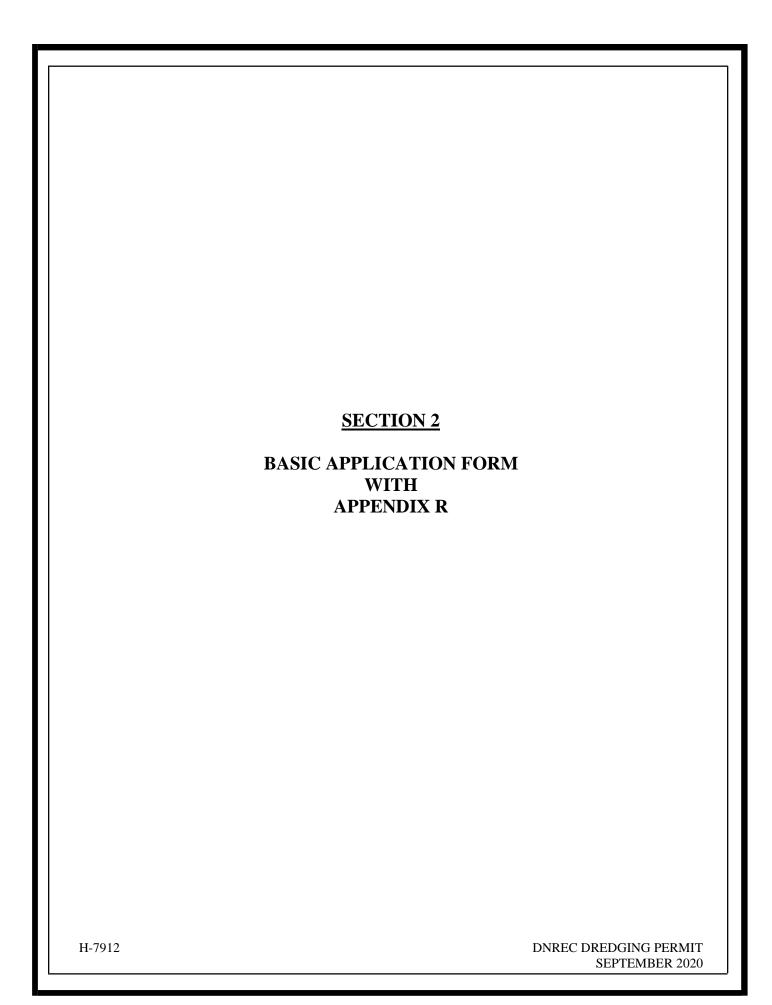
PROJECT DESCRIPTION

GT USA Wilmington LLC dba Diamond State Port Corporation proposes to conduct maintenance dredging at the Port of Wilmington Berths 1 through 7 located in Wilmington, DE.

Dredging will occur hydraulically to a depth of -35 feet Mean Low Water plus an allowable 2-foot of overdredge for Berths 5-7, and -38 feet Mean Low Water plus an allowable -2 foot of overdredge for Berths 1-4. Total volume based upon previous depths and shoaling rates can be estimated at 75,000 cubic yards per yearly dredging event for ten (10) years. Dredged material will be pumped in a slurry via pipeline to the Pedricktown South and/or Wilmington Harbor South Confined Disposal Facilities in Oldmans Township, Salem County, New Jersey and Wilmington Delaware, both of which are operated by the U.S. Army Corps of Engineers.


Material to be dredged is similar in nature and composition to material that has been removed regularly from the project area and adjacent main channel of the Christina River by the U.S. Army Corps of Engineers. Sampling results and methodology from previous dredging projects are included in Appendix A and Appendix B of this application.

The Christina River navigational channel is dredged regularly by the U.S. Army Corps of Engineers and dredging for this project will occur concurrently with main channel dredging.


H-7912

SECTION 1 - 1

DNREC DREDGING PERMIT SEPTEMBER 2020

WETLANDS AND SUBAQUEOUS LANDS SECTION PERMIT APPLICATION FORM

For Subaqueous Lands, Wetlands, Marina and 401 Water Quality Certification Projects

State of Delaware Department of Natural Resources and Environmental Control Division of Water

Wetlands and Subaqueous Lands Section

APPLICATION FOR APPROVAL OF SUBAQUEOUS LANDS, WETLANDS, MARINA AND WATER QUALITY CERTIFICATION PROJECTS

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

Application Instructions:

- 1. Complete each section of this basic application and appropriate appendices as thoroughly and accurately as possible. Incomplete or inaccurate applications will be returned.
- 2. All applications must be accompanied by a scaled plan view and cross-section view plans that show the location and design details for the proposed project. Full construction plans must be submitted for major projects.
- 3. All applications must have an original signature page and proof of ownership or permitted land use agreement.
- 4. Submit an original and two (2) additional copies of the application (total of 3) with the appropriate application fee and public notice fee* (prepared in separate checks) to:

Department of Natural Resources and Environmental Control Wetlands and Subaqueous Lands Section 89 Kings Highway Dover, Delaware 19901

- *Application and public notice fees are non-refundable regardless of the Permit decision or application status.
- 5. No construction may begin at the project site before written approval has been received from this office.

Helpful Information:

1.	Tax Parcel Information:	New Castle County	(302) 395-5400
		Kent County	(302) 736-2010
		Sussex County	(302) 855-7878
2.	Recorder of Deeds:	New Castle County	(302) 571-7550
		Kent County	(302) 744-2314
		Sussex County	(302) 855-7785

- 3. A separate application and/or approval may be required through the Army Corps of Engineers. Applicants are strongly encouraged to contact the Corps for a determination of their permitting requirements. For more information, contact the Philadelphia District Regulator of the Day at (215) 656-6728 or visit their website at: http://www.nap.usace.army.mil/Missions/Regulatory.aspx.
- 4. For questions about this application or the Wetlands and Subaqueous Lands Section, contact us at (302) 739-9943 or visit our website at: http://www.dnrec.delaware.gov/wr/Services/Pages/WetlandsAndSubaqueousLands.aspx. Office hours are Monday through Friday 8:00 AM to 4:30 PM, except on State Holidays.

APPLICANT'S REVIEW BEFORE MAILING

COMPLET	TE THE FOLLOWING?
Yes	BASIC APPLICATION
Yes	SIGNATURE PAGE (Page 3)
Yes	APPLICABLE APPENDICES
Yes	SCALED PLAN VIEW
Yes	SCALED CROSS-SECTION OR ELEVATION VIEW PLANS
Yes	VICINITY MAP
Yes	COPY OF THE PROPERTY DEED & SURVEY
Yes	THREE (3) COMPLETE COPIES OF THE APPLICATION PACKET
Yes	APPROPRIATE APPLICATION FEE & PUBLIC NOTICE FEE (Separate checks made payable to the State of Delaware)
	Yes Yes Yes Yes Yes Yes Yes Yes Yes

Submit 3 complete copies of the application packet to:

Department of Natural Resources and Environmental Control Wetlands and Subaqueous Lands Section 89 Kings Highway Dover, Delaware 19901

Before signing and mailing your application packet, please read the following:

The Department requests that the contractor or party who will perform the construction of your proposed project, if other than the applicant, sign the application signature page along with the applicant in the spaces provided. When the application is signed by the contractor as well as the applicant, the Department will issue the Permit to both parties. For Leases, the contractor will receive a separate construction authorization that will make them subject to all of the terms and conditions of the Lease relating to the construction

**ON FILE WITH DNREC

Section 1: Applicant Identification

1.	Applicant's Name: _Diamond State	Port Corporation	Telepl Fax #:		#: 302-571-4600		
	Mailing Address: 1 Hausel Road Wilmington, DE	19801	E-mail	GB	ailey@port.state.d	le.us	
2.	Mailing Address: 900 Dudley Ave	nue 08002	Teleph	one i	Name: S. T. Huds #: 856-342-6600 rry@sthe.com		s, Inc.
3.	Contractor's Name:Mailing Address:		Compa Teleph Fax #:	ny N one	ame: #:		
The to a be c	check those that apply: w Project/addition to existing project applicant seeks to conduct maintenate depth of -38 feet MLW for Berths 1- conducted hydraulically and disposed	nce dredging at the Port -4 and -35 feet MLW fo of at either the Pedrick	of Wilmington Berths 5-7, p town South or	on or	2 feet allowable or Wilmington Harb	ver. Dredging verdredge. D or South con	will occur redging will fined
yard	osal facilities operated by the U.S. As of material per year for 10 years. Check each Appendix that is enclose		s. The applica	nt se	eks permission to	areage up to	73,000 cub.
	A. Boat Docking Facilities	G. Bulkheads			N. Preliminary N	Marina Checl	clist
	B. Boat Ramps	H. Fill			O. Marinas		
	C. Road Crossings	I. Rip-Rap Sills and			P. Stormwater N		
_	D. Channel Modifications/Dams	J. Vegetative Stabili			Q. Ponds and Im		
	E. Utility Crossings F. Intake or Outfall Structures	K. Jetties, Groins, B M. Activities in Stat		X	R. Maintenance S. New Dredgir		
. 1	on 3: Project Location Project Site Address: 1 Hausel Road Wilmington, DE	Si	te owner name	e (if	N.C.	licant):	
, 1	Driving Directions: I-495 to Exit 2	Terminal Avenue east t	to port entrand	e			
	ch a vicinity map identifying road not not provided in the control of the control		ation) abdivision Na	ne: _	N/A		
WSI	LS Use Only: Permit #s:						
Гуре	SP SL SL SU	U WE D	WQ 🗆 L	A 🗆	SA □	$MP \square$	WA 🗆
	os Permit: SPGP 18 🗆 20 🗆 Natio	onwide Permit #: Project Scientist: _		_ I	ndividual Permit	#	
	Received? Yes \(\text{No} \(\text{No} \) Amt:		ceipt #:				
		Notice Dates: ON		0	FF		

	ation (Continued)					
10. Name of waterbody	at Project Location	n: Christina Rive	r waterbody i	is a tributary to:	Delawar	e River
11. Is the waterbody:	ĭ Tidal □ N	on-tidal Wa	terbody width at me	ean low or ordina	ry high w	ater Approx. 1,000 f
12. Is the project:	☑ On public sub ☐ In State-regul		☐ On private sub☐ In Federally-re			
*If the project is on priv	ate subaqueous lan	ds, provide the na	ame of the subaqueo	ous lands owner:		
(Written permission from	m the private subaq	ueous lands owne	er must be included	with this applica	tion)	
13. Present Zoning:	☐ Agricultural	☐ Residential	☐ Commercial	▼ Industrial	□ Othe	r
Section 4: Miscellaneo	us					
ALMA PROPERTIES 273 PROPERTIES LL PORT CONTRACTO MAGELLAN TERMI	.C - 721 TERMINA RS INC - 341 PIGE	AL AVE, WILMI ON POINT RD,	NGTON, DE 1980 NEW CASTLE, DE	1 E 19720	E 19801	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
B. For wetlands an	d marina projects,	list the names and	d complete mailing	addresses of pro	perty ow	ners within a 1 000
foot radius of the projec	1 / 11 1 1 1 1 1 1 1 1		1 0	addresses of pri	L	ners within a 1,000
			ry):			
			ry):			
			ry):			
			ry):			
N/A			гу):			
N/A			гу):			
N/A 15. Provide the names o	f DNREC and/or Ar	my Corps of Engir	ry):	whom you have		he project with:
N/A 15. Provide the names o A. Have you had a	f DNREC and/or Ar	my Corps of Engir	neers representatives	whom you have	discussed t	the project with:
N/A 15. Provide the names o A. Have you had a B. Has the project b	f DNREC and/or Ar	my Corps of Engir Determination per	neers representatives	whom you have	discussed t	he project with:
A. Have you had a B. Has the project b *If yes, what w	f DNREC and/or Ar State Jurisdictional been reviewed in a reviewed in a review of the new the date of the new	my Corps of Engir Determination permonthly Joint Permeeting?	neers representatives erformed on the promit Processing Mee	whom you have	discussed t	the project with:
A. Have you had a B. Has the project b *If yes, what w	f DNREC and/or Ar State Jurisdictional been reviewed in a review of the new tructures or fill at the	my Corps of Engin Determination permonthly Joint Permeeting? he project site in s	neers representatives erformed on the promit Processing Mee	whom you have perty?	discussed t	the project with:
A. Have you had a B. Has the project b *If yes, what w	f DNREC and/or Ar State Jurisdictional been reviewed in a reviewed in a review of the new the date of the new	my Corps of Engin Determination permonthly Joint Permeeting? he project site in s	neers representatives erformed on the promit Processing Mee	whom you have perty?	discussed t □ Yes □ Yes	he project with:
A. Have you had a B. Has the project b *If yes, what w 16. Are there existing s *If yes, provide LA-073/13	f DNREC and/or Ar State Jurisdictional been reviewed in a review of the new tructures or fill at the	Determination permonthly Joint Permeeting?	erformed on the promit Processing Meesubaqueous lands?	whom you have perty?	discussed t □ Yes □ Yes	the project with:
A. Have you had a B. Has the project b *If yes, what w 16. Are there existing s *If yes, provide LA-073/13 *If no, were str	State Jurisdictional been reviewed in a revisit the date of the nutructures or fill at the the permit and/or ructures and/or fill it	Determination permonthly Joint Permeeting? he project site in salease number(s):	erformed on the promit Processing Meesubaqueous lands?	perty? eting? X Yes	discussed t □ Yes □ Yes	the project with:
A. Have you had a B. Has the project b *If yes, what w 16. Are there existing s *If yes, provide LA-073/13	f DNREC and/or Ar State Jurisdictional been reviewed in a reviewed in a review of the nutructures or fill at the the permit and/or ructures and/or fill it for or obtained a Fed	Determination permonthly Joint Permeeting? the project site in selease number(s): in place prior to 1	ry): neers representatives erformed on the promit Processing Mee subaqueous lands? 969? the Army Corps of	perty? eting? X Yes	discussed t ☐ Yes ☐ Yes ☐ No	he project with:
A. Have you had a B. Has the project b *If yes, what w 16. Are there existing s *If yes, provide LA-073/13 *If no, were str	f DNREC and/or Ar State Jurisdictional been reviewed in a reviewed in a reviewed in a reviewed structures or fill at the the permit and/or ructures and/or fill it for or obtained a Fednaling Issue	Determination permonthly Joint Permeeting? the project site in selease number(s): in place prior to 1	ry): neers representatives erformed on the promit Processing Mee subaqueous lands? 969? the Army Corps of	perty? eting? X Yes Yes □ No Engineers?	discussed t	he project with:
A. Have you had a B. Has the project b *If yes, what w 16. Are there existing s *If yes, provide LA-073/13 *If no, were state 17. Have you applied for the project be a second to th	f DNREC and/or Ar State Jurisdictional been reviewed in a	Determination permonthly Joint Permeeting?	ry): neers representatives erformed on the promit Processing Mee subaqueous lands? 969? the Army Corps of hied Date: Federal Permit o	perty? eting? X Yes Yes □ No Engineers?	discussed t	he project with:

Well NPDES

Storm Water

Other: ____

Type of permit (circle all that apply): Septic

Section 5: Signature Page	
19. Agent Authorization:	
If you choose to complete this section, all future correspond agent. In addition, the agent will become the primary point	lence to the Department may be signed by the duly authorized of contact for all correspondence from the Department.
I do not wish to authorize an agent to act on my behalf $\;\Box$	
I wish to authorize an agent as indicated below $ $	
I, Gene Bailey /Diamond State Port Corp.hereby design (Name of Applicant) to act on my behalf in the processing of this application and Department.	gnate and authorize Paul Ferry / S. T. Hudson Engineers, Inc. (Name of Agent) to furnish any additional information requested by the
Authorized Agent's Name: S. T. Hudson Engineers, Inc.	Telephone #: 856-342-6600
Mailing Address: 900 Dudley Avenue	Fax #: <u>856-342-8323</u>
Cherry Hill, NJ 08002	E-mail: _pferry@sthe.com
	attached plans are true and accurate to the best of my knowledge, nation in addition to that set forth herein if deemed necessary to
and that I am required to inform the Department of any char	e attached plans are true and accurate to the best of my knowledge nges or updates to the information provided in this application. I ation in addition to that set forth herein if deemed necessary to to authorized Department representatives to enter upon the
and that I am required to inform the Department of any char	e attached plans are true and accurate to the best of my knowledge, nges or updates to the information provided in this application. I ation in addition to that set forth herein if deemed necessary to
Contractor's Name	Date

Last Revised on: March 28, 2017

Print Name

MAINTENANCE DREDGING OR EXCAVATING

• If dredged material is to be placed in a disposal site, a separate map showing the location of the disposal site should be attached. This drawing must indicate the proposed retention levees, weirs, spillways, and/or devices for retaining the materials.

- Bottom samples to determine heavy metals or other toxic materials must be taken and analyzed if deemed necessary by the DNREC staff. The responsibility, as well as the expense incurred for obtaining and analyzing these samples, must be borne by the applicant.
- If maintenance dredging is to be done, evidence of previous dredging <u>must</u> be provided. Any previously issued permit with drawings which indicates the date the dredging occurred, the area involved and dredging depth constitutes acceptable proof.
- Please make sure answers to all of the questions in this appendix correspond to information on the application drawings.
- 1. How many cubic yards of material will be MAINTENANCE DREDGED or excavated channelward of the:

a.	Tidal waters:	mean high water line?	<u>75,</u>	<u>000 </u> cu. yds.
		mean low water line?	75,000	_cu. yds.
b.	Non-tidal waters:	ordinary high water line	? <u>n/a</u>	cu. yds.

Does this account for the total volume of proposed dredging for the project? X Yes No If there is new dredging associated with this project (dredging beyond previously authorized dimensions) please fill out appendix S for new dredging.

What will be the dimensions of the dredged or excavated area relative to mean low water (for tidal areas only) or ordinary water level (for non-tidal areas only)?
 1-mile length -35/-38 ft. depth base width 50/100 ft. top width

3. What are average existing depths in area of proposed dredging? 30-35 ft. (mlw)

- Include a survey of proposed and existing depths on application drawings.
- 4. What is the proposed dredging depth in relation to surrounding bathymetry? <u>-35/-38 + 2</u> ft.(mlw/ohw) Indicate both proposed depths and surrounding depths on attached drawings.
- 5. By what method(s) (hydraulic, clamshell or other) will the dredging be done? <u>Hydraulic</u> If other, explain:

6. What is proximity of the dredging project to the nearest creek bank or banks? **0** ft. What are existing land uses along this bank(s)?

Existing land use is a port.

Describe the existing shoreline along this bank (vegetation, rip-rap, bulkhead, etc.).

The bank is not vegetated. It is a port with a constructed shoreline.

- 7. Describe characteristics of the material to be disposed including:
 - a. Physical nature of material (i.e. sand, silt, clay, etc.). Give percentages of various fractions if available.

Material is over 90% silt. Exact results of our grain size analysis can be found in Appendix C, while historical results can be found in Appendices A and B.

b. Chemical composition of material - Many areas have sediments with high concentration of pollutants (chemicals, organics etc.) which may be re-suspended or reintroduced into the water. For heavily industrialized sites, a chemical analysis of this material should be provided (if applicable).

Sediment analysis comparative tables are included in Section 4, while the raw analytical data can be found in Appendix C (on enclosed CD).

c. What are the dewatering properties of material to be disposal of?

Dredged material is expected to be predominantly fine-grained and fairly hydrophilic. Settling is expected to take at least 24 hours before discharge of decant water is possible.

8. How will the dredged or excavated material be transported to its disposal area?

The dredge material will be pumped in a slurry through a steel pipeline on floated pontoons with various anchor locations, where it will be discharged. The dredging contractor will submerge the pipeline across the navigation channel. If the submerged line is to be placed across a navigable channel, the contractor must submit a request for approval at least ten working days prior to the U.S. Coast Guard. The total distance from the dredge area to the Pedricktown South disposal area is approximately 31,000 feet. The Wilmington Harbor South confined disposal facility, on the other hand, is directly south of the Port of Wilmington, and would be the preferred disposal facility as long as enough freeboard is available at the time dredging will take place.

Dredged material would be transported via a slurry through a floated steel pipeline, allowing for solids to settle out before releasing the decant water through a weir. Once the slurry is pumped to the disposal facility, the solids in the slurry will undergo settlement, while the decant water will be discharged via a weir should water levels approach the capacity of the disposal site. Otherwise, the water portion of the slurry will be lost to evaporation and infiltration.

- 9. Land Disposal Areas.
 - a. Describe dimensions, characteristics and exact locations of the proposed dredged material disposal site (provide photographs, directions to, and complete plans of disposal site).

Aerial depictions of the Wilmington Harbor South and Pedricktown South disposal facilities can be found in Section 1 of this application.

b. Describe method of dredged material containment (embankment, behind bulkhead, etc.)

The disposal sites provide containment via dikes/embankments.

c. What type of leachates will be produced by the spoil material and what is planned for the protection of groundwater?

The Toxicity Characteristic Leaching Procedure simulates the effects of rainfall on leachate of the dredge material. The leachate characteristics of the material are included in Section 4 and Appendix C of this application.

d. Pedricktown South disposal site coordinates: 39°45'39.5" N, 75°26'58.8" W

Wilmington Harbor South disposal site coordinates: 39°42'22.2" N, 75°31'19.6" W

e. What methods will be used to ensure that spoil water does not adversely affect water quality both during construction and after completion of the project?

The dredge board stop logs will be maintained at the highest level possible to provide maximum retention time without jeopardizing dike stability. Both the contractor and the Army Corps of Engineers will perform daily on-site inspections of the disposal site weir structure and dikes to ensure that discharge back to the river meets State of Delaware water quality criteria. The contract will record daily discharge readings and keep all pipelines in good condition at all times. Any leaks or breaks along the length of the pipeline shall result in non-activity until a repair is made. Slurry will be held within the confined disposal facilities for a minimum of 24 hours. Exact retention time depends on cell capacity, temperature, wind speed and direction, dredge size, work production and the physical characteristics of the material.

f. Describe present land use of the disposal site.

It is currently a disposal site, operated by the U.S. Army Corps of Engineers.

10. Water Disposal Areas/ Beneficial Use Projects

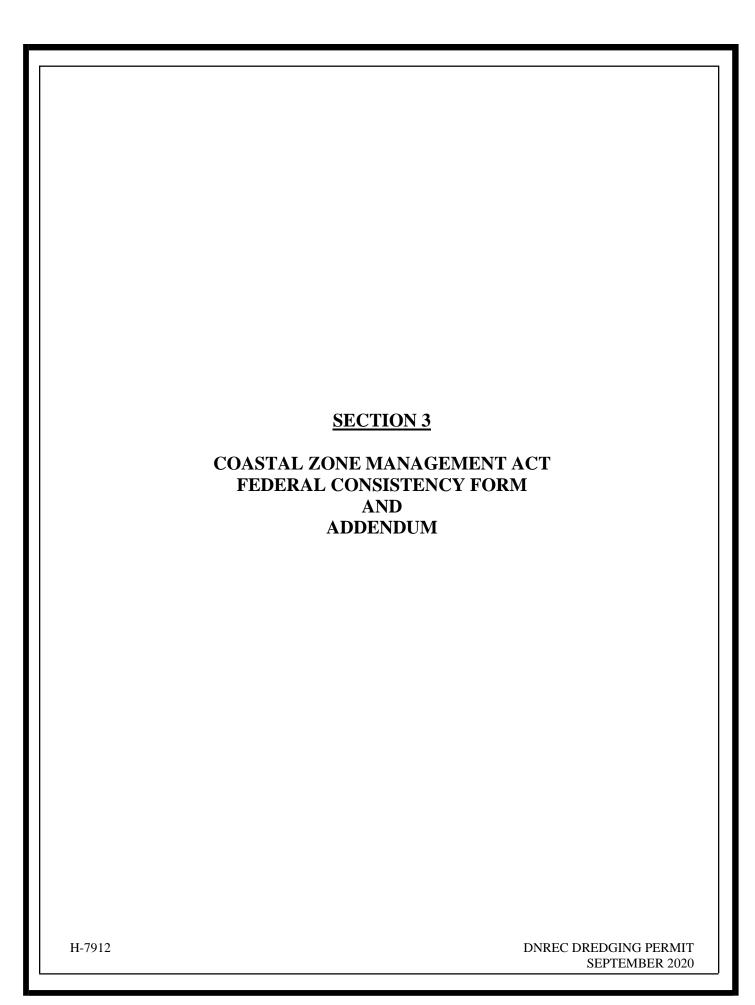
Describe methods to be used for water disposal including volumes and site selection, and containment (if applicable). Include Fill or Wetland Appendix if applicable.

This is not applicable because there will be no water disposal.

11. Describe the existing water characteristics at the site, including chemical analysis for water quality.

The project area is within the migrating salt front of the Delaware River. As a result, water here is typically brackish but salinity varies by tidal stage and freshwater discharge rate. Site water was analyzed, and results are included within a spreadsheet in Appendix C.

12. Identify the dredging and disposal schedule to ensure that operations do not degrade water quality during times of anadromous fish migration.


The applicant will comply with the standard annual anadromous fish restriction timeline.

13. Has an Erosion and Sediment Control Plan been approved by the designated plan approval agency for the project? An Erosion and Sediment Control Plan is required for any project disturbing more than 5,000 square feet of uplands. Final approved plans must be received by this office prior to permit issuance.

Not required, since there is no work in the uplands.

Important time of year restriction information:

Please be advised that all dredging in the Inland Bays must be undertaken between September 1 and December 31 in order to protect summer and winter flounder and other aquatic species. Dredging in other Delaware waters may also be subject to certain time of year restrictions in order to protect fish and wildlife. Contact DNREC for more specific information regarding the restrictions that may apply within your project area.

Project/Activity Name:

Delaware Department of Natural Resources and Environmental Control Delaware Coastal Management Program

nitialReview:	
Updated On:	
Complete:	
Officia	l Use Only

Coastal Zone Management Act Federal Consistency Form

This document provides the Delaware Coastal Management Program (DCMP) with a Federal Consistency Determination or Certification for activities regulated under the Coastal Zone Management Act of 1972, as amended, and NOAA's Federal Consistency Regulations, 15 C.F.R. Part 930. Federal agencies and other applicants for federal consistency are not required to use this form; it is provided to applicants to facilitate the submission of a Consistency Determination or Consistency Certification. In addition, federal agencies and applicants are only required to provide the information required by NOAA's Federal Consistency Regulations.

I.	The state of the s					
Con	tactName/Title:					
Fed	eral Agency Contractor Name (if applicable):					
Federal Agency: (either the federal agency proposing an action or the federal agency issuing a federal license/permit or financial assistance to a non-federal applicant)						
Mail	ingAddress:					
City: State:		Zip Code:				
E-mail: Telephone #:						
II.	Federal Consistency Category:					
	Federal Activity or Development Project (15 C.F.R. Part 930, Subpart C)	Federal License or Permit Activity (15 C.F.R. Part 930, Subpart D)				
	Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E)	Federal License or Permit Activity which occurs wholly in another state (interstate consistency				
	Federal Financial Assistance (15 C.F.R. Part 930, Subpart F)	activities identified in DCMP's Policy document)				
III.	III. Detailed Project Description (attach additional sheets if necessary):					
		1				

•	General Analysis of Coastal Effects (attach additional sheets if flecessary).
_	
	Detailed Analysis of Consistency with DCMP Enforceable Policies (attach additional sheets if necessary):
Ċ	licy 5.1: Wetlands Management
(licy 5.2: Beach Management
C	licy 5.3: Coastal Waters Management (includes wells, water supply, and stormwater management. Attach additional sheets if necess
_	licy 5.4: Subaqueous Land and Coastal Strip Management
_	ncy 5.4. Subaqueous Land and Soastal Strip Management
O	licy 5.5: Public Lands Management

Policy 5.6: Natural Lands Management					
Policy 5.7: Flood Hazard Areas Management					
Policy 5.8: Port of Wilmington					
Policy 5.9: Woodlands and Agricultural Lands Management					
Policy 5.10: Historic and Cultural Areas Management					
Policy 5.11: Living Resources					
Dalian 5 40 Minaral Dagannas Managament					
Policy 5.12 Mineral Resources Management					

Policy 5.13: State Owned Coastal Recreation and Conservation				
Policy 5.14: Public Trust Doctrine				
Policy 5.15: Energy Facilities				
. oney one and gy i demands				
Policy 5.16: Public Investment				
Policy 5.17: Recreation and Tourism				
Policy 5.18: National Defense and Aerospace Facilities				
1 oney or or reasonal Boloneo and Alercopado I dominio				
Policy 5.19: Transportation Facilities				

Policy 5.20: Air Quality Management	
Policy 5.21: Water Supply Management	
Policy 5.22: Waste Disposal Management	
Policy 5.23: Development	
Policy 5.24: Pollution Prevention	
Policy 5.25: Coastal Management Coordination	
VI. JPP and RAS Review (Check all that apply):	
Has the project been reviewed in a monthly Joint Permit Processing and/or Regulatory Advisory Service meeting	12
) :
☐ JPP ☐ RAS ☐ None	
*If wes, provide the date of the meeting(s):	

, VII.	Statement of Certification/Determination and Signature (Check one and sign below):							
	FEDERAL AGENCY CONSISTENCY DETERMINATION. Based upon the information, data, and analysis included herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity is consistent to the maximum extent practicable with the enforceable policies of the Delaware Coastal Management Program.							
	OR							
	FEDERAL AGENCY NEGATIVE DETERMINATION. Based upon the information, data, and analysis included herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity will not have any reasonably foreseeable effects on Delaware's coastal uses or resources (Negative Determination) and is therefore consistent with the enforceable policies of the Delaware Coastal Management Program.							
	OR							
	NON-FEDERAL APPLICANT'S CONSISTENCY CERTIFICATION. Based upon the information, data, and analysis included herein, the non-federal applicant for a federal license or permit, or state or local government agency applying for federal funding, listed in (I) above, finds that this proposed activity complies with the enforceable policies of the Delaware Coastal Management Program and will be conducted in a manner consistent with such program.						cal government mplies with the	
	Signature:	Zuene	Bad	4				
Print	ted Name:	Eugene Baile	ЭУ	0		Da	ite: 😅 🤇	09 /2020
		ence will be pres		ate's response	is not received	within the a	allowable time	rrame.
		or Development 930, Subpart C)	Project		60 days with option to extend an additional 15 days or stay review (15 C.F.R. § 930.41)			
	Federal License or Permit (15 C.F.R. Part 930, Subpart D)			Six months, with a status letter at three months. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.63)				
Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E)			Six months, with a status letter at three months. If three month status letter not issued, then concurrence presumed. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.78)					
	Federal Financial Assistance to State or Local Governments (15 C.F.R. Part 930, Subpart F)			State Clearinghouse schedule				
OFFI	OFFICIAL USE ONLY:							
Revi	ewed By:			Fed Con ID:	1	Date Rec	eived:	
Publ	ic notice da	tes:	to		Comments Re	eceived:	NO [attach	YES comments]
Decision type: (obsections or conditions attach details)				_ Decision Date:				

SECTION 3

COASTAL ZONE MANAGEMENT ACT FEDERAL CONSISTENCY FORM ADDENDUM

5.3 COASTAL WATERS MANAGEMENT

- 5.3.1.1 The development and utilization of the land and water resources of the State shall be regulated to ensure that water resources are employed for beneficial uses and not wasted, to protect beneficial uses of water resources, and to assure adequate water resources for the future. [7 Del.C. §6001 (a)(2)(3)]
- Response: Since the continued operation of the Port of Wilmington, an economic focal point of the Delaware economy, is dependent upon this project's completion, this project constitutes a beneficial use.
- 5.3.1.2 The water resources of the State shall be protected from pollution which may threaten the safety and health of the general public. [7 Del.C. §§6001 (a)(5)(c)(2)]
- Response: Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources.
- 5.3.1.3 The coastal water resources of the State shall be protected and conserved to assure continued availability for public recreational purposes and for the conservation of aquatic life and wildlife. [7 Del.C. §6001(a)(4)]
- Response: Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.
- 5.3.1.4 It is the policy of the DNREC to maintain within its jurisdiction surface waters of the State of satisfactory quality consistent with public health and public recreation purposes, the propagation and protection of fish and aquatic life, and other beneficial uses of the water. [7 DE Admin. Code 7401 subsection 1.1]
- Response: Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources. Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.

H-7912 SECTION 3 - 1 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.5 The designated uses applicable to the various stream basins represent the categories of beneficial use of waters of the State which must be maintained and protected through application of appropriate criteria. Such uses shall include public water supply; industrial water supply; primary contact recreation involving any water-based form of recreation, the practice of which has a high probability for total body immersion or ingestion of water such as swimming and water skiing; secondary contact recreation involving a water-based form of recreation, the practice of which has a low probability for total body immersion or ingestion of water such as wading, boating and fishing; maintenance, protection and propagation of fish, shellfish, aquatic life and wildlife preservation; agricultural water supply; and waters of exceptional recreational or ecological significance (ERES waters). [7 DE Admin. Code 7401 Sections 2.0 and 3.0]

Response:

Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources. Opportunities for public recreation will not be affected by this project. It is the priority of the applicant to conduct this project in a manner which will minimize or eliminate any detriment to aquatic life and wildlife.

5.3.1.6 Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. Degradation of water quality in such a manner that results in reduced number, quality, or river or stream mileage of existing uses shall be prohibited. Degradation shall be defined for the purposes of this section as a statistically significant reduction, accounting for natural variations, in biological, chemical, or habitat quality as measured or predicted using appropriate assessment protocols. [7 DE Admin. Code 7401 subsection 5.1]

Response:

Dredged material has been analyzed for pollutants in accordance with this rule. Furthermore, it is the priority of the applicant to complete this project in a way that minimizes the release of potential contaminants into the State's water resources.

5.3.1.7 Where the quality of the waters exceeds levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that water quality shall be maintained and protected. In the case of E.R.E.S. waters, existing quality shall be maintained or enhanced. Limited degradation may be allowed if the DNREC finds, after review, that allowing lower water quality would result in a substantial net environmental or public health benefit and does not impede existing uses in the area in which the waters are located In while allowing for full protection of existing uses. [7 DE Admin. Code 7401 subsections 5.2 and 5.6]

Response: The Christina River is not an E.R.E.S. waterbody, therefore this does not apply.

H-7912

SECTION 3 - 2

5.3.1.8 Where high quality waters constitute an outstanding national resource, such as waters of national parks and wildlife refuges, existing quality shall be maintained and protected. [7 DE Admin. Code 7401 subsection 5.3]

Response: The project area does not lie within a national park or wildlife refuge, therefore this rule does not apply.

5.3.1.9 In those cases where potential water quality impairment associated with a thermal discharge is involved, the antidegradation policy and implementing method shall be consistent with Section 316 of the Water Quality Act of 1987. [7 DE Admin. Code 7401 subsection 5.4]

Response: No thermal discharges are associated with this project.

- 5.3.1.10 All surface waters of the State shall be free from substances that are attributable to wastes of industrial, municipal, agricultural or other human-induced origin. Examples include but are not limited to the following:
 - 5.3.1.10.1 Floating debris, oil, grease, scum, foam, or other materials on the water surface that may create a nuisance condition, or that may in any water interfere with attainment and maintenance of designated uses of the water.
 - 5.3.1.10.2 Settleable solids, sediments, sludge deposits, or suspended particles that may coat or cover submerged surfaces and create a nuisance condition, or that may in any way interfere with attainment and maintenance of designated uses of the water.
 - 5.3.1.10.3 Any pollutants, including those of a thermal, toxic, corrosive, bacteriological, radiological, or other nature that may interfere with attainment and maintenance of designated uses of the water, may impart undesirable odors, tastes, or colors to the water or to aquatic life found therein, may endanger public health, or may result in dominance of nuisance species. [7 DE Admin. Code 7401 subsection 4.1]

Response: It is the priority of the applicant to minimize the release of settleable solids and suspended sediment that is typically a result of dredging. While it is not possible to completely eliminate it, hydraulic dredging typically minimizes the resuspension of sediment within the water column. Hydraulic dredging will be conducted in a controlled manner and the process will be observed by attendants at the surface to ensure that activities do not result in an unforeseen release of sediment into the water column. If this should occur, dredging will halt until turbidity dissipates and the dredger and line will be inspected for defects.

H-7912

SECTION 3 - 3

Regulatory mixing zones shall not impinge upon areas of special importance, including but not limited to drinking water supply intakes, nursery areas for aquatic life or waterfowl, approved or conditional shellfish areas or heavily utilized primary contact recreation areas. Zones shall not be located in such a manner as to interfere with passage of fishes or other organisms. Shore-hugging plumes should be avoided to the maximum extent practicable. In areas where multiple discharges are located in proximity, overlapping discharge plumes may occur. In such instances, the thermal mixing zone, which is not to exceed 25% of the cross-sectional area of the receiving water as measured from the point of discharge to the opposite shore, may be reduced to preclude acute toxicity in the overlap areas, or to ensure an adequate zone of passage for fish. [7 DE Admin. Code 7401 subsections 6.2 and 6.4]

Response: This rule does not apply as there is no discharge associated with a mandated mixing zone.

5.3.1.12 Streams with a designated use of public water supply shall provide waters of acceptable quality for use for drinking, culinary or food processing purposes after application of approved treatment equivalent to coagulation, filtration, and disinfection (with additional treatment as necessary to remove naturally occurring impurities). Water shall be free from substances (except natural impurities) that, alone or in combination with other substrates, result in:

- 5.3.1.12.1 Unacceptable levels of taste or odor in the treated water;
- 5.3.1.12.2 Significant disruption of the treatment processes at the treatment facility; or
- 5.3.1.12.3 Concentrations of toxic substances in the treated water that may be harmful to human health. [7 DE Admin. Code 7401 subsection 4.2]

Response: This rule does not apply.

5.3.1.13 Designated exceptional recreational or ecological significance (ERES) waters shall be accorded a level of protection and monitoring in excess of that provided most other waters of the State. These waters are recognized as special natural assets of the State, and must be protected and enhanced for the benefit of present and future generations of Delawareans. [7 DE Admin. Code 7401 subsection 5.6.1.1]

Response: The Christina River is not an ERES waterbody, therefore this does not apply.

5.3.1.14 ERES waters shall be restored, to the maximum extent practicable, to their natural condition. To this end, the DNREC shall, through adoption of a pollution control strategy for each ERES stream basin, take appropriate action to cause the systematic control, reduction, or removal of existing pollution sources, and the diversion of new pollution sources, away from ERES waters. [7 DE Admin. Code 7401 subsection 5.6.1.2]

Response: The Christina River is not an ERES waterbody, therefore this does not apply.

H-7912 SECTION 3 - 4 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.15 The discharge of oil from a vessel, truck, pipeline, storage, tank or tank car which causes or poses a threat of making a film on, emulsion in or sludge beneath the waters of the State or its shoreline shall be prohibited. [7 Del.C. §§6203, 6202(7)(5)(9)]

Response: This rule does not apply.

- 5.3.1.16 At a minimum, any discharge of liquid waste - sewage, industrial waste or other waste to State waters shall be subject to effluent limitations, discharge requirements and any alternate effluent control strategy that reflect a practicable level of pollutant removal technology. For the purposes of this section, a practicable level of pollutant removal technology is defined as the application of "best" treatment technology, control measures and practices, including pollution prevention, available to prevent, manage, reduce or remove pollutants taking into account the cost of applying such technology, control measures or practices in relation to the effluent reduction benefits to be achieved, the age of equipment and facilities involved, the process(es) employed, the engineering aspects of applying the various types of control, process changes, pollution prevention measures, non-water quality impacts (e.g. energy requirements) and other factors deemed appropriate. For the parameters, BOD5 (5-day biochemical oxygen demand) and suspended solids, the degree of removal reflecting an application of a practicable level of pollutant removal technology shall be at least 85% of the BOD5 and suspended solids contained in the influent to the treatment works or prior to application of the removal technology, control measures or practices. For discharges of sewage to State waters, a practicable level of pollutant removal technology shall be secondary treatment and disinfection.
 - 5.3.1.16.1 No person shall cause or permit any discharge of liquid waste to the Delaware River, the Delaware Bay, or Atlantic Ocean except liquid waste which has received at least secondary treatment and disinfection.
 - 5.3.1.16.2 No person shall cause or permit discharge of liquid waste to a lake or a pond or any tributary thereof, except liquid waste which has received at least secondary treatment, filtration, nutrient removal and disinfection.
 - 5.3.1.16.3 No person shall cause or permit any discharge of liquid waste to the Little Assawoman Bay, Indian River Bay, or to Rehoboth Bay, including any tributaries to those waterbodies, except liquid waste which has received at least secondary treatment, filtration, and disinfection.
 - 5.3.1.16.4 No person shall cause or permit any discharge of liquid waste to a stream, tidal or non-tidal, except liquid waste which has received at least secondary treatment, filtration, and disinfection. This subsection shall not govern discharge into the Delaware River, the Delaware Bay or the Atlantic Ocean, which shall be governed by subsection 5.3.1.16.1. For existing facilities, filtration may not be required if the existing facility has demonstrated the

H-7912 SECTION 3 - 5 DNREC DREDGING PERMIT SEPTEMBER 2020

ability to continuously meet secondary treatment levels. [7 DE Admin. Code 7201 subsections 7.1 and 7.2]

Response:

If a discharge of decant water from the designated Wilmington Harbor South and/or Pedricktown Confined Disposal Facility is necessary, it will be monitored for contaminants. The dredge material has been tested using the modified elutriate method, which simulates the constituents that are to be expected in decant water. The slurry released into the confined disposal area will be given sufficient time for solids to settle before decant water is released using an adjustable weir system to calibrate the discharge structure to the level necessary to release only water. The slurry will be monitored visually for settlement and the appropriate time for release will then be determined.

5.3.1.17 In the event that Delaware Surface Water Quality Standards are not achieved through application of the technology based requirements, additional effluent limitations and treatment requirements shall be imposed to assure compliance with the Surface Water Quality Standards. Such additional effluent limitations and treatment requirements must control all pollutants or pollutant parameters which the DNREC determines are or may be discharged at a level which will cause, have the reasonable potential to cause or significantly contribute to an excursion of any numerical or narrative water quality criterion contained within Delaware's Surface Water Quality Standards. The need for additional effluent limitations and treatment requirements shall be based upon the results of chemical and/or biological tests in conjunction with studies or analyses designed to assess the potential of the discharge to cause or contribute to in-stream excursions of Delaware's Surface Water Quality Standards. [7 DE Admin. Code 7201 subsection 8.1]

Response: Treatment of decant water is not anticipated to be necessary and therefore is not proposed. This rule does not apply currently.

5.3.1.18 Where conflicts develop between stated surface water uses, stream criteria, or discharge criteria, designated uses for each segment shall be paramount in determining the required stream criteria, which, in turn, shall be the basis of specific discharge limits or other necessary controls. [7 DE Admin. Code 7401 subsection 1.2]

Response: This rule does not apply.

- No person shall, without first having obtained a permit from the Delaware Department of Natural Resources, undertake any activity:
 - 5.3.1.19.1 In a way which may cause or contribute to the discharge of an air contaminant;
 - 5.3.1.19.2 In a way which may cause or contribute to the discharge of a pollutant into any surface or ground water;

H-7912 SECTION 3 - 6 DNREC DREDGING PERMIT SEPTEMBER 2020

5.3.1.19.3		In a way which may cause or contribute to withdrawal of ground water or surface water or both;					
5.3.1.19.	.4	In a way which may cause or contribute to the collection, transportation, storage, processing or disposal of solid wastes, regardless of the geographic origin or source of such solid wastes;					
5.3.1.19.	.5	To construct, maintain or operate a pipeline system including any appurtenances such as a storage tank or pump station;					
5.3.1.19.6		To construct any water facility; or					
5.3.1.19.	.7	To plan or construct any highway corridor which may cause or contribute to the discharge of an air contaminant or discharge of pollutants into any surface or ground water. [7 Del.C. § 6003(a)]					
Response:		oplicant has applied for a Wetlands and Subaqueous Lands Permit from atte of Delaware. No other permit is necessary.					
5.3.1.20	Depart	erson shall, without first having obtained a permit from the Delaware tment of Natural Resources and Environmental Control, construct, install, e, modify or use any equipment or device or other article:					
5.3.1.20.	.1	Which may cause or contribute to the discharge of an air contaminant;					
5.3.1.20.	.2	Which may cause or contribute to the discharge of a pollutant into any surface or groundwater;					
5.3.1.20.	.3	Which is intended to prevent or control the emission of air contaminants into the atmosphere or pollutants into surface or groundwaters;					
5.3.1.20.4		Which is intended to withdraw ground water or surface water for treatment and supply; or					
5.3.1.20.	5	For disposal of solid waste. [7 Del.C. §6003(b)]					

Response: This rule does not apply.

Regulatory variances for the activities identified in the preceding policy statement may be granted pursuant to 7 Del.C. §6011 if all of the following conditions exist in the opinion of the Secretary of the Delaware Department of Natural Resources and Environmental Control:

H-7912

SECTION 3 - 7

5.3.1.21.1	Good faith efforts have been made to comply with these policies;
5.3.1.21.2	The cost of compliance is disproportionately high with respect to the benefits which would be bestowed by compliance, or the necessary technology is unavailable;
5.3.1.21.3	Available alternative operating procedures or interim control measures are being or will be used to reduce adverse impacts; and
5.3.1.21.4	The activities are necessary to the national security or to the lives, health, or welfare of the occupants of Delaware. [7 Del.C. §6011(b)]
Response:	A variance is not requested, therefor this rule does not apply.
5.3.1.22	No permit for the activities identified above shall be granted unless the activities are consistent with county and municipal zoning regulations. [7 Del.C. §6003(c)(1)]
Response:	County and municipal zoning approval is not necessary for maintenance dredging at the Port of Wilmington.
5.3.1.23	No person or entity shall commence construction, replacement, or operation of any of the following without first having obtained a permit from DNREC:
5.3.1.23.	1 Sewer;
5.3.1.23.	Any liquid waste collection or conveyance facilities such as wastewater pump stations and force mains;
5.3.1.23.	3 Liquid waste treatment facilities;
5.3.1.23.4	Any surface impoundment for liquid waste or
5.3.1.23	Any bulk storage, bulk transfer or pipeline facility. [7 DE Admin. Code 7201 Section 2.0 and subsection 4.2]
Response:	This rule does not apply.
5.3.1.24	No person shall construct, install, modify, rehabilitate, or replace an on-site wastewater treatment and disposal system or construct or place any dwelling, building, mobile home, manufactured home or other structure capable of discharging wastewater on-site unless such person has a valid license and permit issued by the DNREC. [7 DE Admin. Code 7101 subsection 3.31.1]
Response:	This rule does not apply.

SECTION 3 - 8

H-7912

DNREC DREDGING PERMIT

SEPTEMBER 2020

No person shall cause or permit to be discharged, thrown, or dumped into any waters or any drainage ditch in the State any garbage, refuse, dead animal, poultry, trash, carton, bottle, container, box, lumber, timber, paper, or light material or other solid waste. [7 DE Admin. Code 7201 subsection 3.2.6]

Response: This rule does not apply.

5.3.1.26 No person or entity shall:

- 5.3.1.26.1 Engage in the drilling, boring, coring, driving, digging, construction, installation, removal, or repair of a water well or water test well, except as or under the supervision of a licensed water well contractor;
- 5.3.1.26.2 Construct, repair, install or replace any part of a septic tank system except by or under the supervision of a licensed septic tank installer; or
- 5.3.1.26.3 Operate any liquid waste treatment system without a licensed liquid waste treatment plant operator.
- No permits or licenses shall be issued for these activities unless the DNREC finds that the applicant is prepared and willing to conduct such activities in a manner which is consistent with the CMP policies. [7 Del.C. §6023; Delaware Executive Order 43, August 15, 1996]

Response: This rule does not apply.

5.3.1.27 The person who has caused the contamination of a person's drinking water supply by contaminant other than bacteria, viruses, nitrate or pesticides may be required to provide, at no cost to each person who has had his drinking water supply contaminated, an interim water supply that is of a quality and quantity to meet said person's needs as shall be determined by the Secretary of DNREC, in addition to the dates on which the interim water supply shall commence and be terminated. [7 Del.C. §6037]

Response: This rule does not apply.

5.3.1.28 No permits shall be issued for the discharge of any radiological, chemical or biological warfare agents or high-level radioactive wastes into State waters. [7 DE Admin. Code 7201 subsection 3.2.8.1]

Response: This rule does not apply.

No person shall cast, put, place, discharge in or permit or suffer to be cast, put, placed, discharged in or to escape into any running stream of water within the limits of this State, from which stream the inhabitants of any borough, town or city within this State are supplied wholly or in part with water for and as drink or beverage,

H-7912 SECTION 3 - 9 DNREC DREDGING PERMIT SEPTEMBER 2020

any dye-stuffs, drugs, chemicals or other substance or matter of any kind whatsoever whereby the water so supplied as and for a drink or beverage is made and becomes noxious to the health or disagreeable to the senses of smell or taste. [16 Del.C. §1301]

Response: This rule does not apply.

5.3.1.30 Water delivered to every consumer by any public water supplier shall be so protected by natural means, by proper constructions or by treatment so as maintain or increase water quality above the level determined to be safe and not to negatively impact users of water from such systems, either directly or indirectly. [16 DE Admin. Code 4462 subsection 3.3]

Response: This rule does not apply.

5.3.1.31 After July 1, 1991, unless a particular activity is exempted by these regulations, a person may not disturb land without an approved sediment and stormwater management plan from the appropriate plan approval agency. [Delaware Sediment and Stormwater Regulations, Section 8(1), amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.32 The following activities are exempt from both sediment control and stormwater management requirements:
 - 5.3.1.32.1 Agricultural land management practices, unless the local Conservation District or the DNREC determines that the land requires a new or updated soil and water conservation plan, and the owner or operator of the land has refused either to apply to a Conservation District for the development of such a plan, or to implement a plan developed by a Conservation District;
 - 5.3.1.32.2 Developments or construction that disturbs less than 5,000 square feet.
 - 5.3.1.32.3 Land development activities which are regulated under specific State or federal laws which provide for managing sediment control and stormwater runoff, such as specific permits required under the National Pollutant Discharge Elimination System (NPDES) when discharges are a combination of stormwater and industrial or domestic wastewater.
 - 5.3.1.32.4 Projects which are emergency in nature that are necessary to protect life or property such as bridges, culvert, or pipe repairs and above ground or underground electric and gas utilities or public utility restoration; and

H-7912

SECTION 3 - 10

5.3.1.32.5 Qualifying commercial forest harvesting operations. [Delaware Sediment and Stormwater Regulations, subsection 3.1 amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.33 A project may be eligible for a waiver of stormwater management for both quantitative and qualitative control if the applicant can demonstrate that:
 - 5.3.1.33.1 The proposed project will return the disturbed area to a pre-development runoff condition and the pre-development land use is unchanged at the conclusion of the project; or
 - 5.3.1.33.2 The proposed project consists of a linear disturbance of less than ten (10) feet in width; or
 - 5.3.1.33.3 The project is for an individual residential detached unit or agricultural structure, and the total disturbed area of the site is less than one acre; or
 - 5.3.1.33.4 The proposed project is for agricultural structures in locations included in current soil and water conservation plans that have been approved by the appropriate Conservation District. [Delaware Sediment and Stormwater Regulations, subsection 3.2.1, amended April 11, 2005]

Response: This rule does not apply.

All sediment and stormwater management plans shall be designed to implement water quality control measures to minimize, to the maximum extent possible, degradation of downstream water quality and habitat. Unless a particular activity is exempt, no person may disturb land without an approved sediment and stormwater management plan. [Delaware Sediment and Stormwater Regulations, subsection 10.2.2, amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.35 Water quantity control is an integral component of overall stormwater management. Control of peak discharges will, to some extent, prevent increases in flooding. The following design criteria for peak flow control are established for water quantity control purposes, unless a waiver is granted based on a case-by-case basis:
 - 5.3.1.35.1 Projects in New Castle County that are located north of the Chesapeake and Delaware Canal shall not exceed the post-development peak discharge for the 2, 10, and 100 year frequency storm events at the pre-development peak discharge rates for the 2, 10, and 100 year frequency storm events.

H-7912 SECTION 3 - 11 DNREC DREDGING PERMIT SEPTEMBER 2020

- Projects in New Castle County that are located south of the Chesapeake and Delaware Canal, Kent County, and Sussex County shall not exceed the post-development peak discharge for the 2 and 10 year frequency storm events at the pre-development peak discharge rates for the 2 and 10 year frequency storm events.
- 5.3.1.35.3 Watersheds, other than Designated Watersheds or subwatersheds that have well documented water quantity problems may have more stringent or modified design criteria that are responsive to the specific needs of that watershed. Modified criteria for that watershed must receive Departmental approval, and all projects reviewed and approved by the appropriate plan approval agency shall meet or exceed the modified criteria. Proposed modification of criteria for a watershed shall be subject to public review and comment prior to implementation. [Delaware Sediment and Stormwater Regulations, subsection 10.3.4, amended April 11, 2005]

Response: This rule does not apply.

- 5.3.1.36 Water quality control is also an integral component of stormwater management. Control of water quality on-site will prevent further degradation of downstream water quality. The following design criteria are established for water quality protection unless a waiver or variance is granted on a case-by-case basis.
 - 5.3.1.36.1 In general, the preferred option for water quality protection shall be those practices collectively referred to as "Green Technology BMP's". Other practices shall be considered only after preferred practices have been eliminated for engineering or hardship reasons as approved by the appropriate plan approval agency.
 - 5.3.1.36.2 Water quality be designed to manage the rate and volume of flow from the 2.0" NRCS Type II rainfall event, up to a maximum of 1.0" and
 - 5.3.1.36.3 Alternative stormwater quality practices may be acceptable to the Department and/or the plan approval agency if the removal efficiency for suspended solids meets or exceeds 80% as demonstrated by scientifically independent evaluation and monitoring performance data,
 - 5.3.1.36.4 The Department and/or plan approval agency may require other acceptable stormwater practices if a receiving waterbody has been identified as impaired or designated with a specific pollutant reduction target.
 - 5.3.1.36.5 Water quality practices may also be acceptable to the Department and/or the plan approval agency if they are designed to reduce pollutant loading from a specific post-development source.

Response: This rule does not apply.

H-7912 SECTION 3 - 12 DNREC DREDGING PERMIT SEPTEMBER 2020

5.4 SUBAQUEOUS LANDS AND COASTAL STRIP MANAGEMENT

The "coastal zone", referred to in these policies as the "coastal strip", is defined as all that area of the State, whether land, water or subaqueous land between the territorial limits of Delaware in the Delaware River, Delaware Bay and Atlantic Ocean, and a line formed by certain Delaware highways and roads. [7 Del.C. §7002]

Response: We are operating under the assumption that the project is within the Delaware coastal zone.

The natural environment of the coastal strip shall be protected from the impacts of heavy industry and oil pollution for the purpose of recreation, tourism, fishing, crabbing, and gathering other marine life useful in food production. [7 Del.C. §§7001, 6201]

Response: As this project does not involve heavy industry and oil pollution, the project is in compliance with this rule.

5.4.3 The need for protection of the natural environment in the coastal strip shall be balanced with the need for new industry in the State's coastal areas [7 Del.C. §7001]

Response: This rule does not apply; no new industry is proposed.

The location, extent and type of industrial development in the coastal strip that will result in the degradation of the Delaware's bays and coastal areas shall be controlled [7 Del.C. §7001; Kreshtool v. Delmarva Power & Light Co., Delaware Super., 310 A. 2d 649(1973)]

Response: This project involves solely existing land use; therefore, the project is in compliance with this rule.

5.4.5 The development and use of offshore oil, gas, and other mineral resources of the State shall be managed to make the maximum contribution to the public benefit and so as to balance their utilization, conservation, and protection [Delaware Oil, Gas and Mineral Exploration Regulations, 2.1. September, 1971]

Response: This rule does not apply.

New heavy industrial uses shall be prohibited in the coastal strip. Such uses are ones characteristically involving more than 20 acres, and characteristically employing smokestacks, tanks, distillation or reaction columns, chemical processing equipment or waste-treatment lagoons. Heavy industrial uses shall not only be defined by their physical characteristics, however, but also by their potential to pollute in the event of human error or equipment failure. Examples of

H-7912 SECTION 3 - 13 DNREC DREDGING PERMIT SEPTEMBER 2020

heavy industry are oil refineries, basic steel manufacturing plants, basic cellulosic pulp-paper mills, and chemical plants such as petrochemical complexes. For purposes of this policy, public sewage treatment or recycling plants shall not be deemed heavy industrial uses. [7 Del.C. §§7002(e), 7003; Kreshtool v. Delmarva Power & Light Co., Delaware Super., 310 A. 2d 649(1973)]

Response: No new heavy industrial uses are proposed for this project.

New manufacturing uses or the expansion of existing manufacturing uses shall be allowed in the coastal strip by permit only, although in no case shall new manufacturing uses be allowed in wetlands or where inconsistent with local zoning regulations. Manufacturing uses are ones which mechanically or chemically transform substances into new products, and characteristically employ power-driven machines and materials handling equipment. Manufacturing uses typically include establishments engaged in assembling components of manufactured products, provided the new products are not fixed improvements. [7 Del.C. §§7002(d)(e), 7004(a)]

Response: New or expanded manufacturing uses are not proposed as part of this project.

- 5.4.8 The following factors shall be considered in passing on requests for permission to construct or operate a manufacturing use in the coastal strip:
 - 5.4.8.1 Environmental impact, including but not limited to, probable air and water pollution likely to be generated by the proposed use under normal operating conditions, as well as during mechanical malfunction and human error; likely destruction of wetlands and flora and fauna; impact of site preparation on drainage of the area in question, especially as it relates to flood control; impact of site preparation and facility operations on land erosion; effect of site preparation and facility operations on the quality and quantity of surface, and subsurface water resources, such as the use of water for processing, cooling, effluent removal, and other purposes; in addition, but not limited to, the likelihood of generation of glare, heat, noise, vibration, radiation, electromagnetic interference and obnoxious odors.
 - 5.4.8.2 Economic effect, including the number of jobs created and the income which will be generated by the wages and salaries of these jobs in relation to the amount of land required, and the amount of tax revenues potentially accruing to State and local government.
 - 5.4.8.3 Aesthetic effect, such as impact on scenic beauty of the surrounding area.
 - Number and type of supporting facilities required and the impact of such facilities on all factors listed in this subsection.

H-7912 SECTION 3 - 14 DNREC DREDGING PERMIT SEPTEMBER 2020

- 5.4.8.5 Effect on neighboring land uses including, but not limited to, effect on public access to tidal waters, effect on recreational areas, and effect on adjacent residential and agricultural areas.
- 5.4.8.6 County and municipal comprehensive plans for the development and/or conservation of their areas of jurisdiction. [7 Del.C. §7004(b)]

Response: New or expanded manufacturing uses are not proposed as part of this project.

New offshore gas, liquid, or solid bulk product transfer facilities shall be prohibited in the coastal strip. Such facilities are docks or port facilities, whether artificial islands or attached to shore by any means, for the transfer of bulk quantities of any substance from vessel to onshore facility or vice versa. However, a docking facility or pier for a single industrial or manufacturing facility and docking facilities located in the City of Wilmington for the Port of Wilmington shall not be prohibited. [7 Del.C. §§7002(f), 7003; Inf. Attorney General Opinion No. 65, October 22, 1974]

Response: New offshore gas, liquid, or solid bulk product transfer facilities are not proposed as part of this project.

5.4.10 Offshore pipelines which transfer bulk quantities of gas, oil, or other liquids to terminals within the coastal strip shall be prohibited. Such pipelines generally shall be allowed if they transit the coastal strip and environmental safeguards are observed. However, if such pipelines represent a significant danger of pollution to the coastal strip or generate pressure for construction of industrial plants in the coastal strip, they shall be prohibited. [7 Del.C. §§7001, 7002, 7003; Inf. Attorney General Opinion No. 77-33, July 6, 1977]

Response: New offshore pipelines which transfer bulk quantities of gas, oil, or other liquids to terminals within the coastal strip are not proposed as part of this project.

A permit may be issued for geological, geophysical and seismic surveys, including the taking of cores and other samples, or the tide and submerged lands of this State. Such permits shall be nonexclusive and shall not give any preferential rights to any oil, gas and sulfur or other mineral lease. After consultation with those agencies of the State having an interest in the possible effects of the leasing, such rules and regulations deemed necessary to protect the fish, game, wildlife and natural resources of the State shall be included in the permit. Survey activities on any area determined to be an area where a lease should not be granted may be prohibited. The permit shall include conditions and payment proper to safeguard the interests of the State. [7 Del.C. §§6103, 6104]

Response: This rule does not apply.

H-7912 SECTION 3 - 15 DNREC DREDGING PERMIT SEPTEMBER 2020

No operations or activities shall be commenced on the drilling, deepening or plugging back of any offshore oil or gas wells located on underwater lands of Delaware without the permission of the State, and unless the activities are conducted in a manner which do not result in the degradation of the State's natural resources. [Delaware Oil, Gas and Mineral Exploration Regulations Numbers I-V, September 1971]

Response: This rule does not apply.

Easements for mineral exploration and exploitation underlying that part of the surface of the Atlantic shore owned by the state shall be permitted at such times and places as necessary to permit the extraction and transportation of oil, gas, sulfur or other minerals from State, federal or private lands, but permanent interference with the surface of the Atlantic shore shall be prohibited. [7 Del.C. §§6102(d), 6118, 6119(a)]

Response: This rule does not apply.

- 5.4.14 Before offering tide and submerged lands for leasing for possible mineral development, or whenever any person files a written application with the Secretary of DNREC requesting that lands be offered for leasing, accompanying the same with the required fee, a public hearing shall be held. After the public hearing, it will be determined whether an invitation for bidding to lease the area under consideration would be in the public interest. Consideration shall be made as to whether a lease or leases of the area under consideration would:
 - 5.4.14.1 Be detrimental to the health, safety, or welfare of persons residing in, owning real property or working in the neighborhood of such areas;
 - 5.4.14.2 Interfere with the residential or recreation areas to an extent that would render such areas unfit for recreational or residential uses or unfit for park purposes;
 - 5.4.14.3 Destroy, impair or interfere with the aesthetic and scenic values of the Delaware coast, or other affected area;
 - 5.4.14.4 Create any air, water and other pollution;
 - 5.4.14.5 Substantially endanger marine life or wildlife;
 - 5.4.14.6 Substantially interfere with commerce or navigation; and
 - 5.4.14.7 Protect State lands from drainage of oil, gas or other minerals or objectionable substances [7 Del.C. §§6107, 6108]

Response: This rule does not apply.

H-7912 SECTION 3 - 16 DNREC DREDGING PERMIT SEPTEMBER 2020

Avoidable pollution or avoidable contamination of the ocean and of the waters covering submerged lands, avoidable pollution or avoidable contamination of the beaches or land underlying the ocean or waters covering submerged lands, or any substantial impairment of and interference with the enjoyment and use thereof, including but not limited to bathing, boating, fishing, fish and wildlife production, and navigation, shall be prohibited and the lessee shall exercise a high degree of care to provide that no oil, tar, residuary product of oil or any refuse of any kind from any well or works shall be permitted to be deposited on or pass into the waters of the ocean, any bay or inlet thereof, or any other waters covering submerged lands; provided, however, that this policy does not apply to the deposit on, or passing into, such water or waters not containing any hydrocarbons or vegetable or animal matter. [7 Del.C. §6119(a)]

Response: The applicant will take all precautions necessary to ensure that avoidable pollution or contamination of waters does not take place.

- 5.4.16 For the purposes of this section, "avoidable pollution" or "avoidable contamination" means pollution or contamination arising from:
 - 5.4.16.1 The acts of omissions of the lessee or its officers, employees or agents; or,
 - 5.4.16.2 Events that could have been prevented by the lessee or its officers, employees or agents through the exercise of a high degree of care. [7 Del.C. §6119(b)]

No response required.

5.4.17 State subaqueous lands within the boundaries of Delaware constitute an important resource of the State and shall be protected against uses or changes which may impair the public interest in the use of tidal or nontidal waters. [7 Del.C. Ch. 72]

Response: All uses are existing, and no new uses are proposed. The project will not impair the public interest in the use of tidal waters.

No person shall deposit material upon or remove or extract materials from, or construct, modify, repair or reconstruct, or occupy any structure or facility upon submerged lands or tidelands without first having obtained a permit, lease or letter of approval from the DNREC. Such permit, lease or letter of approval, if granted, may include reasonable conditions required in the judgment of the DNREC to protect the interest of the public. If it is determined that granting the permit, lease or approval will result in loss to the public of a substantial resource, the permittee may be required to take measures which will offset or mitigate the loss. [7 Del.C. §7205]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed activity.

H-7912 SECTION 3 - 17 DNREC DREDGING PERMIT SEPTEMBER 2020

The extent of jurisdictional authority over public or private subaqueous lands includes any activity in a navigable stream or waterbody, which have a hydrologic connection to natural waterbodies. "Activity" includes, but is not limited to, any human induced action, such as dredging, draining, filling, grading, bulkheading, mining, drilling, extraction of materials or excavation, or construction of any kind, including, but not limited to, construction of a boat ramp or slip, breakwater, residences, bridge, bulkhead, culvert, dam, derrick, deck, groin, jetty, lagoon, gabion, rip-rap, launching facility, marina, mooring facility, pier, seawall, walkway, or wharf. [7 DE Admin Code 7504 Section 1.0 and subsection 2.2.1.1]

No response required.

H-7912

5.4.20	The following types of activities in, on, over, or under private subaqueous lands
	require a permit or letter of authorization from the DNREC:

5.4.20.1	Construction of a convenience structure or boat docking facility.
5.4.20.2	Construction of a shoreline erosion control structure or measure.
5.4.20.3	Dredging, filling, excavating or extracting of materials.
5.4.20.4	Excavation, creation, or alteration of any channel, lagoon, turning basin, pond, embayment, or other navigable waterway on private subaqueous lands which will make connection with public subaqueous lands.
5.4.20.5	Dredging of existing channels, ditches, dockages, lagoons and other navigable waterways to maintain or restore the approved depth and width.
5.4.20.6	Excavation of land which makes connection to public subaqueous lands.
5.4.20.7	The laying of any pipeline, electric transmission line, telephone line, or any other utility structure in, on, over, or under the beds of private subaqueous lands.
5.4.20.8	Installation of temporary or permanent mooring buoys or private marker buoys.
5.4.20.9	Establishment of an anchorage for the use of a mooring for more than two (2) boats or for appurtenant onshore services.
5.4.20.10	Anchoring or mooring a floating platform over private subaqueous lands and for a period of twenty-four (24) consecutive hours or more.
5.4.20.11	Anchoring or mooring any vessel or platform over private subaqueous lands for revenue generating purposes.

SECTION 3 - 18

DNREC DREDGING PERMIT

SEPTEMBER 2020

5.4.20.12 Repair and replacement of existing serviceable structures over private subaqueous lands, except no permit or letter is required for repairs or structural replacements which are above the mean low tide and which do not increase any dimensions or change the use of the structure. [7 DE Admin. Code 7504 subsection 2.3.3.1]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed dredging.

- 5.4.21 The following types of activities on public subaqueous lands require a lease, permit, or letter of authorization from the DNREC:
 - 5.4.21.1 Construction or use of any structure on, in, under, or over public subaqueous lands, including but not limited to, any convenience structures, shoreline erosion control structure or measure, or boat docking facility.
 - 5.4.21.2 Dredging, filling, excavating or extracting of materials.
 - 5.4.21.3 Continuous anchoring or mooring of a commercial vessel used in a commercial activity on or over public subaqueous lands for thirty (30) or more calendar days during any consecutive three (3) months.
 - 5.4.21.4 The laying of any pipeline, electric transmission line, or telephone line in, on, over, or under the beds of public subaqueous lands.
 - 5.4.21.5 Installation of temporary or permanent mooring buoys or private marker buoys.
 - 5.4.21.6 Establishment of an anchorage for mooring more than two (2) boats or which serves as a permanent place for resident vessels.
 - 5.4.21.7 Anchoring or mooring a floating platform over public subaqueous lands and for a period of twenty- four (24) consecutive hours or more.
 - 5.4.21.8 Maintenance dredging of existing or new channels, ditches, dockages, lagoon and other waterways to maintain or restore the approach depth and width.
 - 5.4.21.9 Anchoring or mooring any vessel or platform over public subaqueous lands for revenue generating purposes.
 - Repair and replacement of existing serviceable structures over private subaqueous lands, except no permit or letter is required for repairs or structural replacements which are above the mean low tide and which do not increase any dimensions or change the use of the structure.

H-7912 SECTION 3 - 19 DNREC DREDGING PERMIT SEPTEMBER 2020

5.4.21.11 New dredging activities of channels, ditches, dockage, or other waterways [7 DE Admin. Code 7504 subsection 2.4.2]

Response: The applicant has applied for a Wetlands and Subaqueous Lands Permit from DNREC for the proposed dredging.

- 5.4.22 The DNREC shall consider the public interest in any proposed activity which might affect the use of subaqueous lands. These considerations include, but are not limited to, the following:
 - 5.4.22.1 The value to the State or the public in retaining any interest in subaqueous lands which the applicant seeks to acquire, including the potential economic value of the interest.
 - 5.4.22.2 The value to the State or the public in conveying any interest in subaqueous lands which the applicant seeks to acquire.
 - 5.4.22.3 The potential effect on the public with respect to commerce, navigation, recreation, aesthetic enjoyment, natural resources and other uses of the subaqueous lands.
 - 5.4.22.4 The extent to which any disruption of the public use of such lands is temporary or permanent.
 - 5.4.22.5 The extent to which the applicant's primary objectives and purposes can be realized without the use of such lands (avoidance).
 - 5.4.22.6 The extent to which the applicant's primary purpose and objectives can be realized by alternatives, i.e. minimize the scope or extent of an activity or project and its adverse impact.
 - 5.4.22.7 Given the inability for avoidance or alternatives, the extent to which the applicant can employ mitigation measures to offset any losses incurred by the public.
 - 5.4.22.8 The extent to which the public at large would benefit from the activity or project and the extent to which it would suffer detriment.
 - 5.4.22.9 The extent to which the primary purpose of a project is water-dependent. [7 DE Admin. Code 7504 subsection 4.6]

Response: The proposed project aligns with the public interest in that it allows for the continued operation of the Port of Wilmington, a vital economic engine for the State of Delaware.

H-7912

SECTION 3 - 20

	e DNREC shall consider the impact on the environment, including but not ited to, the following:
5.4.23.1	Any impairment of water quality, either temporary or permanent, which may reasonably be expected to cause violation of the State Surface Water Quality Standards. This impairment may include violation of criteria or degradation of existing uses;
5.4.23.2	Any effect on shell fishing, finfishing, or other recreational activities and existing or designated water uses;
5.4.23.3	Any harm to aquatic or tidal vegetation, benthic organisms or other flora and fauna, and their habitats;
5.4.23.4	Any loss of natural aquatic habitat;
5.4.23.5	Any impairment of air quality either temporarily or permanently, including noise, odors, and hazardous chemicals;
5.4.23.6	The extent to which the proposed project may adversely impact natural surface and groundwater hydrology and sediment transport functions. [7 DE Admin. Code 7504 subsection 4.7.1]
Response: The	rough the course of reviewing our permit application, this rule is satisfied.
	e DNREC shall also consider the following to determine whether to approve the blication:
5.4.24.1	The degree to which the project represents an encroachment on or otherwise interferes with public lands, waterways or surrounding private interests.
5.4.24.2	The degree to which the project incorporates sound engineering principles and appropriate materials of construction.
5.4.24.3	The degree to which the proposed project fits in with the surrounding structures, facilities, and uses of the subaqueous lands and uplands.
5.4.24.4	Whether the proposed activity complies with the State of Delaware's Surface Water Quality Standards both during construction and during subsequent operation or maintenance.
5.4.24.5	The degree to which the proposed project may adversely affect shellfish beds or finfish activity in the area. [7 DE Admin. Code 7504 subsection 4.7.5]
Response: Thi	rough the course of reviewing our permit application, this rule is satisfied.
II 7012	GEOTION 2 21 DIRECT DEPOCATO DEPOCATO

SECTION 3 - 21

H-7912

DNREC DREDGING PERMIT

SEPTEMBER 2020

- 5.4.25 The following concerns for protecting water quality shall be specifically considered by the DNREC in evaluating applications for dredging projects:
 - 5.4.25.1 All dredging is to be conducted in a manner consistent with sound conservation and water pollution control practices. Spoil and fill areas are to be properly diked to contain the dredged material and prevent its entrance into any surface water. Specific requirements for spoils retention may be specified by the DNREC in the approval, permit or license.
 - 5.4.25.2 All material excavated shall be transported, deposited, confined, and graded to drain within the disposal areas approved by the DNREC. Any material that is deposited elsewhere than in approved areas shall be removed by the applicant and deposited where directed at the applicant's expense and any required mitigation shall also be at the applicant's expense.
 - 5.4.25.3 Materials excavated by hydraulic dredge shall be transported by pipeline directly to the approved disposal area. All pipelines shall be kept in good condition at all times and any leaks or breaks shall be immediately repaired.
 - 5.4.25.4 Materials excavated and not deposited directly into an approved disposal area shall be placed in scows or other vessels and transported to either an approved enclosed basin, dumped, and then rehandled by hydraulic dredge to an approved disposal area, or to a mooring where scows or other vessels shall be unloaded by pumping directly to an approved disposal area.
 - 5.4.25.5 When scows or other vessels are unloading without dumping, they shall have their contents pumped directly into an approved disposal area by a means sufficient to preclude any loss of material into the body of water.
 - 5.4.25.6 In approved disposal areas, the applicant may construct any temporary structures or use any means necessary to control the dredge effluent, except borrowing from the outer slopes of existing embankments and/or hydraulic placing of perimeter embankments. For bermed disposal sites, a minimum freeboard of two (2) feet, measured vertically from the retained materials and water to the top of the adjacent confining embankment, shall be maintained at all times.
 - 5.4.25.7 The applicant shall not obstruct drainage or tidal flushing on existent wetlands or upland areas adjacent thereto. The applicant shall leave free, clear, and unobstructed outfalls of sewers, drainage ditches, and other similar structures affected by the disposal operations. The dredged materials shall be distributed within the disposal area in a reasonably uniform manner to permit full drainage without ponding during and after fill operations.

H-7912

SECTION 3 - 22

5.4.25.8 The dredging operation must be suspended if water quality conditions deteriorate in the vicinity of dredging or spoil disposal site. Minimum water quality standards may be included as an element of the permit and shall be monitored by the applicant. Violation of these conditions shall be cause for immediate suspension of activity and notification of the DNREC. Dredging shall not be resumed until water quality conditions have improved and the DNREC has authorized the resumption. [7 DE Admin. Code 7504 subsection 4.11.3]

Response:

Dredging will be conducted according to best industry practices including observation from the ship deck and controlled use of the dredging equipment. Dredging will cease if excessive levels of turbidity are observed and the cause will be rectified before any dredging resumes. Pipelines will be inspected prior to dredging. All dikes are required to be in sound structural condition and are maintained by the disposal site operator. Dredge material will be placed in a managed disposal area and handled concurrently with the material dredged from the main Christina River channel through the course of its regular upkeep by the Army Corps of Engineers. The dredging and management of the dredge material will be overseen by a contractor selected by the U.S. Army Corps of Engineers.

- 5.4.26 The following types of dredging projects are prohibited:
 - 5.4.26.1 Dredging of biologically productive areas, such as nursery areas, shellfish beds, and submerged aquatic vegetation, if such dredging will have a significant or lasting impact on the biological productivity of the area.
 - 5.4.26.2 Dredging of new dead-end lagoons, new basins and new channels, which have a length to width ratio greater than 3:1. This subsection shall not apply to marina projects governed by the Marina Regulations.
 - 5.4.26.3 Dredging channels, lagoons or canals deeper than the existing controlling depth of the connecting or controlling waterway.
 - 5.4.26.4 Dredging channels, cleaning marinas or other subaqueous areas by using propeller wash from boats. [7 DE Admin. Code 7504 subsection 4.11.6]

Response:

No nurseries, shellfish beds, or submerged aquatic vegetation is known to exist within the project area. The project does not consist of new dredging or the dredging of new areas including dead-end lagoons. Dredging will be conducted to existing, maintained channel depths. Dredging will not be performed using propeller wash from boats.

H-7912

SECTION 3 - 23

5.8 PORT OF WILMINGTON

5.8.1 Advisory Policies

- 5.8.1.1 The long-term economic viability and competitiveness of the Port of Wilmington should be encouraged and supported.
- 5.8.1.2 The people who benefit from the Port of Wilmington should contribute to its support and help maintain the financial health of the port.
- 5.8.1.3 Expansion of the Port of Wilmington along the Delaware River is encouraged to meet future national and regional transshipment needs and to reduce the dredging and spoils disposal activities associated with port operations along the Christina River. Port expansion, however, should not proceed if such expansion means air and water quality standards cannot be kept.
- 5.8.1.4 The port should be promoted for general cargo transfer and, to the extent feasible, as a location for the support of outer continental shelf development.

Response: The proposed project is in accordance with all the aforementioned rules.

5.11 LIVING RESOURCES

5.11.1 General

5.11.1.1 No activity shall have an adverse environmental effect on living resources and shall include consideration of the effect of site preparation and the proposed activity on the following wetland values:

5.11.1.1.1 Value of tidal ebb and flow

- 5.11.1.1.1 Production Value: carving organic matter to adjacent estuaries and coastal waters which serve as breeding areas for certain animal species (especially fish and shellfish).
- 5.11.1.1.2 Value as a natural protective system of absorption of storm wave energy, flood waters, and heavy rainfall, thereby decreasing flood and erosion damage.
- 5.11.1.1.3 The prevention of silting in certain harbors and inlets thereby reducing dredging.
- 5.11.1.1.4 Removal and recycling of inorganic nutrients.

H-7912 SECTION 3 - 24 DNREC DREDGING PERMIT SEPTEMBER 2020

5.	11.1.1.5	Effect on the estuarine waters.
5.11.1.1	.2 Habita	t Value
5.	11.1.1.2.1	Habitat for resident species of wildlife including furbearers, invertebrates, finfish.
5.	11.1.1.2.2	Habitat for migratory wildlife species including waterfowl, wading birds, shorebirds, passerines, finfish, shrimp.
5.	11.1.1.2.3	Rearing area, nesting area, breeding grounds for various species.
5.	11.1.1.2.4	Habitat for rare or endangered plants.
5.	11.1.1.2.5	Presence of plants or animals known to be rare generally, or unique to the particular location.
5.	11.1.1.2.6	Presence of plants or animals near the limits of their territorial range.
5.	11.1.1.2.7	Presence of unique geologic or wetland features [7 DE Admin. Code 7502 subsection 12.2]
5.11.2 Fish a	and Wildlife	
5.11.2.1		protected wildlife shall be managed and protected from cts. [7 Del.C.§102(a)]
5.11.2.2		a resources shall be protected from further impairment and en possible [7 Del.C. §1902 (a)(1)(2)(5)]
5.11.2.3	water manage substitute biol	other pest controls shall use techniques such as open marsh ment, which reduce the application of chemicals and which logical controls. [Delaware Mosquito Control Spray Policy, ary 26, 2018, Delaware Executive Order 43, August 15, 1996]
5.11.3 Nong	ame and Endang	gered Species
5.11.3.1	_	that fauna, including rare and endangered species, which are y trapped, killed, captured or consumed, either for sport or C. §202(a)]
5.11.3.2	to preserve an	angered species are in need of active, protective management and enhance such species. The diversity and abundance of the and fauna of Delaware, particularly those deemed rare or
H-7912		SECTION 3 - 25 DNREC DREDGING PERMIT SEPTEMBER 2020

endangered, shall be preserved and enhanced through the protection of the habitat, natural areas, and areas of unusual scientific significance or having unusual importance to their survival. [7 Del.C. §201(1) and (2)]

5.11.4 Advisory Policy

5.11.4.1 Actions which may interfere with or otherwise adversely affect fish and wildlife in Delaware shall be implemented only after careful consultation with DNREC and exploration of alternatives less damaging to such fish and wildlife.

Response: Seasonal dredging restrictions may be observed in order to protect migratory fish. We do not know of any other endangered or threatened species in the project area. We expect any issues to be addressed during the course of the DNREC permitting process. The dredging procedures outlined in this application are intended to minimize the effect of maintenance dredging on the surrounding environmental while allowing the activity to still take place, which is necessary in order to continue operations at the Port of Wilmington.

5.13 STATE OWNED COASTAL RECREATION AND CONSERVATION

5.13.1 State owned lands whose natural condition or present state of use would maintain important recreational areas and wildlife habitat, or would maintain or enhance the conservation of natural, cultural or historic resources shall be managed, preserved, and protected, for conservation and recreational use. [7 Del.C. §§7301, 7504(6), 5305; 7 Del.C. Ch 45]

Response: The state-owned submerged lands within the project area will be maintained free from obstruction for navigational and recreational purposes as safety permits.

Open-water habitat will be preserved.

Open spaces shall be preserved through the acquisition of interests or rights in real property, or donation of lands, for public recreation and conservation of natural resources promotes biological diversity, public health, prosperity and general welfare [7 Del.C. §7502]

No response required.

5.19 TRANSPORTATION FACILITIES

5.19.1 General

5.19.1.1 The DCMP supports the expansion and development of the Port of Wilmington. [7 Del.C. Ch 70]

H-7912 SECTION 3 - 26 DNREC DREDGING PERMIT SEPTEMBER 2020

5.19.1.2 Due to the threats posed to the natural environment, recreational activities and commercial fishing activities by the transfer of oil, petroleum products and their byproducts between vessels and vessels and onshore facilities and vessels, parties responsible for oil spills, discharges and the escape of oil in the waters of the State shall be required to immediately remove such oil pollution to DNRECs satisfaction or the responsible parties shall be required to pay for the expenses incurred in the removal of such oil pollution. [7 Del.C. §6201]

5.19.2 Advisory Policies

- 5.19.2.1 When essential to the national interest, the construction, maintenance and improvement of transportation systems shall predominate over less essential interests.
- 5.19.2.2 Transportation planning programs shall provide for alternatives to continued reliance on private motor vehicles with their associated highway requirements.
- 5.19.2.3 The State shall undertake an accelerated program of highway maintenance, upgrading, and safety improvements.
- 5.19.2.4 The DCMP supports the maintenance of an adequate and efficient railroad network to serve industry and agriculture on the Delmarva Peninsula.
- 5.19.2.5 The DCMP supports the establishment and maintenance of efficient public transit systems in order to reduce impacts to air quality and natural resources of the State.
- 5.19.2.6 New or expanded ports which involve extensive and continual dredging and spoil disposal in order to keep them useable are discouraged unless it can clearly be demonstrated that such facilities can be developed in an environmentally sound manner and without imposing continuing maintenance costs on any level of government or the general public.

Response: The proposed activity is necessary to sustain vessel traffic to and commerce at the Port of Wilmington. No further port development or expansion is proposed.

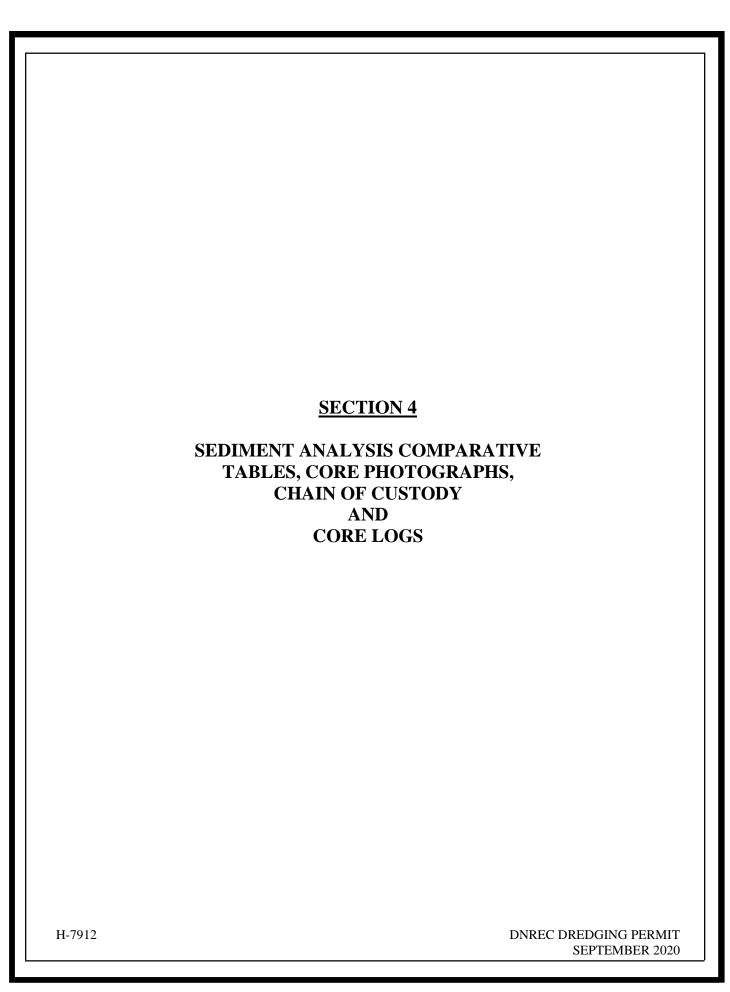
5.24 POLLUTION PREVENTION

5.24.1 General

5.24.1.1 Whenever possible, the generation of waste should be reduced or eliminated as expeditiously as possible, and that waste that is generated should be recovered, reused, recycled, treated or disposed of in a manner that

H-7912 SECTION 3 - 27 DNREC DREDGING PERMIT SEPTEMBER 2020

minimizes any present or future threats to human health or the environment. [7 Del.C. §7802(a)(1)]


Response: Not applicable. The project does not involve the generation of waste.

- 5.24.2 Advisory Policies
 - 5.24.2.1 Industries should review their proposed projects for the possible use of pollution prevention opportunities.
 - 5.24.2.2 Industries are encouraged to utilize the DNREC Pollution Prevention Program's services, including non-regulatory technical assistance and information, to ensure that the potential for degradation of the quality of air, land, and water is minimal.

Response: The applicant is already planning to employ known pollution prevention methods for a hydraulic dredging project. The DNREC Pollution Prevention Program services do not pertain to dredging projects.

H-7912

SECTION 3 - 28

T	А	В	С	D	E	F	G	Н	I
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	180-108765-1 C-1 7/21/2020 11:25 AM	180-108765-2 C-2 7/21/2020 11:06 AM	180-109048-1 C-3 7/29/2020 9:10 AM
2	Clay	N/A	%	Grain Size	MRL	Total	45.4	46.0	43.9
3	Coarse Sand	N/A	%	Grain Size	MRL	Total	0.0	0.0	0.0
4	Fine Sand	N/A	%	Grain Size	MRL	Total	4.3	5.2	3.5
5	Gravel	N/A	%	Grain Size	MRL	Total	0.0	0.0	0.0
6	Hydrometer Reading 1 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	87.3	80.3	83.5
7	Hydrometer Reading 2 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	74.4	71.7	68.5
8	Hydrometer Reading 3 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	61.5	58.8	59.0
9	Hydrometer Reading 4 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	53.5	51.7	53.5
10	Hydrometer Reading 5 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	45.4	46.0	43.9
11	Hydrometer Reading 6 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	35.7	34.5	34.4
12	Hydrometer Reading 7 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	26.1	24.5	23.4
13	Medium Sand	N/A	%	Grain Size	MRL	Total	0.5	2.7	1.3
14	Moisture Content	N/A	%	Water (Moisture) Content	MRL	Total	186.9	206.5	198.6
15	Percent Moisture	N/A	%	Percent Moisture	MRL	Total	65.6	64.6	65.2
16	Percent Solids	N/A	%	Percent Moisture	MRL	Total	34.4	35.4	34.8
17	Sand	N/A	%	Grain Size	MRL	Total	4.8	7.9	4.8
18	Sieve Size #10 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
19	Sieve Size #100 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	96.8	93.3	96.7
20	Sieve Size #20 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	99.5	99.4	99.2
21	Sieve Size #200 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	95.2	92.1	95.2
22	Sieve Size #4 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
23	Sieve Size #40 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	99.5	97.3	98.7
24	Sieve Size #60 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	98.7	95.9	98.2
25	Sieve Size #80 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	97.6	94.7	97.5
26	Sieve Size 0.375 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
27	Sieve Size 0.75 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
28	Sieve Size 1 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
29	Sieve Size 1.5 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
30	Sieve Size 2 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
31	Sieve Size 3 inch - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	100.0	100.0	100.0
32	Silt	N/A	%	Grain Size	MRL	Total	49.8	46.1	51.3
33	Total Organic Carbon - Duplicates	7440-44-0	mg/Kg	Organic Carbon, Total (TOC)	MRL	Total	48000	44000	34000

	A	J	K	L	М	N	0	Р
		180-109048-2	180-109048-3	180-108765-3	180-109048-4	180-108765-4	180-108765-5	180-108765-6
		C-4	C-5	C-6	C-7	C-8	C-9	C-10
		7/29/2020	7/29/2020	7/21/2020	7/29/2020	7/21/2020	7/21/2020	7/21/2020
1	Analyte	9:52 AM		10:54 AM	10:40 AM	10:30 AM	10:02 AM	9:40 AM
2	Clay	40.4	42.1	39.5	41.6	33.8	34.4	34.7
3	Coarse Sand	0.5	0.0	0.1	0.2	0.2	1.3	1.4
4	Fine Sand	5.0	4.3	5.2	2.7	7.8	3.8	13.8
5	Gravel	0.0	0.0	0.4	0.0	0.0	26.6	3.9
6	Hydrometer Reading 1 - Percent Finer	74.4	78.9	80.3	73.6	75.3	66.1	67.7
7	Hydrometer Reading 2 - Percent Finer	67.1	68.9	64.6	65.6	60.9	58.8	58.1
8	Hydrometer Reading 3 - Percent Finer	55.0	55.5	55.2	56.2	51.4	47.8	48.4
9	Hydrometer Reading 4 - Percent Finer	48.9	45.4	48.9	48.2	43.4	40.5	41.6
10	Hydrometer Reading 5 - Percent Finer	40.4	42.1	39.5	41.6	33.8	34.4	34.7
11	Hydrometer Reading 6 - Percent Finer	30.6	32.1	30.1	32.2	25.8	27.1	27.8
12	Hydrometer Reading 7 - Percent Finer	20.9	23.7	22.2	20.2	19.4	18.5	19.5
13	Medium Sand	1.7	1.1	0.9	1.2	3.1	1.4	5.5
14	Moisture Content	159.6	155.6	183.3	163.9	179.7	165.4	144.9
15	Percent Moisture	61.9	60.4	62.7	62.9	63.3	58.4	57.6
16	Percent Solids	38.1	39.6	37.3	37.1	36.7	41.6	42.4
17	Sand	7.2	5.4	6.2	4.1	11.1	6.5	20.7
18	Sieve Size #10 - Percent Finer	99.5	100.0	99.5	99.8	99.8	72.1	94.7
19	Sieve Size #100 - Percent Finer	95.8	96.6	95.4	97.6	92.1	67.8	80.2
20	Sieve Size #20 - Percent Finer	98.3	99.3	98.8	98.8	98.9	71.3	92.8
21	Sieve Size #200 - Percent Finer	92.8	94.6	93.4	95.9	88.9	66.9	75.4
22	Sieve Size #4 - Percent Finer	100.0	100.0	99.6	100.0	100.0	73.4	96.1
23	Sieve Size #40 - Percent Finer	97.8	98.9	98.6	98.6	96.7	70.7	89.2
24	Sieve Size #60 - Percent Finer	and in the second	98.3	97.4	98.1	95.1	69.6	85.6
25	Sieve Size #80 - Percent Finer	96.3	97.4	96.3	97.9	93.7	68.6	82.5
26	Sieve Size 0.375 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	75.4	96.6
27	Sieve Size 0.75 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	79.5	100.0
28	Sieve Size 1 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
29	Sieve Size 1.5 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
30	Sieve Size 2 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Sieve Size 3 inch - Percent Finer	100.0	100.0	100.0	100.0	100.0	100.0	100.0
-	Silt			53.9	54.3	55.1	32.5	40.7
33	Total Organic Carbon - Duplicates	34000	30000	52000	32000	49000	36000	38000

	А	В	С	D	E	F	G
			:				
			•				
			:				
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
2	1,1'-Biphenyl	92-52-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	61000
3	1,1,1-Trichloroethane	71-55-6	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	160000000
4	1,1,2,2-Tetrachloroethane	79-34-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	1000
5	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
6	1,1,2-Trichloroethane	79-00-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
7	1,1-Dichloroethane	75-34-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	8000
8	1,1-Dichloroethene	75-35-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	11000
9	1,1-Dichloroethene	75-35-4	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
10	1,2,4-Trichlorobenzene	120-82-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	73000
11	1,2,4-Trichlorobenzene	120-82-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	73000
12	1,2-Dibromo-3-Chloropropane	96-12-8	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	80
13	1,2-Dibromoethane	106-93-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	8 ^a
14	1,2-Dichlorobenzene	95-50-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5300000
15	1,2-Dichlorobenzene	95-50-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	5300000
16	1,2-Dichloroethane	107-06-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	900
17	1,2-Dichloroethane	107-06-2	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
18	1,2-Dichloropropane	78-87-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
19	1,2-Diphenylhydrazine(as Azobenzene)	122-66-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700
20	1,3-Dichlorobenzene	541-73-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	5300000
21	1,3-Dichlorobenzene	541-73-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5300000
22	1,4-Dichlorobenzene	106-46-7	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
23	1,4-Dichlorobenzene	106-46-7	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	5000
24	1,4-Dichlorobenzene	106-46-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5000
25	1,4-Dioxane	123-91-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
26	2,4,5-Trichlorophenol	95-95-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6100000
27	2,4,5-Trichlorophenol	95-95-4	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
28	2,4,6-Trichlorophenol	88-06-2	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
29	2,4,6-Trichlorophenol	88-06-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	19000
30	2,4-Dichlorophenol	120-83-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	180000
31	2,4-Dimethylphenol	105-67-9	ug/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	1200000
32	2,4-Dinitrophenol	51-28-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	120000
33	2,4-Dinitrotoluene	121-14-2	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
34	2,4-Dinitrotoluene	121-14-2		,	MDL	Total	700
35	2,6-Dinitrotoluene	606-20-2	ug/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700
36	2-Butanone (MEK)	78-93-3		Volatile Organic Compounds by GC/MS	MDL	Total	3100000
37		78-93-3 78-93-3	ug/Kg		MDL	TCLP	n/a ^b
38	2-Butanone (MEK)	78-93-3 91-58-7	mg/L	Volatile Organic Compounds by GC/MS Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	il/ a
39	2-Chloronaphthalene	95-57-8	ug/Kg		MDL	Total	310000
	2-Chlorophenol	~~/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	~ ; ~~~~~	310000
40 41	2-Hexanone 2-Methylnaphthalene	591-78-6 91-57-6	ug/Kg	Volatile Organic Compounds by GC/MS	MRL	Total Total	230000
42	2-Methylphenol	95-48-7	ug/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	310000
		,				~~~~~~~~~~	,
43	2-Methylphenol	95-48-7	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a [™]

	А	Н	I	J	К	L	М
	Analyte	Reg 2	180-108764-1 SC-1 COMPOSITE [C- 9+C-10] 7/22/2020 1:00 PM	SC-2	SC-3	SC-4	180-108764-2 SC-5 COMPOSITE [C 1+C-2] 7/22/2020 1:30 PM
2	1,1'-Biphenyl	240000	3.3 J	ND	ND	ND	15 J
	1,1,1-Trichloroethane	,	ND	ND	ND	ND	ND
- 6	1,1,2,2-Tetrachloroethane	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND	ND	ND	ND	ND
- 0	1,1,2-Trichloro-1,2,2-trifluoroethane		ND ND	ND ND	ND ND	ND ND	ND ND
	1,1,2-Trichloroethane			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	yoooooooooo	<i></i>
- 1	1,1-Dichloroethane		ND	ND	ND	ND	ND
	1,1-Dichloroethene		ND	ND	ND	ND	ND
- 1		\	<u></u>	ND	ND	ND	ND
- 1		·····	ND	ND	ND	ND	ND
- 1	~~~~	(ND	ND ND As	ND ND As	ND As	ND
	1,2-Dibromo-3-Chloropropane	200	ND	ND ^c	ND ^c	ND ^c	ND
	1,2-Dibromoethane		ND	ND	ND	ND	ND
	1,2-Dichlorobenzene	,	ND ND	ND ND	ND ND	ND	6.5 J ND
- 1	1,2-Dichlorobenzene 1,2-Dichloroethane	,	ND	ND ND	ND ND	ND ND	ND
F			<u> </u>	}	}	·	·
_	1,2-Dichloroethane		ND ND	ND ND	ND ND	ND ND	ND ND
- 7	1,2-Dichloropropane 1.2-Diphenylhydrazine(as Azobenzene)	(ND ND	ND ND	ND ND	ND	ND
-	1,3-Diphenymydrazmetas Azobenzenej		ND	ND	ND ND	ND	ND
- 1	1,3-Dichlorobenzene	 	ND	ND	,	ND	4.2 J
- 1			ND	ND	ND	ND	ND
-	1,4-Dichlorobenzene 1,4-Dichlorobenzene		ND	ND ND	ND ND	ND	ND
- 1	1,4-Dichlorobenzene		ND	ND	ND ND	ND	10 J
	1,4-Dioxane			ND	ND	ND	ND
	2,4,5-Trichlorophenol	(ND	ND	ND	ND	ND
- F	2,4,5-Trichlorophenol	······	ND	ND	ND	ND	ND
		n/a ^b	ND	ND	ND	ND	ND
- 0	2,4,6-Trichlorophenol 2,4,6-Trichlorophenol	;······	ND	ND ND	ND ND	ND	ND
-	2,4-Dichlorophenol	(ND	ND ND	ND ND	ND ND	ND ND
	2,4-Dimethylphenol	<u> </u>	ND	ND	ND	ND	ND
	2,4-Dinitrophenol	(ND	ND	ND	ND	ND
	2,4-Dinitrotoluene	h.	ND	ND	ND	ND	ND
	2,4-Dinitrotoluene		ND	ND	ND	ND	ND
	2,6-Dinitrotoluene		ND	ND	ND	ND	ND
	2-Butanone (MEK)	44000000	ND	ND FL	ND	ND	ND
37	2-Butanone (MEK)	n/a ^b	ND ^c	22	ND	ND	ND ^c
	2-Chloronaphthalene		ND	ND	ND	ND	ND
	2-Chlorophenol		ND	ND	ND	ND	ND
- 1	2-Hexanone	·····	ND	ND	ND	ND	ND
41		(* * * * * * * * * * * * * * * * * * *	7.7 J	(i	14 J	23
-	2-Methylphenol	3400000	ND	ND	ND	ND	ND
- 1		,	ND	ND	;······		ND

	A	В	С	D	E	F	G
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
44	2-Nitroaniline	88-74-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	39000
45	2-Nitrophenol	88-75-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
46	3,3'-Dichlorobenzidine	91-94-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	1000
47	3-Nitroaniline	99-09-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
48	4,4'-DDD	72-54-8	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	3000
49	4,4'-DDE	72-55-9	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	2000
50	4,4'-DDT	50-29-3	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	2000
51	4,6-Dinitro-2-methylphenol	534-52-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6000
52	4-Bromophenyl phenyl ether	101-55-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
53	4-Chloro-3-methylphenol	59-50-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
54	4-Chloroaniline	106-47-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
55	4-Chlorophenyl phenyl ether	7005-72-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
56	4-Methyl-2-pentanone (MIBK)	108-10-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
57	4-Nitroaniline	100-01-6	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	:
58	4-Nitrophenol	100-02-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
59	Acenaphthene	83-32-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	3400000
60	Acenaphthylene	208-96-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	
61	Acetone	67-64-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	70000000
62	Acetophenone	98-86-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	2000
63	Aldrin	309-00-2	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	2000 40
64	alpha-BHC	319-84-6	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	100
65	Aluminum	7429-90-5	mg/Kg	Metals (ICP/MS)	MRL	Total	78000
66	Anthracene	120-12-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	17000000
67	Antimony	7440-36-0	mg/Kg	Metals (ICP/MS)	MRL	Total	31
68	Arsenic	7440-38-2	mg/L	Metals (ICP)	MRL	TCLP	n/a ^b
69	Arsenic	7440-38-2	mg/Kg	Metals (ICP/MS)	MRL	Total	19
70	Atrazine	1912-24-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	210000
71	Barium	7440-39-3	mg/L	Metals (ICP)	MRL	TCLP	n/a ^b
72	Barium	7440-39-3	mg/Kg	Metals (ICP/MS)	MRL	Total	16000
73	Benzaldehyde	100-52-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	6100000
74	Benzene	71-43-2	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
75	Benzene	71-43-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
76	Benzidine	92-87-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700
77	Benzo[a]anthracene	56-55-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	5000
78	Benzo[a]pyrene	50-32-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	500
79	Benzo[b]fluoranthene	205-99-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	5000
80	Benzo[g,h,i]perylene	191-24-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	380000000
81	Benzo[k]fluoranthene	207-08-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	45000
	Beryllium	7440-41-7	mg/Kg	Metals (ICP/MS)	MRL	Total	16
83	beta-BHC	319-85-7	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	400
84	bis (2-chloroisopropyl) ether	108-60-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	23000
85	Bis(2-chloroethoxy)methane	111-91-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	:
86	Bis(2-chloroethyl)ether	111-44-4	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	400

							M
1 4	\nalyte	Reg 2	7/22/2020	SC-2	SC-3 COMPOSITE [C- 5+C-6]	SC-4 COMPOSITE [C- 7+C-8] 7/30/2020	SC-5
44 2	-Nitroaniline	23000000	ND	ND	ND	ND	ND
45 2	-Nitrophenol		ND	ND	• · · · • · · · · · · · · · · · · · · ·	^	ND
100	,3'-Dichlorobenzidine	4000	ND	ND	(***********************	ND
	-Nitroaniline		ND	ND	ND		ND
	,4'-DDD	13000		3.9	,		5.3 *H
49 4	,4'-DDE	9000	4.4 *H	5.2	4.5	4.5	8.3 *H
50 4	,4'-DDT	8000	4.5 *H	7.5	• · · · • · · · · · · · · · · · · · · ·		ND *H
	,6-Dinitro-2-methylphenol	68000	ND	ND	``	********	ND
52 4	-Bromophenyl phenyl ether		ND	ND	ND	ND	ND
	-Chloro-3-methylphenol			ND			ND
54 4	-Chloroaniline		ND	ND *L	ND *L	ND *L	ND
55 4	-Chlorophenyl phenyl ether			ND	ND	ND	ND
56 4	-Methyl-2-pentanone (MIBK)		ND	ND	ND	ND	ND
57 4	-Nitroaniline		ND	ND	ND		ND
58 4	-Nitrophenol		ND	ND	ND	ND	ND
59 A	cenaphthene	37000000	5.5 J	ND	ND	ND	38
60 A	cenaphthylene	300000000	7.7 J	16 J	13 J	20 J	23
61 A	cetone		ND	65 ^c	ND ^c	ND ^c	8.6 J
62 A	cetophenone	5000	ND	ND	ND	ND	ND
63 A	ldrin	200	ND *H	ND	ND	0.18 J p	ND *H
64 a	lpha-BHC	500	ND *H	ND	ND	ND	ND *H
65 A	lluminum		19000 ^	17000 ^	15000 ^	15000 ^	19000 ^
66 A	nthracene	30000000	9.3 J	34 J	17 J	31 J	41
67 A	ntimony	450	0.38	0.37 FL	0.35	0.38	0.65 FL
68 A	ırsenic	n/a ^b	0.064 J	ND	ND	ND	0.061 J
69 A	ırsenic	19	14	15	13	12	14
70 A	trazine	2400000	ND	ND	ND	ND	ND
		n/a ^b	0.33 J	120	{		0.30 J
1000	arium	59000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.40 J	(<u> </u>	160
500	enzaldehyde	68000000		ND	Ç		15 J
m	enzene	n/a ^b		ND			ND
	enzene	5000		ND	 		ND
i i	enzidine	700		ND	\		ND
-		17000	26	(* * * * * * * * * * * * * * * * * * *	(86
1000	enzo[a]pyrene	2000	28	86		120	90
· ·	enzo[b]fluoranthene	17000		110	96	140	120
1.00	enzo[g,h,i]perylene	30000000		85	88	120	79
1000	enzo[k]fluoranthene	170000	13	28 J	35 J	58	40
5.00		140	1.2	1.2	(1.2
1000	eta-BHC	2000	ND *H	ND			ND *H
	is (2-chloroisopropyl) ether	67000	ND II	ND	<u> </u>		ND 11
	is (2-chloroethoxy)methane	07000		ND		\$	ND ND
600		2000	·	((<u> </u>	ND ND

	А	В	С	D	E	F	G
							_
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
87	Bis(2-ethylhexyl) phthalate	117-81-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	35000
88	Bromoform	75-25-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	81000
89	Bromomethane	74-83-9	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	25000
90	Butyl benzyl phthalate	85-68-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	1200000
91	Cadmium	7440-43-9	img/L	Metals (ICP)	MDL	TCLP	n/a ^b
92	Cadmium	7440-43-9	mg/Kg	Metals (ICP/MS)	MRL	Total	78
93	Calcium	7440-70-2	mg/Kg	Metals (ICP/MS)	MRL	Total	
94	Caprolactam	105-60-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	31000000
95	Carbazole	86-74-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	24000
96	Carbon disulfide	75-15-0	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	7800000
97	Carbon tetrachloride	56-23-5	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
98	Carbon tetrachloride	56-23-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	2000
99	Chlordane (technical)	12789-03-6	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
100	Chlorobenzene	108-90-7	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	510000
101	Chlorobenzene	108-90-7	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
102	Chlorodibromomethane	124-48-1	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	3000
103	Chloroethane	75-00-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	220000
104	Chloroform	67-66-3	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
105		67-66-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	600
106	[74-87-3	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	4000
107	Chromium	7440-47-3	mg/Kg	Metals (ICP/MS)	MRL	Total	
	Chromium	7440-47-3	mg/L	Metals (ICP)	MRL	TCLP	
	Chrysene	218-01-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	450000
	cis-1,2-Dichloroethene	156-59-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	230000
	cis-1,3-Dichloropropene	10061-01-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
	cis-Chlordane	5103-71-9	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	
	Clay	N/A		Grain Size	MRL	Total	i
114	Coarse Sand	N/A	% %	Grain Size	MRL	Total	
	Cobalt	7440-48-4	mg/Kg	Metals (ICP/MS)	MRL	Total	1600
116	Copper	7440-50-8	mg/Kg	Metals (ICP/MS)	MRL	Total	3100
	Cr (III)	16065-83-1	ug/Kg	Chromium, Trivalent (Colorimetric)	MRL	Total	
118	Cr (VI)	18540-29-9	ug/Kg	Chromium, Hexavalent	MDL	Total	
	Cresols, Total	1319-77-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
	Cyanide, Total	57-12-5	ug/Kg	Cyanide	MRL	Total	47000
121	Cyclohexane	110-82-7	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
122	delta-BHC	319-86-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	
123	Dibenz(a,h)anthracene	53-70-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	500
124	Dibenzofuran	132-64-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	
125	Dichlorobromomethane	75-27-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	1000
126	Dichlorodifluoromethane	75-71-8	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	490000
127	Dieldrin	60-57-1	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	40
128	Diethyl phthalate	84-66-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	49000000
	Dimethyl phthalate	131-11-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	

	Α	Н	I	J	K	L	M
			180-108764-1	180-109049-1	180-109049-2	180-109049-3	180-108764-2
			SC-1	SC-2	SC-3	SC-4	SC-5
			COMPOSITE [C-	§	5	! ⁻ -	COMPOSITE [C-
			9+C-10]	[C-3+C-4]	5+C-6]	7+C-8]	1+C-2]
			7/22/2020	7/30/2020	5		7/22/2020
1	Analyte	Reg 2	1:00 PM	8:53 AM	9:40 AM	10:22 AM	1:30 PM
	Bis(2-ethylhexyl) phthalate	140000	ND	ND		<i>\$</i>	ND
	Bromoform	280000	ND	ND	ND	ND	ND
	Bromomethane	59000	ND	ND	\$	ND	ND
	Butyl benzyl phthalate	14000000	ND	ND	ND	ND	ND
91	Cadmium	n/a ^b	ND	0.0035 J	0.0041 J	0.0051 J	ND
92	Cadmium	78	0.57	0.64	,		1.0
93	Calcium		4500	3900 FL	3700	3100	4300 FL
94	Caprolactam	340000000	ND	ND	ND	ND	ND
95	Carbazole	96000	4.2 J	13 J		15 J	9.9 J
96	Carbon disulfide	110000000	ND	ND *1		ND *1	ND
		n/a ^b	ND	ND	ND	ND	ND
	Carbon tetrachloride	4000	ND	ND		.	ND
		n/a ^b	ND	ND			ND
	Chlorobenzene	7400000	ND	ND			ND
		n/a ^b	ND	ND	}	ýmmonomonomonomonomonomonomonomonomonomo	ND
	Chlorodibromomethane	8000	ND	ND		i	ND
-	Chloroethane	1100000	ND	ND	`	<u> </u>	ND
		n/a ^b	ND	ND FL			ND
-	Chloroform	2000	ND	ND TE		*************	ND
	Chloromethane	12000	ND	ND	(ND	ND
	Chromium	12000	52	ND	}	ND	55 FL
	Chromium		0.010 J	62			ND
	Chrysene	1700000	31	110			130
	cis-1,2-Dichloroethene	560000	ND	ND	ND	ND	ND
111	cis-1,3-Dichloropropene		ND	ND	ND	ND	ND
112	cis-Chlordane		0.68 *H	0.45 J p	0.80	0.62 p	0.57 *H
113	Clay		42.4	43.5	43.9	45.5	38.8
114	Coarse Sand		0.0	0.8	Granden and a series and a seri	0.2	0.6
115	Cobalt	590	17	17	(14	17
	Copper	45000	32	37	33	33	49 ^
	Cr (III)		52000	62000	55000	52000	55000
	Cr (VI)		<u>.</u>	ND	*	·	680 J
	Cresols, Total		ND	ND		<u> </u>	ND
	Cyanide, Total	680000	360 J	190 J	;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	370 J
	Cyclohexane		ND *II	ND	2	ND	ND *II
	delta-BHC	2000	ND *H	ND ND	ND ND	ND	ND *H 31
	Dibenz(a,h)anthracene	2000	14	ND	<u>,</u>	§	<u> </u>
	Dibenzofuran Dichlorobromomethane	3000	4.2 J ND	9.1 J ND	\$0000000000000000000000000000000000000	<u> </u>	14 J ND
	Dichlorodifluoromethane	230000000	ND *H	ND	(ND ND	ND *H
	Dieldrin	200	1.1 *H	ND ND		ND ND	ND *H
	Diethyl phthalate	550000000	ND	ND			ND 11
	Dimethyl phthalate	330000000	ND	ND	····	·	ND
123	Dimetriyi piltilalate		ואט.	שויו	טאו	שאוו	שויו

А	В	С	D	E	F	G
		-				
		İ				
1 Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
130 Di-n-butyl phthalate	84-74-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6100000
131 Di-n-octyl phthalate	117-84-0	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	2400000
132 Endosulfan I	959-98-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	
133 Endosulfan II	33213-65-9	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	
134 Endosulfan sulfate	1031-07-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	470000
135 Endrin	72-20-8	ug/Kg	Organochlorine Pesticides (GC)	MRL	Total	23000 n/a ^b
136 Endrin	72-20-8	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
137 Endrin aldehyde	7421-93-4	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	
138 Endrin ketone	53494-70-5	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	
139 Ethylbenzene	100-41-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	7800000
140 Fine Sand	N/A	%	Grain Size	MRL	Total	
141 Fluoranthene	206-44-0	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	2300000
142 Fluorene	86-73-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	2300000
143 gamma-BHC (Lindane)	58-89-9	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	400
144 gamma-BHC (Lindane)	58-89-9	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
145 Gravel	N/A	%	Grain Size	MRL	Total	
146 Heptachlor	76-44-8	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	100
147 Heptachlor	76-44-8	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
148 Heptachlor epoxide	1024-57-3	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	70
149 Heptachlor epoxide	1024-57-3	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
150 Hexachlorobenzene	118-74-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	300
151 Hexachlorobenzene	118-74-1	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
152 Hexachlorobutadiene	87-68-3	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
153 Hexachlorobutadiene	87-68-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	6000
154 Hexachlorocyclopentadiene	77-47-4	ug/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	45000
		,			TCLP	n/a ^b
155 Hexachloroethane	67-72-1	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL		
156 Hexachloroethane	67-72-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	12000
157 Hydrometer Reading 1 - Percent Finer	N/A N/A	% Passing	Grain Size	MRL	Total	
158 Hydrometer Reading 2 - Percent Finer		% Passing	Grain Size	MRL	Total	
159 Hydrometer Reading 3 - Percent Finer 160 Hydrometer Reading 4 - Percent Finer	N/A N/A	% Passing	Grain Size Grain Size	MRL MRL	Total Total	
161 Hydrometer Reading 5 - Percent Finer	N/A N/A	% Passing	Grain Size	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Total	:
162 Hydrometer Reading 5 - Percent Finer 162 Hydrometer Reading 6 - Percent Finer	N/A N/A	% Passing	Grain Size	MRL MRL		
163 Hydrometer Reading 7 - Percent Finer	N/A N/A	% Passing	Grain Size	MRL	Total Total	<u>.</u>
\$	193-39-5	% Passing ug/Kg		MRL	Total	5000
164 Indeno[1,2,3-cd]pyrene 165 Iron	7439-89-6		Semivolatile Organic Compounds by GC/MS - Low Level Metals (ICP/MS)	MRL	Total	. 3000
166 Isophorone	78-59-1	mg/Kg ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	510000
167 Isopropylbenzene	98-82-8		Volatile Organic Compounds by GC/MS	MDL	Total	310000
	7439-92-1	ug/Kg			~,~~~~	n/a ^b
168 Lead		mg/L	Metals (ICP)	MDL MBI	TCLP Total	
169 Lead	7439-92-1	mg/Kg	Metals (ICP/MS)	MRL	Total	400
170 Magnesium	7439-95-4	mg/Kg	Metals (ICP/MS)	MRL	Total	11000
171 Manganese	7439-96-5	mg/Kg	Metals (ICP/MS)	MRL	Total	11000

	А	Н	I	J	К	L	M
	Analyte	Reg 2	180-108764-1 SC-1 COMPOSITE [C- 9+C-10] 7/22/2020 1:00 PM	SC-2	SC-3 COMPOSITE [C- 5+C-6]	SC-4	180-108764-2 SC-5 COMPOSITE [C- 1+C-2] 7/22/2020 1:30 PM
130	Di-n-butyl phthalate	68000000	ND	ND	ND	ND	ND
131	Di-n-octyl phthalate	27000000	ND	ND	ND	ND	ND
132	Endosulfan I		ND *H	ND	ND	ND	ND *H
133	Endosulfan II		ND *H	ND	ND	ND	ND *H
134	Endosulfan sulfate	6800000	ND *H	ND	ND	ND	ND *H
135	Endrin	340000	0.57 J p*H	ND	ND	ND	1.5 p*H
136	Endrin	n/a ^b	ND	0.66 p	0.62 p	1.1	ND
137	Endrin aldehyde	**************************************	ND B *H	ND	<	ND	ND B *H
138	Endrin ketone		ND *H	ND	ND	ND	ND *H
139	Ethylbenzene	110000000	ND	ND	ND	ND	ND
140	Fine Sand		5.0	4.3	3.6	4.4	10.4
141	Fluoranthene	24000000	44	150	130	210	190
142	Fluorene	24000000	44 5.5 J	14 J	11 J	ND	32
143	gamma-BHC (Lindane)	2000	ND *H	ND	ND	ND	ND *H
144	gamma-BHC (Lindane)	n/a ^b	ND	ND	ND	ND	ND
145	Gravel	}	0.0	0.0	0.0	0.0	4.8
146	Heptachlor	700	ND *H	ND	ND	ND	ND *H
	Heptachlor	n/a ^b	ND	ND	ND	ND	ND
	Heptachlor epoxide	300	ND *H	ND		ND	ND *H
	Heptachlor epoxide	n/a ^b	ND	ND	y	ND	ND
	Hexachlorobenzene	1000	ND	ND	}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND	ND
	Hexachlorobenzene	n/a ^b	ND	ND	ND	ND	ND
-	Hexachlorobutadiene	n/a ^b		{	§	§	
		<u> </u>	ND	ND	<	4	ND
	Hexachlorobutadiene	25000	ND ND	ND ND)	ND	ND ND
	Hexachlorocyclopentadiene	110000 n/a ^b	····	£		on the second of	çuuuuuuuuuuuu
	Hexachloroethane	fariance	ND	ND			ND
	Hexachloroethane	48000	ND	ND	₹	i	ND
	Hydrometer Reading 1 - Percent Finer	}	73.1	77.8	75.6	74.7	78.7
	Hydrometer Reading 2 - Percent Finer		65.0	67.7 53.7	63.5 56.0	68.9 63.0	64.6 54.3
159	Hydrometer Reading 3 - Percent Finer	}	56.9 50.5	53.7 49.8	<u>Annienieren meneralen a</u>	57.2	54.3 46.5
160	Hydrometer Reading 4 - Percent Finer	ļ	42.4	49.8 43.5	43.9	45.5	46.5 38.8
101	Hydrometer Reading 5 - Percent Finer		32.7	43.5 34.6	33.4	45.5 33.8	38.8 31.1
162	Hydrometer Reading 6 - Percent Finer Hydrometer Reading 7 - Percent Finer	·	24.6	34.6 24.4	33.4 24.4	23.6	31.1 22.1
	Indeno[1,2,3-cd]pyrene	17000	21	69	57	90	65
	Iron	17000	32000	31000	28000	27000	30000
	Isophorone	2000000	ND	}	danaanaan		ND
	Isopropylbenzene	200000	ND	ND	ND ND	ND	ND ND
		n/a ^b	ND	}		\$	ND
	Lead Lead	n/a 800	. ND 47	53 ND	ND	45 ND	73 ^
		000	6900	6200 FL	5500	5300	5900
	Magnesium	5900	····	1500 FL	1400	1200	1200
1/1	Manganese	ンガUU	1500	1000	1400	1200	1400

	A	В	С	D	E	F	G
			•				
1 /	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1
172	Medium Sand	N/A	%	Grain Size	MRL	Total	
L73 N	Mercury	7439-97-6	mg/Kg	Mercury (CVAA)	MRL	Total	23
74 1	Mercury	7439-97-6	mg/L	Mercury (CVAA)	MDL	TCLP	n/a ^b
.75 1	Methoxychlor	72-43-5	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	390000
.76 N	Methoxychlor	72-43-5	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
77 1	Methyl acetate	79-20-9	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	78000000
.78	Methyl tert-butyl ether	1634-04-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	110000
- 10	Methylcyclohexane	108-87-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	
- 60	Methylene Chloride	75-09-2	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	46000
L81 N	Methylphenol, 3 & 4	106-44-5	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
- 100	Methylphenol, 3 & 4	106-44-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	31000
-	Mirex	2385-85-5	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	
	Moisture Content	N/A	%	Water (Moisture) Content	MRL	Total	
	Naphthalene	91-20-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	6000
86 1	Vickel	7440-02-0	mg/Kg	Metals (ICP/MS)	MRL	Total	1600
<u>ا</u>	Nitrobenzene	98-95-3	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
-	Vitrobenzene	98-95-3	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	5000
100	N-Nitrosodimethylamine	62-75-9	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	700
100	N-Nitrosodi-n-propylamine	621-64-7	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	200
	N-Nitrosodiphenylamine	86-30-6	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	99000
- 600	PCB-1016	12674-11-2	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total	
-	PCB-1221	11104-28-2	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total	
100	PCB-1232	11141-16-5	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total	
100	PCB-1242	53469-21-9	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total	
- 100	PCB-1248	12672-29-6	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total	
-	PCB-1254	11097-69-1	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MRL	Total	
-	PCB-1260	11096-82-5	ug/Kg	Polychlorinated Biphenyls (PCBs) (GC)	MDL	Total	
- 12	Pentachlorophenol	87-86-5	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	n/a ^b
- 60	Pentachlorophenol	87-86-5	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	900
- 60	Percent Moisture	N/A	%	Percent Moisture	MRL	Total	
-	Percent Solids	N/A	% %	Percent Moisture	MRL	Total	
- 1	Phenanthrene	85-01-8	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	
	Phenol	108-95-2	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	18000000
	Polychlorinated biphenyls, Total	1336-36-3	ug/Kg	Total PCB Calculation	MRL	Total	200
- 1	Potassium	7440-09-7	mg/Kg	Metals (ICP/MS)	MRL	Total	
	Pyrene	129-00-0	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MRL	Total	1700000
-	Pyridine	110-86-1	ug/Kg	Semivolatile Organic Compounds by GC/MS - Low Level	MDL	Total	
	Pyridine	110-86-1	mg/L	Semivolatile Organic Compounds (GC/MS)	MDL	TCLP	
- 60	Sand	N/A	%	Grain Size	MRL	Total	
- 10	Selenium	7782-49-2	mg/L	Metals (ICP)	MDL	TCLP	n/a ^b
- 100	Selenium	7782-49-2	mg/Kg	Metals (ICP/MS)	MRL	Total	390
	Sieve Size #10 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	330

	Α	Н	I	J	К	L	M
	Analyte	Reg 2	180-108764-1 SC-1 COMPOSITE [C- 9+C-10] 7/22/2020 1:00 PM	SC-2 COMPOSITE [C-3+C-4] 7/30/2020 8:53 AM	SC-3 COMPOSITE [C 5+C-6] 7/30/2020 9:40 AM	SC-4 COMPOSITE [C 7+C-8] 7/30/2020 10:22 AM	SC-5 COMPOSITE [C- 1+C-2] 7/22/2020 1:30 PM
	Medium Sand		1.5		1.4		3.1
	Mercury	65	0.19	0.18	0.20	0.20	0.26
174	Mercury	n/a ^b	ND	ND	ND	ND	ND
175	Methoxychlor	5700000	ND *H	ND	ND	ND	ND *H
176	Methoxychlor	n/a ^b	ND	ND	ND	ND	ND
177	Methyl acetate	}	ND	ND	ND		ND
	Methyl tert-butyl ether	320000	ND	;·····		ND	ND
	Methylcyclohexane		ND	ND	ND	ND	ND
180	Methylene Chloride	230000	ND ^c	ND	ND	ND	ND ^c
	Methylphenol, 3 & 4	n/a ^b	ND	ND	ND	ND	ND
182	Methylphenol, 3 & 4	340000	ND	ND	ND	ND	ND
	Mirex		ND *H	ND	ND	ND	ND *H
	Moisture Content	\$ } }	189.9	171.4	167.3		152.2
	Naphthalene	17000	11	}	23 J	27 J	55
	Nickel	23000	33	33	29	28	29 FL
-	Nitrobenzene	n/a ^b	ND	ND	ND		ND
	Nitrobenzene	14000	ND	ND	ND	ND	ND
	N-Nitrosodimethylamine	700	ND ^c		<u> </u>		ND ^c
	N-Nitrosodi-n-propylamine	300	ND	ND	ND	ND	ND
	N-Nitrosodiphenylamine	390000	ND	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND	ND	ND
	PCB-1016	\ 	ND	∲	<u> </u>	ND	ND
	PCB-1221		ND		ND		ND
	PCB-1232		ND	ND	ND	ND	ND
	PCB-1242	ļ	ND	ND	ND	ND	ND
	PCB-1248	ļ	ND		7.1	Å	ND 18
-	PCB-1254	} 	12	٠	6.4	7.6	·
	PCB-1260	, b	ND	}	8.6	<u> </u>	ND
		n/a ^b	ND	\$~~~~~~~~~~	danaanaanaanaanaanaanaanaanaanaanaanaana	*************	ND
	Pentachlorophenol	3000	ND	,	ND	<u> </u>	ND
	Percent Moisture Percent Solids	<u> </u>	66.3 33.7	65.4 34.6	63.9 36.1	65.1 34.9	63.2 36.8
	Phenanthrene	300000000	22	34.6 69	57	34.9 84	36.8 100
	Phenol	210000000	ND	ND	ND	ND	ND
	Polychlorinated biphenyls, Total	1000	12	26	22		18
	Potassium		2800	2600 FL	2300	2200	2600
	Pyrene	18000000	48	120	100	170	180
	Pyridine		ND	ND			ND
	Pyridine	\$	ND	ND			ND
	Sand		6.5	6.5	5.0	5.6	14.1
	Selenium	n/a ^b	ND B	ND	ND	ND	ND B
	Selenium	5700	0.73	0.73	0.72	0.62 J	0.71 FL
	Sieve Size #10 - Percent Finer	<u> </u>	100.0	<	100.0		94.6

ize #40 - Percent Finer ize #60 - Percent Finer	N/A N/A N/A N/A	Units % Passing % Passing	Specific Method Grain Size	Reports To	Basis	Reg 1
ize #100 - Percent Finer ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size			Reg 1
ize #100 - Percent Finer ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size			Reg 1
ize #100 - Percent Finer ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size			Reg 1
ize #100 - Percent Finer ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size			Reg 1
ize #100 - Percent Finer ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size			Reg 1
ize #100 - Percent Finer ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size			Reg 1
ize #100 - Percent Finer ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A N/A	% Passing % Passing	Grain Size			Reg 1
ize #20 - Percent Finer ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A N/A	% Passing		MRL	Total	
ize #200 - Percent Finer ize #4 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A N/A		Ci Ci	*****	Total	
ize #4 - Percent Finer ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer	N/A	0/ Dessire	Grain Size	MRL	Total	
ize #40 - Percent Finer ize #60 - Percent Finer ize #80 - Percent Finer		% Passing	Grain Size	MRL	Total	
ize #60 - Percent Finer ize #80 - Percent Finer	N/A	% Passing	Grain Size	MRL	Total	
ize #80 - Percent Finer		% Passing	Grain Size	MRL	Total	
	N/A	% Passing	Grain Size	MRL	Total	<u>.</u>
ize 0 375 inch - Percent Finer		% Passing	Grain Size	MRL	Total	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		% Passing	Grain Size	MRL	Total	
ize 0.75 inch - Percent Finer	(· · · · · · · · · · · · · · · · · · ·	% Passing	Grain Size	MRL	Total	
		% Passing	Grain Size	MRL	Total	
ize 1.5 inch - Percent Finer		% Passing	Grain Size	MRL	Total	
		% Passing	Grain Size	MRL	Total	į
ize 3 inch - Percent Finer		% Passing	Grain Size	MRL	Total	
	N/A	%	Grain Size	MRL	Total	
	7440-22-4	mg/L	Metals (ICP)	MDL	TCLP	n/a ^b
	7440-22-4	mg/Kg	Metals (ICP/MS)	MRL	Total	390
1	7440-23-5	mg/Kg	Metals (ICP/MS)	MRL	Total	
9	100-42-5	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	90000
nloroethene	127-18-4	mg/L	Volatile Organic Compounds by GC/MS	MDL	TCLP	n/a ^b
nloroethene	127-18-4	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	43000
m			Metals (ICP/MS)	MRL	Total	
e			Volatile Organic Compounds by GC/MS	MDL		6300000
rganic Carbon - Duplicates	7440-44-0	mg/Kg	Organic Carbon, Total (TOC)	MRL	Total	
ene	8001-35-2	ug/Kg	Organochlorine Pesticides (GC)	MDL	Total	600
ene	8001-35-2	mg/L	Organochlorine Pesticides (GC)	MDL	TCLP	n/a ^b
				MDL	Total	300000
,3-Dichloropropene			· · · · · · · · · · · · · · · · · · ·	MDL	Total	
hlordane	5103-74-2	ug/Kg	Organochlorine Pesticides (GC)		v.*	
roethene	79-01-6	ug/Kg	Volatile Organic Compounds by GC/MS	MDL	Total	3000
roethene	<del>}</del>			,	~ <del>_</del>	n/a ^b
rofluoromethane					v4000000000000000000000	23000000
um	<					78
	<i>(</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	výrosenskom kontárnom károm kontárnom kontárnom kontárnom kontárnom kontárnom kontárnom kontárnom kontárnom kon	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	700
	}	,	·		·•	n/a ^b
nloride		ug/Kg	Volatile Organic Compounds by GC/MS		Total	12000000
	- 1JJU-ZU-/					
n n e )i e e e r r r	loroethene loroethene n granic Carbon - Duplicates ene ene ,2-Dichloroethene ,3-Dichloropropene hlordane oethene oethene oethene	7440-22-4   7440-22-4   7440-22-4   7440-22-4   7440-23-5   100-42-5   100-42-5   100-42-5   100-42-5   100-42-5   100-42-5   100-42-5   100-42-5   100-42-5   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-88-3   108-	7440-22-4   mg/L   7440-22-4   mg/Kg   7440-23-5   mg/Kg   7440-23-5   mg/Kg   100-42-5   ug/Kg   100-42-6   mg/Kg   108-88-3   ug/Kg   108-88-3	7440-22-4   mg/L   Metals (ICP)	7440-22-4   mg/L   Metals (ICP)   MDL     7440-22-4   mg/Kg   Metals (ICP/MS)   MRL     7440-23-5   mg/Kg   Metals (ICP/MS)   MRL     100-42-5   ug/Kg   Volatile Organic Compounds by GC/MS   MDL     100-42-8   ug/Kg   Volatile Organic Compounds by GC/MS   MDL     108-88-3   ug/Kg   Volatile Organic Compounds by GC/MS   MDL     108-88-3   ug/Kg   Volatile Organic Compounds by GC/MS   MDL     108-88-3   ug/Kg   Organochlorine Pesticides (GC)   MDL     108-88-3   ug/Kg   Volatile Organic Compounds by GC/MS   MDL     108-88-3   ug/Kg   Volatile Organic Compounds by GC/MS   MDL     109-80-35-2   ug/Kg   Volatile Organic Compounds by GC/MS   MDL     109-80-35-35-35-35-35-35-35-35-35-35-35-35-35-	

	A	Н	I	J	К	L	М
			180-108764-1 SC-1	180-109049-1 SC-2	180-109049-2 SC-3	180-109049-3 SC-4	180-108764-2 SC-5
			COMPOSITE [C-	,	3		COMPOSITE [C-
			9+C-10]	8	5	7+C-8]	1+C-2]
				[C-3+C-4]	{ -		: -
	Analista	Do = 2	7/22/2020	7/30/2020	ξ · ·		7/22/2020
	Analyte Sieve Size #100 - Percent Finer	Reg 2	1:00 PM 95.0	8:53 AM 95.6	9:40 AM 96.9	10:22 AM 96.7	1:30 PM 84.7
	§=	·····		{	98.9	\$ • · · • · • · · • · · · · · · · · · ·	93.4
	Sieve Size #20 - Percent Finer	ļ	98.6	98.4	3	99.2	
	Sieve Size #200 - Percent Finer	ļ	93.5	93.5 100.0	95.0	94.4 100.0	81.1
	Sieve Size #4 - Percent Finer		100.0	<b>3 </b>	100.0		95.2
	Sieve Size #40 - Percent Finer	<b></b>	98.5	97.8	98.6	98.8	91.5
	Sieve Size #60 - Percent Finer		97.3	97.2	97.8	98.2	89.0
	Sieve Size #80 - Percent Finer	ļ	96.1	96.4	97.3	97.4	86.7
	Sieve Size 0.375 inch - Percent Finer	}	100.0	100.0	100.0	100.0	97.1
	Sieve Size 0.75 inch - Percent Finer		100.0	100.0	100.0	100.0	100.0
	Sieve Size 1 inch - Percent Finer	<b></b>	100.0	100.0	100.0	100.0	100.0
	Sieve Size 1.5 inch - Percent Finer		100.0	100.0	100.0	100.0	100.0
	Sieve Size 2 inch - Percent Finer	}	100.0	100.0	100.0	100.0	100.0
	Sieve Size 3 inch - Percent Finer	<u> </u>	100.0	100.0	100.0	100.0	100.0
227	Silt		51.1	50.0	51.1	48.9	42.3
228	Silver	n/a ^b	ND	ND	ND	ND	ND
229	Silver	5700	0.29	0.27	0.25	0.20	0.45
230	Sodium		880	780 FL	710	770	780 FL
231	Styrene	260000	ND	ND	ND	ND	ND
232	Tetrachloroethene	n/a ^b	ND	ND	ND	ND	ND
233	Tetrachloroethene	1500000	ND	ND	ND	ND	ND
	Thallium		0.34	0.23	0.28	0.25	0.31
235	Toluene	91000000	ND	ND	ND	ND	ND
236	Total Organic Carbon - Duplicates		36000	44000	30000	45000	44000 ^
	Toxaphene	3000	ND *H	ND	ND	ND	ND *H
	Toxaphene	n/a ^b	ND	ND	ND	ND	ND
	trans-1,2-Dichloroethene	720000	ND	ND	ND	ND	ND
	trans-1,3-Dichloropropene	,20000	ND	ND	ND	ND	ND
	trans-Chlordane	<del> </del>	1.7 *H	1.3	\$	1.6	2.2 *H
	Trichloroethene	10000	ND	ND	ND	ND	ND
	Trichloroethene	n/a ^b	ND	ND FL	ND	ND	ND
-	Trichlorofluoromethane	340000000	ND ^c	ND ^c	ND ^c	ND ^c	ND ^c
	Vanadium	1100	47	48	43	41	55
		2000	ND	ND	ND	ND	ND
	Vinyl chloride			<del>}</del>		······	
	Vinyl chloride	n/a ^b	ND	ND	ND	ND	ND
	Xylenes, Total	170000000	ND	ND	ND	ND	ND
249	Zinc	110000	200	190	170	170	330 ^

	A	В	С	D	E	F	G	Н	I	J	K	L	М
1	Analyte	CAS Number	Units	Specific Method	Reports To	Basis	Reg 1		SC-1 MODIFIED ELUTRIATE [C- 1+C-2] 7/21/2020	SC-2 MODIFIED ELUTRIATE [C- 3+C-4] 7/30/2020	SC- 3 MODIFIED	SC- 4 MODIFIED	180-108767-5 SC- 5 MODIFIED ELUTRIATE [C- 9+C-10] 7/21/2020 12:00 AM
		N/A	Li		MRL	Total			150	150	150	150	150
3	Elutriate Generated	N/A	g/L	Modified Elutriate Test Technique, Dissolved	MRL	Dissolved			150	150	150	150	150
4	Percent Moisture	N/A	%	Percent Moisture	MRL	Total			67.7	64.3	63.6	66.1	63.7
		N/A	%	Percent Moisture	MRL	Total			32.3	35.7	36.4	33.9	36.3



PHOTO No. 1: C-1



PHOTO No. 2: C-1 CORE




PHOTO No. 3: C-1 CORE



**PHOTO No. 4:** C-2



PHOTO No. 5: C-2 CORE, TOP



PHOTO No. 6: C-2 CORE, CENTER



PHOTO No. 7: C-2 CORE, BOTTOM



**PHOTO No. 8:** C-3



PHOTO No. 9: C-3 CORE



**PHOTO No. 10:** C-3, BOTTOM



PHOTO No. 11: C-3, CENTER



**PHOTO No. 12:** C-3, TOP

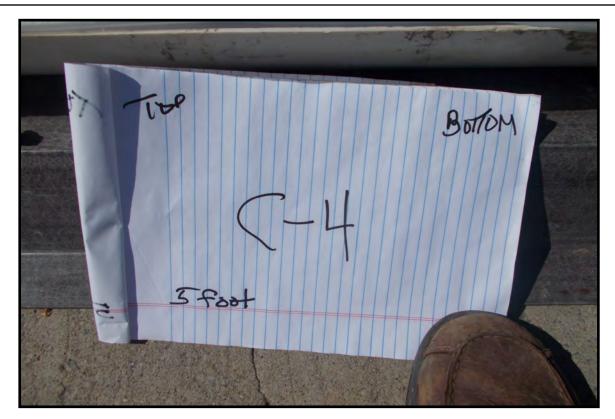



PHOTO No. 13: C-4




**PHOTO No. 14:** C-4 CORE



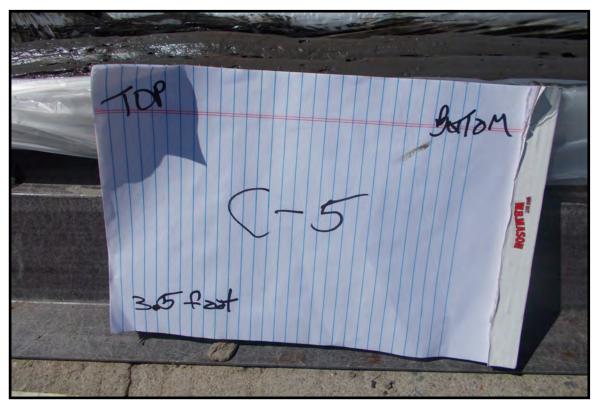

**PHOTO No. 15:** C-4, BOTTOM



PHOTO No. 16: C-4, CENTER



**PHOTO No. 17:** C-4, TOP



**PHOTO No. 18:** C-5



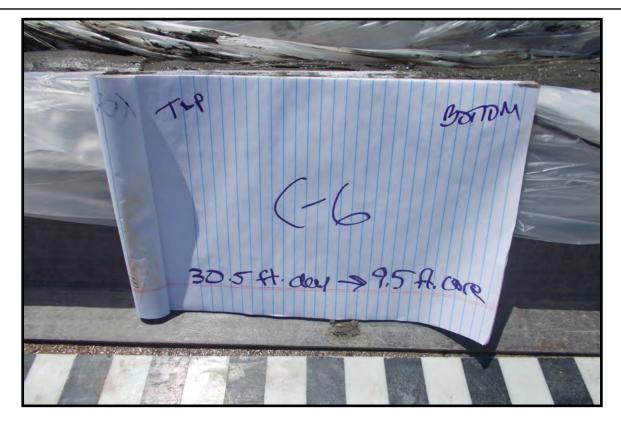

**PHOTO No. 19:** 



PHOTO No. 23: C-5, CENTER



**PHOTO No. 24:** C-5, TOP



**PHOTO No. 25:** C-6



**PHOTO No. 26:** C-6, TOP



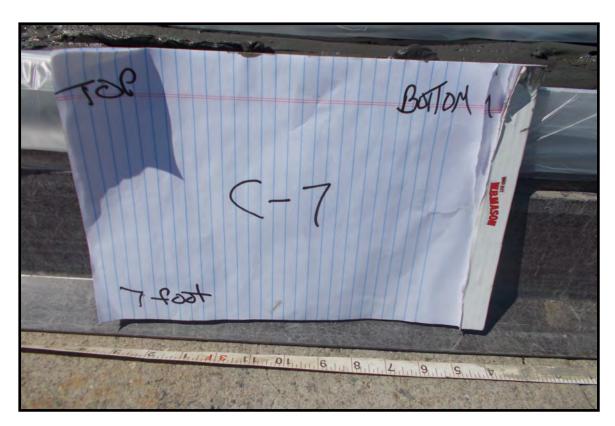

PHOTO No. 27: C-6, TOP-CENTER



PHOTO No. 28: C-6, BOTTOM-CENTER



**PHOTO No. 28:** C-6, BOTTOM



**PHOTO No. 29:** C-7



**PHOTO No. 30:** C-7 CORE



<u>PHOTO No. 31:</u> C-7, BOTTOM



PHOTO No. 32: C-7, CENTER



PHOTO No. 33: C-7, BOTTOM-CENTER



PHOTO No. 34: C-7, BOTTOM



PHOTO No. 35: C-8



PHOTO No. 36: C-8 CORE



**PHOTO No. 37:** C-9



PHOTO No. 38: C-9 CORE

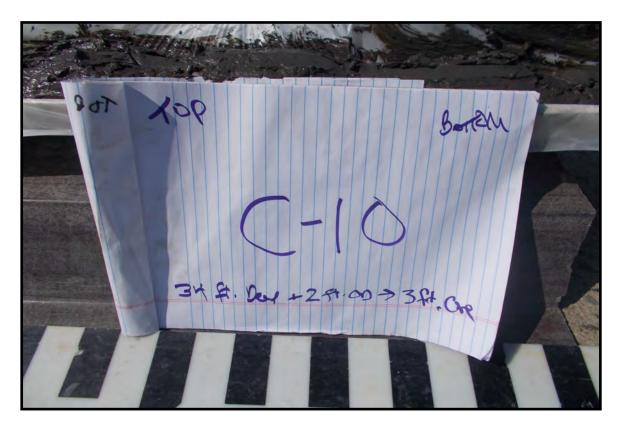



PHOTO No. 39: C-10



<u>PHOTO No. 40:</u> C-10 CORE

<b>eurofins</b>		CHAIN OF CUSTOD  Page of	Υ	Lab LIMS No:	MATRIX CODES
QC	Bill to/Report to (if diffe	erent)	•	LAB LICE ONLY.	
				LAB USE ONLY:	DW: DRINKING WATER
702 Electronic Drive Phone: 215-355-3900			- photographic support	# Ascorbic/HCL Vials # HCl Vials	GW: GROUND WATER
Horsham, PA 19044 Fax: 215-392-0626	Sampling Site Address	s (if different) Include State		# Na ₂ S ₂ O ₃	WW: WASTEWATER
Client/Acct. No.	1 Hausel	1 Road		# Na OH/Zn acetate pH	SO: SOIL
Address S.T. Hudson Engineers	Luimingto	n, DE 1801		# HNO ₃ pH	SL: SLUDGE
900 adley And	J	7		# H ₂ SO ₄ pH	OIL: OIL
City/State/Zip Charay Hill NJ 08002	P.O. No.	PWSID #:		# NaOH pH	SOL: NON SOIL SOLID
Phone/Fax 856-342-6600	Quote #			# Unpreserved	MI: MISCELLANEOUS
Client Contact: Paul Ferry		1 Posthe. com		# HCI #NH4CI #MeOH	X: OTHER
PROJECT	Collection		per of Containers	# DI Water	
FIELD ID	Date Military Time	R   O   Matrix   Code   Total   S   I   O   O	V H N Z U B N A O O A P C R T E	ANALYSIS REQUESTED	Field pH, Temp (°C), DO, Cl2, Cond. etc.
U C-1	7/21 1125				
s (-2	7/21 1106	,			
E C-6	7/21 1054				
(-8	7/21 030				
(-9	7/21 1002				
(-1)	7/21 0940				
Y					
SAMPLED BY: (Name/Company) TAT: ☐ STAN	DARD (10 DAY)	Report Format: Standard	□ NJ-RDD □ SRP-	RDD Field Parameters Analyze	ed By:
or DUE DATE		☐ Standard + QC ☐ Forms			ate/Time:
Please call for pr	icing and availability for r	rush (<10 day) turnaround and for all but	standard reporting format	t.	
				MILITARY TIME (24 HOUR CLOCK, I.E. 8AM IS 08	
RELINQUISHED BY SAMPLER 1. DATE 1. TO THE TOTAL THE TOTA	TIME RECEIVED		DATE 07/22/20	TIME DELIVERY: DEQC COURIER DELIVERY DUPS DEEDEX DOTHER	Custody Seal Number
RELINQUISHED BY DATE 2.	TIME RECEIVED 2.	DBY O	DATE	TIME Rec'd Temp.: Initials: Ice	Y/N Location:
RELINQUISHED BY DATE	TIME RECEIVED	DBY	DATE	TIME COMMENTS:	
3. RELINQUISHED BY DATE	TIME RECEIVED	D BY	DATE	TIME	
4.  RELINQUISHED BY DATE	TIME RECEIVED	D BY	DATE	TIME	
5.	5.			Hazardous: yes / no	

eurofins					P	V OF	_ of							Lab LIM	IS No:	MATRIX CODES
	QC	Bill to/Repor	rt to (if differ	rent)	5+	ody	WI	llia	m	5				LAB US	E ONLY:	10000000
															E OIVET.	DW: DRINKING WATER
702 Electronic Drive Phone: 2	15-355-3900					I W. E				13.00	DW Y	100	1	# A	Ascorbic/HCL Vials # HCl Vials	GW: GROUND WATER
Horsham, PA 19044 Fax: 2	15-392-0626	Sampling Si	te Address	(if diffe	erent)	Include S	State		FALL						Na ₂ S ₂ O ₃	WW: WASTEWATER
Client/Acct. No. STHE		1110	113A	Ro	2			1	JAR V				1 6	# N	Na OH/Zn acetate pH	SO: SOIL
Address 906 pudles	Ave.	WITM	The second secon		- 1	DE	MET.	1019			reg av		100		HNO ₃ pH	SL: SLUDGE
The state of the s		100	100/0								- 1				H ₂ SO ₄ pH	OIL: OIL
City/State/Zip	7000	P.O. No.	To Market	WHI		P	WSID	#:	AB						NaOH pH	SOL: NON SOIL SOLID
Phone/Fax (756) 342-66	00	Quote #	0		1	1						Mary I		#	Unpreserved	MI: MISCELLANEOUS
Client Contact: PAUL FERR	V	e-mail:	Herry.	0	5+	ne.	m	1		M				# H	HCI #NH4CI #MeOH	X: OTHER
PROJECT	1	Colle	ction /	G	C			N			ontaine				# DI Water	and the second
A			Military	R	0	Matrix		2 5	Ci	N	a n	U B N A P C R T				
FIELD ID		Date	Time		M P	Code	Total	S O 4	a	H N O 3	H c	RTE			ANALYSIS REQUESTED	Field pH, Temp (°C), DO, Cl2, Cond. etc.
Tield Blank		1/29	1907							57.7°						A CONTRACTOR OF THE PARTY OF TH
s		3129	7970			Control of	(5) N					- T 3F	N'E	TM	- Metals, YLBS,	
E Site II later		4/19	157				CIRLS				2H 52		EAT	TAV	-100 0-400	
JAC WATE		1/10	1151							N	AF AVE			lest	0003, 10712, 00	
0 0 1		114	1100									DE LIVE		10/	(20h 5172	A SECTION OF THE SECTION
N C-4		7/27	19107			THE WAY		BU						100	-10101113	
L C-3		7/29	0910	+										SIL	13+1ax	
1 (-5		1/29	1/120				Town of							200		
1-7	W. Santa	1119	INA			A Super	7. 3		31 13		ZI C					
The second second	A TOP AND	117	1010			100	1000									2 2 2 3 4 7 4 7 10 10 10 10 10 10 10 10 10 10 10 10 10
	State of the state			FAVO	200						- 1 20 N					
CAMPLED DV: (Name (Constraint)		the state of	Back R	175			1 184									
	TAT: STAN	7 10-11	AY)			Format: [						SRI	P-RD	D	Field Parameters Ana	
	or DUE DATE	Mary Mary Holes		MORE E	-	dard + Q0	10213	to utility	MANAGE I	The T	Mar div		1	Visite Control	Initials	Date/Time:
	Please call for pr													II ITADV	TIME (24 HOUR CLOCK, I.E. 8AM IS	0900 4 DM IC 4000)
RELINQUISHED BY-SAMPLER	DATE	TIME	RECEIVED		ETTE	1	0/	2 19117	JIVAI	UINE	DATE	TE AN	TIN	ME ARY	DELIVERY: DEQC COURIER DELIVERY	Custody Seal Number
1 spel fers	7/29	HLO	1/1	W	or	3100	MIL	1		Til.	7/29	Verso	14	HE HO	□UPS □FEDEX □OTHER	— Odstody Sear Number
RELINQUISHED BY	DATE		RECEIVED	BY	-	Carre				1	DATE	186	TIN	ΛE	Rec'd Temp.: 3.2°C Initials:	IN FOR
2. RELINQUISHED BY		Z. DATE DATE								DATE	tall the	TIN	/E	COMMENTS:	ice Y / N Location:	
3.	DATE		3.			Maria Lan			NE S	Out !					COMMENTO.	
RELINQUISHED BY	DATE		RECEIVED	BY		W I I I	11,000		18		DATE		TIN	ΛE		
4.  RELINQUISHED BY	DATE		4. RECEIVED	BY	ni E	-13 M	Marie Control				DATE		TIN	ИE		
5.		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.	1000										The state of	Hazardous: yes / no	
				To see			4 150	157970	RUT			A PORT		No. 10 de	Triazardous, you no	

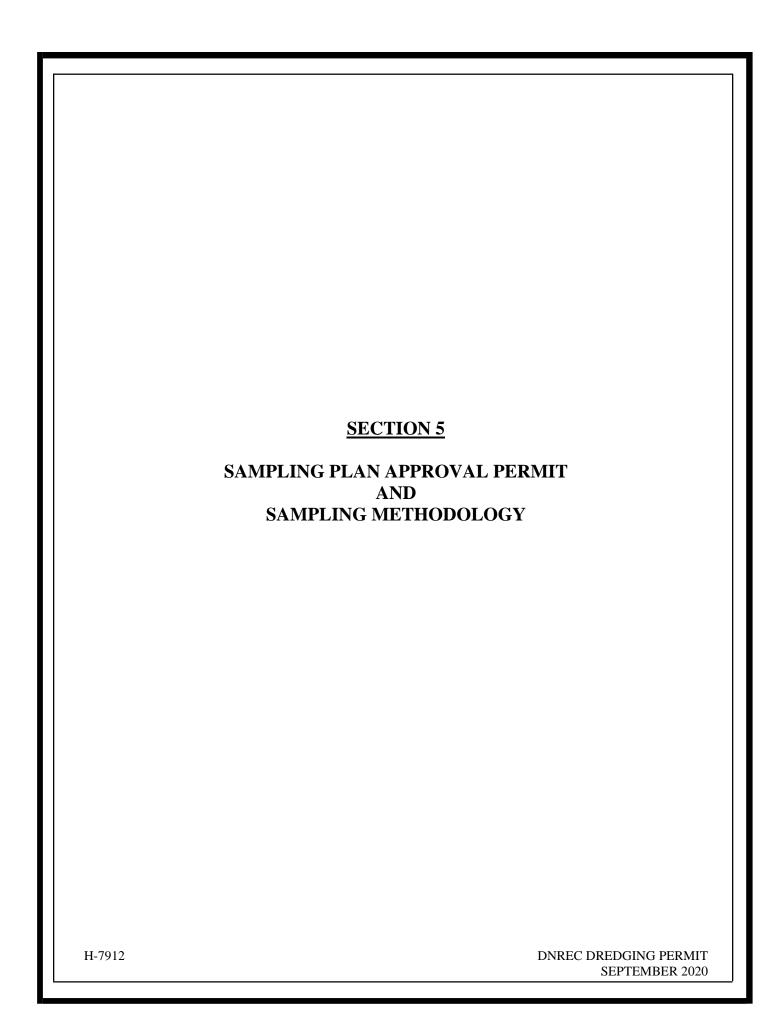
## S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington LLC Project: Port of Wilmington Logger: Paul Ferry Maintenance Dredging Date: 7-21-2020 Time:1/25 Job #: H-7912 Coordinates: 323063.24 201003.37 Datum: MLLy = D **CORE** #: C-1 Core Penetration Length (ft.): 10 ft. x 2 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Existing Depth @ MLW: -37 ft. Recovered Core Length (ft.): 1/D-ft. v Z Required Sample Core Length: 3 ft. Sample Length Retained (ft.): 34 Core Volume Retained (ft³): Collected to Project Depth: Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

## S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Date: 7-21-2020 Time: 1106 206 HI4 46 Coordinates: 323274.91 **CORE** #: C-2 Datum: MIW=0 Core Penetration Length (ft.): 10 ft. v 1 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Recovered Core Length (ft.): 10 ft. x 1 Existing Depth @ MLW: -31 ft. Required Sample Core Length: 9 ft. Sample Length Retained (ft.): 9 # Core Volume Retained (ft³): Collected to Project Depth Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

## S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Date: 7-29-2020 Time: 0910 Job #: H-7912 205994.35 Coordinates: 323449 370 Datum: MLW = Off. **CORE** #: C-3 Core Penetration Length (ft.): Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Existing Depth @ MLW: -35 ft. Recovered Core Length (ft.): / Required Sample Core Length: 5 ft. Sample Length Retained (ft.): 5 Core Volume Retained (ft³): Collected to Project Depth. Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

S. T. HUDSON ENGINEERS, INC.										
SEDIMENT CORE LOG										
Client: GT USA Wilmington F	Project: Por	t of Wilmington	Logger: Paul Ferry							
LLC	Maintenance	Dredging	,							
	Date: 7-29-20		Time: 0952_							
Coordinates: 323757, 66	265 375		~ !							
CORE #: C-4		Datum: PUW = D								
Project Depth: -38 ft.		Core Penetration L	ength (ft.): 10 ft × 1							
(inc. ft. overdredge): -40 ft.		Deserved Come I a	10 Fl. 2 A							
Existing Depth @ MLW: -35 ft.  Required Sample Core Length:5 ft.			ength (ft.): 10 ft x 1							
Required Sample Core Length.5 It.		Core Volume Retai	ained (ft.): 5-4, x 1							
		Collected to Projec								
		Conceiled to 1 rojec	t Deput. 1							
All Length Measurements are in Decimal Feet										
Sample Interval (ft.)		Desc	ription							
TOP										
	. 0									
	Unit	torm								
	6	with-brown								
	Sia	Jun sin								
	Fine-	grained								
	Slick									
		1 Chan	0							
	ROTO	ains Shape								
воттом										
Comments:										

# S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Time: 17)20 Date: 7-29-2020 Coordinates: 323966.31, 205740.65 **CORE** #: C-5 Datum: MLW=D' Core Penetration Length (ft.): 10 ft. x 2 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Recovered Core Length (ft.): 10 H. x 7 Existing Depth @ MLW: -36.5 ft. Required Sample Core Length: 3.5 ft. Sample Length Retained (ft.): 3.54 Core Volume Retained (ft³): Collected to Project Depth, Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:


S. T.	Hudson	ENGINEERS	, INC.
	SEDIMEN	NT CORE LOG	
Client: GT USA Wilmington	Project: Por	t of Wilmington	Logger: Paul Ferry
LLC	Maintenance		
Job #: H-7912	Date: 7-21-20		Time: 1054
Coordinates: 324069.15	204669.6	5	
<b>CORE</b> #: C-6		Datum: MW =	0,
Project Depth: -38 ft.		Core Penetration L	ength (ft.): 10 ff x 1
(inc. ft. overdredge): -40 ft.		D 1 C 1 -	1 (0) (0) 1
Existing Depth @ MLW: -30.5 ft		Recovered Core Le	
Required Sample Core Length: 9.	3 11.	Sample Length Ret	
		Collected to Project	t Depth. 1
All Le	ngth Measure	ments are in Decim	al Feet
Sample Interval (ft.)		Desc	ription
TOP			
	Maif		
	VII-10	DOM I	
	Fme-	- grained	
	n		
	1310	mish gra	4
	Slick	modern	tely moist
	11	- 11000 ac	
	Motall	ns shope	Semi-consolidated
	1	/	
<b>♦</b> BOTTOM			
A C L L CITE			
Comments:			
-			

# S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Date: 7-29-2020 Time: DHD Coordinates: 324319.70, 204178.73 Datum: May = D **CORE** #: C-7 Core Penetration Length (ft.): 10 ft, x 1 Project Depth: -38 ft. (inc. ft. overdredge): -40 ft. Existing Depth @ MLW: -33 ft. Recovered Core Length (ft.): 10 Required Sample Core Length: 7 ft. Sample Length Retained (ft.): Core Volume Retained (ft³): Collected to Project Depth: Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

### S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Time: \ 03 D Job #: H-7912 Date: 7-21-2020 Coordinates: 324 521.64 203645.56 Datum: MU1)-**CORE** #: C-8 Core Penetration Length (ft.): Project Depth: -35 ft. (inc. ft. overdredge): -37 ft. Existing Depth @ MLW: -31.5 ft. Recovered Core Length (ft.): Required Sample Core Length: 5.5 ft. Sample Length Retained (ft.): 5.5 Core Volume Retained (ft³): Collected to Project Depth. Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:

S. T.	Hubson	ENGINEERS, INC.				
	SEDIME	NT CORE LOG				
Client: GT USA Wilmington LLC	Maintenance					
Job #: H-7912	Date: 7-21-20					
Coordinates: 324 706.93	203123.	36				
<b>CORE</b> #: C-9		Datum: $ML_{W} = O'$				
Project Depth: -35 ft. (inc. ft. overdredge): -37 ft.		Core Penetration Length (ft.): 10 ft, x 2				
Existing Depth @ MLW: -33 ft.		Recovered Core Length (ft.): 17 + 2				
Required Sample Core Length: 4	ft.	Sample Length Retained (ft.): 40 × 2				
		Core Volume Retained (ft ³ ):				
		Collected to Project Depth: Y N				
All Le	ngth Measure	ements are in Decimal Feet				
Sample Interval (ft.)		Description				
TOP						
	1100	- 4720				
	MAHOI	MATOM				
	Funo -	Fine-grained throughout				
	Baner	-gray				
	11 1	grate moisture, consolida	100			
	1900	grade Missiwe, Consollar	tibl			
	. 00	/				
	4					
			_			
воттом						
Comments:						
			-			
			_			

### S. T. HUDSON ENGINEERS, INC. SEDIMENT CORE LOG Client: GT USA Wilmington Project: Port of Wilmington Logger: Paul Ferry LLC Maintenance Dredging Job #: H-7912 Date: 7-21-2020 Time: Coordinates: 324902.13 202728:66 **CORE** #: C-10 Datum: MLL) = D+ Core Penetration Length (ft.): 10 ff. x 2 Project Depth: -35 ft. (inc. ft. overdredge): -37 ft. Recovered Core Length (ft.): 10ft. x2 Existing Depth @ MLW: -34 ft. Sample Length Retained (ft.): 34+ Required Sample Core Length: 3 ft. Core Volume Retained (ft³): Collected to Project Depth: Y N All Length Measurements are in Decimal Feet Sample Interval (ft.) Description TOP **BOTTOM** Comments:





## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF WATER 89 KINGS HIGHWAY DOVER, DELAWARE 19901

WETLANDS & SUBAQUEOUS LANDS SECTION

TELEPHONE (302) 739-9943 FAX (302) 739-6304

GT USA Wilmington LLC c/o: Gene Bailey
1 Hausel Road
Wilmington, DE 19801
Tax Parcel: 2606700003

Letter of Authorization: LA-159/20 Associated Permits: LA-073/13 Date of Issuance: 6/5/2020 Construction Expiration Date: 6/5/2021

#### LETTER OF AUTHORIZATION

#### **GRANTED TO:**

**GT USA Wilmington LLC** 

#### TO PERFORM THE FOLLOWING AUTHORIZED ACTIVITIES:

To collect 10 separate vibracore sediment boring samples to a depth of 35 and 38 feet below mean low water

#### LOCATED:

In the Christina River, Adjacent to Wilmington Marine Terminal, Wilmington, New Castle County, Delaware

Pursuant to the provisions of 7 Del. C., §7203, and the <u>Department's Regulations Governing the Use</u>
of Subaqueous Lands, permission is hereby granted on this day of _June
A.D. 2020, to conduct the above-referenced activities in accordance with the approved plans (2
sheets) as approved on May 27, 2020; and the application dated April 22, 2020; and received by this
Division on April 22, 2020.

WHEREAS, GT USA Wilmington LLC, owners of certain adjoining lands to the Christina River, have applied for permission to perform the activities listed above; and;

WHEREAS, pursuant to the provisions of 7 <u>Del. C.</u>, §7203, the Secretary of the Department of Natural Resources and Environmental Control through his duly authorized representative finds that it is not contrary to the public interest if this project is approved subject to the terms and conditions herein set forth.

NOW THEREFORE, this Letter of Authorization is issued subject to the attached Letter of Authorization General Conditions and the following special conditions:

#### SPECIAL CONDITIONS

- 1. The Letter of Authorization is valid for one year according to the above-referenced construction expiration date.
- 2. This Letter of Authorization is granted for the purpose of collecting 10 separate vibracore sediment borings for characterization of substrate material in the anticipation of future maintenance dredging. The depth of these cores will reflect the anticipated dredge depths, which fall at 35 and 38 feet below mean low water.
- 3. This Letter of Authorization does not represent a dredging permit and is not permission for future dredging activities.
- 4. Erosion and sediment control measures shall be implemented in accordance with the specifications and criteria in the current <u>Delaware Erosion and Sediment Control Handbook</u>, so as to minimize entry and dispersal of sediment and other contaminants in surface waters.
- 5. There shall be no movement of equipment within subaqueous lands not specifically authorized by this Permit and the approved plans.
- 6. To protect the anadromous fish species and sturgeon population in the area, no in-water work shall take place from March 15th through June 30th.
- 7. The Contractors Completion Report shall be filled out and returned <u>within 10 days</u> of completion of the authorized work.

> By Steven M. Smailer, Program Administrator the duly authorized representative of the Secretary of the Department of Natural Resources and Environmental Control

George W. Geatz IV, Environmental Scientist

Wetlands and Subaqueous Lands Section

#### **SECTION 2**

#### PROPOSED ANALYSIS PLAN

Utilizing a Vibra-Core sampler, S. T. Hudson Engineers, Inc. proposes to extract seven (7) samples from the area needing to be dredged:

- C-1
- C-2
- C-3
- C-4 (Berth 1)
- C-5 (Berth 2)
- C-6 (Berth 3)
- C-7 (Berth 4)
- C-8 (Berth 5)
- C-9 (Berth 6)
- C-10 (Berth 7)

Sample retention will occur to the proposed dredge depth of -35 ft +2 Mean Low Water (MLW) for Berths 5-7 and -38 ft +2 MLW for all other locations.

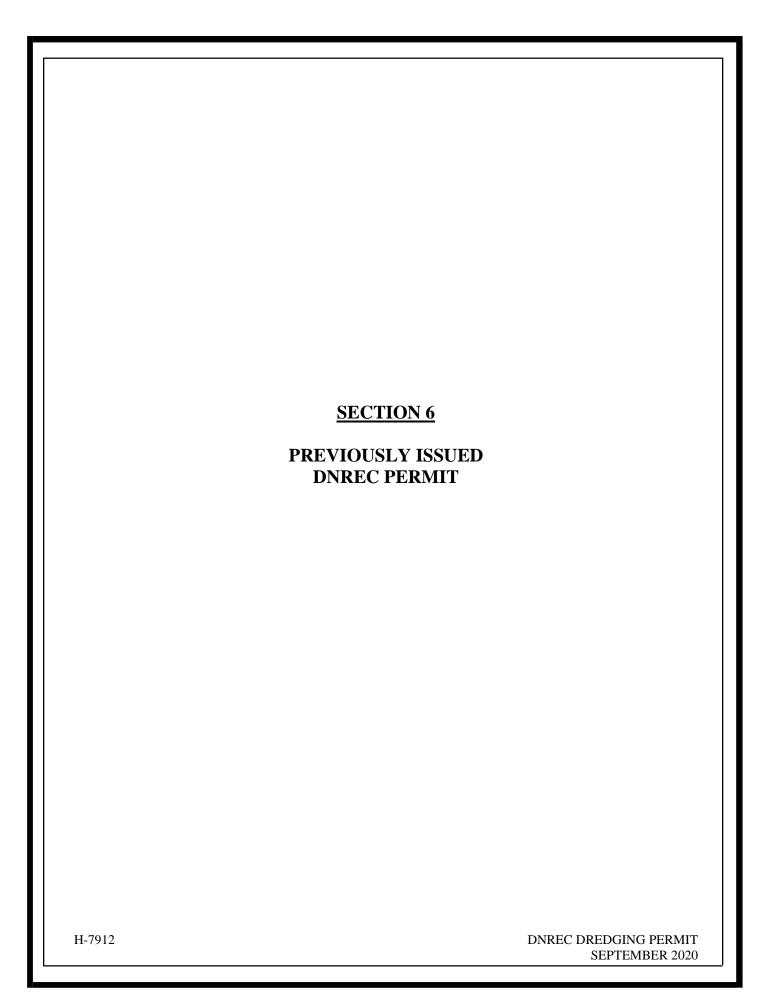
Sample length will vary based on the difference between the current depth and the proposed dredge depth. Depth and necessary length will be determined immediately prior to sampling. Total volume based upon previous depths and shoaling rates can be estimated at 75,000 cubic yards per yearly dredging event. Core samples will be extracted from the Vibra-Core sampler following retrieval. Any sample retrieval past the necessary depth will be discarded prior to packaging in a 5-gallon bucket lined with a nonreactive, new plastic liner. Site water and field blanks will be collected and handled according to the recommendations of the contracted laboratory, which is yet to be determined. Trip blanks will also be handled according to the recommendations of the contracted laboratory.

Prior to compositing, samples will be analyzed independently for:

- Water Content (ASTM D422 or D4381)
- Grain Size Distribution (USEPA 440.0)
- Total Organic Carbon (ASTM D653, D2216, or D4643)

Samples will then be composited at a yet-to-be-chosen lab according to EPA protocols. The following compositing scheme has been selected:

- SC-1 = C-1 + C-2
- SC-2 = C-3 + C-4
- SC-3 = C-5 + C-6
- SC-4 = C-7 + C-8
- SC-5 = C-9 + C-10


H-7912 DNREC SAMPLING PLAN

Each of the composites SC-1 through SC-5 will then be analyzed for:

- Bulk Sediment Chemistry:
  - Inorganics (including hexavalent and trivalent chromium)
  - Semi-Volatile Organic Compounds (SVOCs)
  - Volatile Organic Compounds (VOCs)
  - Pesticides
  - PCB Aroclors
- Effluent (Modified) Elutriate
  - Inorganics (including hexavalent and trivalent chromium)
  - Semi-Volatile Organic Compounds (SVOCs)
  - Volatile Organic Compounds (VOCs)
  - Pesticides
  - PCB Aroclors
- Toxicity Characteristic Leaching Procedure
  - TCLP Metals
  - TCLP Volatile Organic Compounds
  - TCLP Semi-Volatile Organic Compounds
  - TCLP Pesticides

Analytical results will be provided in their original form, as well as in a tabulated form comparing the results to Delaware Department of Natural Resources Non-Critical Unrestricted and Non-critical Restricted Standards. The raw data and Comparative Tables will ultimately be included in the future maintenance dredging application. All procedures stated above will be performed according to New Jersey Department of Environmental Protection's *Field Sampling Procedures Manual*, dated August 2005.

H-7912 DNREC SAMPLING PLAN





## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF WATER 89 KINGS HIGHWAY DOVER, DELAWARE 19901

WETLANDS & SUBAQUEOUS LANDS SECTION

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

APR - 4 2012

Mr. Anthony J. DePasquale U.S. Army Corps of Engineers Wanamaker Building – 100 Penn Square East Operations Division – 6th Floor Philadelphia, PA 19107-3390

Re: Supplemental Approval: SU-028/12

Original Permit - Water Quality Certification No.: WQ-521/07 Associated Permit: - Supplemental Approval No.: SU-051/11

Dear Mr. DePasquale:

Enclosed is the Supplemental Approval granted by the State of Delaware to allow use of the Wilmington Harbor North confined disposal facility. The permittee is responsible to ensure that all the conditions, responsibilities and requirements of the Supplemental Approval are strictly observed. Additionally, the permittee is required to observe all the conditions in the original Water Quality Certification, except those revised by this Supplemental Approval.

The Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) is a State and federally listed endangered species. Coordination with the National Marine Fisheries Service and the State of Delaware Division of Fish and Wildlife Fisheries Section is required to identify any impacts and/or mitigating efforts required to protect the sturgeon. The Wetlands and Subaqueous Lands Section contacted the DNREC Fisheries Section on your behalf and there are currently no additional restrictions on the permit for this upcoming dredging event. However, future coordination for subsequent dredging events is the responsibility of the permittee.

If you have any questions, please feel free to contact Joanne Lee of my staff at (302) 739-9943.

Sincerely.

Laura M. Herr

Section Manager

Wetlands & Subaqueous

Lands Section



## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF WATER 89 KINGS HIGHWAY DOVER, DELAWARE 19901

WETLANDS & SUBAQUEOUS LANDS SECTION

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. Anthony J. DePasquale
U.S. Army Corps of Engineers
Wanamaker Building – 100 Penn Square East
Operations Division – 6th Floor
Philadelphia, PA 19107-3390

Supplemental Approval: SU-028/12 Date of Issuance: 4/4/3013

Original Permit:

- Water Quality Certification No.: WQ-521/07 Associated Permit:

- Supplemental Approval No.: SU-051/11 Construction Expiration Date: 11/3/2018

#### SUPPLEMENTAL APPROVAL

GRANTED TO THE U.S. ARMY CORPS OF ENGINEERS PHILADELPHIA DISTRICT TO MODIFY THE EXISTING WATER QUALITY CERTIFICATION WQ-521/07, ISSUED TO MAINTENANCE DREDGE THE CHRISTINA RIVER AT THE PORT OF WILMINGTON, WILMINGTON, NEW CASTLE COUNTY, DELAWARE TO INCLUDE THE USE OF THE WILMINGTON HARBOR NORTH CONFINED DISPOSAL FACILITY, LOCATED ON THE NORTHERN SIDE OF THE CHRISTINA RIVER IN WILMINGTON, DELAWARE, FOR DISPOSAL OF DREDGED MATERIAL GENERATED BY THE AUTHORIZED DREDGING IN THE CHRISTINA RIVER

Pursuant to the provisions of 7 Del. C., §6003, the Department's Regulations Governing the Control of Water Pollution and Section 401 of the Clean Water Act, permission is hereby granted on this \(\frac{\partial}{\partial}\) day of \(\frac{\partial}{\partial}\) A.D. 2012 to perform the above referenced project in accordance with the approved plans for this Supplemental Approval (Certification) (2 Sheets), as approved on April 2, 2012; and the application dated January 25, 2012 and received by this Division on January 27, 2012.

Whereas, pursuant to the provisions of Section 401 of the <u>Clean Water Act.</u> 33 <u>U.S.C.</u> Section 1341, and 7 <u>Del. C.</u>, Chapter 60, the State of Delaware, by and through the Department of Natural Resources and Environmental Control, certifies that the permitted activity will be conducted in a manner which will not violate the applicable water quality standards of the State of Delaware, subject to the terms and conditions of this approval.

This Supplemental Approval is an addendum to Water Quality Certification No. WQ-521/07 granted to the U.S. Army Corps of Engineers. This Supplemental Approval shall be attached thereto and made a part thereof.

Dolaman's unad naturn dolands are mant

Supplemental Approval No.: SU-028/12

Original Permit: Water Quality Certification No: WQ-521/07

Associated Supplemental Approval: SU-051/11

- 7. The work authorized herein shall be completed in accordance with the terms and conditions of all State permits and certifications.
- 8. Failure to comply with any of the terms or conditions of this Supplemental Approval may result in enforcement action, which could include the revocation of this Approval.

IN WITNESS WHEREOF,	I, Laura M. Herr, th	ne duly authorized representa	tive of Collin
P. O'Mara, Secretary of the Depart	ment of Natural Res	sources and Environmental	Control, have
hereunto set my hand this	day of		. 2012.

For B

By Laura M. Herr, the duly authorized representative of the Secretary of the Department of Natural Resources and Environmental Control

Page 3 of 3



## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL OFFICE OF THE SECRETARY

DELAWARE COASTAL
MANAGEMENT PROGRAM

5 E. Reed Street, Suite 201 Dover, Delaware 19901 Phone: (302) 739-9283 Fax: (302) 739-2048

June 7, 2011

Mark Eberle
Department of the Army
Philadelphia District, Corps of Engineers
Wannamaker Building
100 Penn Square East
Philadelphia, Pennsylvania 19107-3390

RE: Delaware Coastal Management Program Federal Consistency Determination Modification Wilmington Harbor Maintenance Dredging (FC 2011.0080)

Dear Mr. Eberle:

The Delaware Coastal Management Program (DCMP) has reviewed your request for a modification of the consistency determination issued on May 27, 2011 for the above mentioned project. The modification is based upon a refinement of the area to be dredged and time-of-year and method of placement for the hydraulic pipeline to be utilized during the course of the proposed action. Based upon our review and pursuant to National Oceanic & Atmospheric Administration regulations (15 CFR 930), the DCMP concurs with your request for the modification of the consistency determination for the proposed maintenance plan to dredge 650,000 cubic yards of material annually from the Christina River at the Port of Wilmington, New Castle County, Delaware.

As a result of this modification, all dredging activity should be scheduled to avoid migratory and spawning activity of fisheries of concern and should not be conducted from April 1 to June 15 (DCMP Policies 5.11.1.1, 5.11.2.1, 5.11.3.1, and 5.11.3.2). All previously issued conditions, including conducting dredging and material disposal in manner such that Delaware Surface Water Quality Standards will not be violated (DCMP Policies 5.3.1.4, 5.3.1.6, and 5.3.2.7) and receiving and adhering to all necessary permits and their conditions remain in effect.

If you have any questions, please contact me or Bonnie Arvay of my staff at (302) 739-9283.

Sincerely,

Sarah W. Cooksey, Administrator

Delaware Coasta Management Program

cc: File 2011.0080 Joanne Lee – DNREC/DW



## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF WATER 89 KINGS HIGHWAY DOVER, DELAWARE 19901

WETLANDS & SUBAQUEOUS LANDS SECTION

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. Anthony J. DePasquale U.S. Army Corps of Engineers Wanamaker Building – 100 Penn Square East Operations Division – 6th Floor Philadelphia, PA 19107-3390 Supplemental Approval: SU-051/11 Original Permit:

- Water Quality Certification No.: WQ-521/07

Date of Issuance: 5/27/2011

Construction Expiration Date: November 3,

2018

## WATER QUALITY CERTIFICATION GRANTED TO THE U.S. ARMY CORPS OF ENGINEERS PHILADELPHIA DISTRICT TO MODIFY EXISTING WATER QUALITY CERTIFICATION WQ-521/07 TO INCLUDE THE FOLLOWING:

- To authorize an additional disposal site, the Pedricktown South disposal facility in Pedricktown, New Jersey, for disposal of dredged material from the Christina River at the Port of Wilmington, Wilmington, New Castle County, Delaware; and
- To place, use and remove a 24-inch to 27-inch diameter steel pipeline for the conveyance of dredged material, extending from the Christina River and across the Delaware River to the Pedricktown South confined disposal facility in Pedricktown, New Jersey.

Pursuant to the provisions of 7 Del. C., §6003, the Department's Regulations Governing the Control of Water Pollution and Section 401 of the Clean Water Act, permission is hereby granted on this day of A.D. 2011 to perform the above referenced project in accordance with the approved plans for this Water Quality Certification (Certification) (3 Sheets), as approved on May 27, 2011; and the application dated February 14, 2011 and received by this Division on February 15, 2001.

Whereas, pursuant to the provisions of Section 401 of the <u>Clean Water Act</u>, 33 <u>U.S.C</u> Section 1341, and 7 <u>Del. C.</u>, Chapter 60, the State of Delaware, by and through the Department of Natural Resources and Environmental Control, certifies that the permitted activity will be conducted in a manner which will not violate the applicable water quality standards of the State of Delaware, subject to the terms and conditions of this approval.

This Supplemental Approval is an addendum to Water Quality Certification No. WQ-521/07 granted to the U.S. Army Corps of Engineers. This Supplemental Approval shall be attached thereto and made a part thereof.

The and and admin date of a sent

Original Permit: Water Quality Certification WQ-521/07

This Supplemental Approval is issued subject to the following conditions:

#### PERMIT CONDITIONS

1. This Supplemental Approval is an addendum to Water Quality Certification WQ-521/07 granted to U.S. Army Corps of Engineers on November 3, 2008. All work shall be completed in accordance with the Terms and Conditions of the originally authorized Certification, which shall remain in full force and effect, except as indicated herein.

Page 2 of 2

- 2. Special Condition 5 of the original Certification, which required disposal of dredged material at Wilmington Harbor South disposal area and the Delaware portion of the Killcohook disposal area, is modified by this Approval. By this Approval, the WSLS authorizes the use of the Pedricktown South disposal site as an additional disposal facility for the authorized dredging at the Port of Wilmington. Dredge spoil disposal shall occur only in these designated, approved disposal areas.
- 3. The placement, use, and removal of the pipelines are not subject to the time of year dredging restrictions identified in Special Condition 8 of the original Certification. The time of year restrictions in Special Condition 8 for dredging in Delaware subaqueous lands remain in full force.
- 4. A copy of this Supplemental Approval and the originally authorized Certification must be available on site during all phases of the dredging.
- 5. The work authorized herein shall be completed in accordance with the terms and conditions of all state permits and certifications.

By/Laura M. Herr, the duly authorized

representative of the Secretary of the

Department of Natural Resources and

Environmental Control



## DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL OFFICE OF THE SECRETARY

DELAWARE COASTAL MANAGEMENT PROGRAM

5 E. REED STREET, SUITE 201 DOVER, DELAWARE 19901 Phone: (302) 739-9283 Fax: (302) 739-2048

May 27, 2011

Mark Eberle
Department of the Army
Philadelphia District, Corps of Engineers
Wannamaker Building
100 Penn Square East
Philadelphia, Pennsylvania 19107-3390

RE: Delaware Coastal Management Program Federal Consistency Determination Wilmington Harbor Maintenance Dredging (FC 2011.0080)

Dear Mr. Eberle:

The Delaware Coastal Management Program (DCMP) has reviewed your consistency determination request for the above mentioned project. Based upon our review and pursuant to National Oceanic & Atmospheric Administration regulations (15 CFR 930), the DCMP concurs with your consistency determination for the proposed dredging maintenance plan for the federal channel located within the berthing area of Wilmington Harbor.

This concurrence is conditioned upon the following:

- 1) Dredging Restrictions: The proposed activity is in an area utilized by important resident, migratory, and commercially important fish species [including American shad (Alosa sapidissima), blueback herring (Alosa aestivalis), alewife (Alosa pseudoharengus), and striped bass (Morone saxatilis)]. These species, along with Atlantic sturgeon (Acipenser oxyrinchus), a species of local and regional concern and the federally endangered short-nosed sturgeon (Acipenser brevirostrum), utilize the Delaware River during upstream migrations. Additionally, atriped bass spawn in this area of the Delaware River from April-June. The protection of spawning areas, nursery habitats, and migratory corridors during the spawning season is important in maintaining and protecting these fisheries resources. As such, all dredging activity should be scheduled to avoid migratory and spawning activity and should not be conducted from March 15 to June 30. (DCMP Policies 5.11.1.1, 5.11.2.1, 5.11.3.1, and 5.11.3.2);
- 2) Water Quality: Dredging and dewatering shall be conducted in a manner such that Delaware Surface Water Quality Standards will not be violated, excluding whatever temporary and minimal turbidity is unavoidable when using sound dredging and dewatering practices. (DCMP Policies 5.3.1.4, 5.3.1.6, and 5.3.2.7); and

Delaware's good nature depends on you!

3) The issuance of all required permits, including but not limited to a Delaware Subaqueous Lands Permit, and adherence to the restrictions and/or conditions placed on any and all permits issued to the applicant for this project.

If you have any questions, please contact me or Bonnie Arvay of my staff at (302) 739-9283.

Sincerely,

Sarah W. Cooksey, Administrator

Delaware Coastal Management Program

cc: File 2011,0080 Joanne Lee - DNREC/DW



## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF SOIL AND WATER CONSERVATION

DELAWARE COASTAL
MANAGEMENT PROGRAM

,

89 KINGS HIGHWAY DOVER, DELAWARE 19901

TELEPHONE: (302) 739-9283

Fax: (302) 739-2048

January 29, 2009

Minas M. Arabatzis Philadelphia District, Corps of Engineers Wannamaker Building, 100 Penn Square East Philadelphia, Pennsylvania 19107-3390

KE: Delaware Coastal Management Federal Consistency Determination Wilmington Harbor Operation and Maintenance Project (08.103)

Dear Mr. Arabatzis:

The Delaware Coastal Management Program (DCMP) has received your consistency determination request for the above mentioned project. Based upon our review and pursuant to National Oceanic & Atmospheric Administration regulations (15 CFR 930), the DCMP concurs with your consistency determination for the mechanical dredging of approximately 650,000 cubic yards of sediment from the federal channel, turning basin, and the private berthing area by the Diamond State Port Corporation with disposal at Wilmington Harbor South CDF and Killcohook CDF for the 2009 – 2018 dredging cycles.

This concurrence is conditioned the following:

- 1) Submission of an annual report to the DCMP prior to each dredging cycle detailing the proposed work to be completed during that cycle and the actual work that was completed during the previous cycle. This report should include the amounts of sediment dredged or to be dredged and the disposal facility(ies) utilized. If more than one disposal site is used during a dredging cycle, indicate the amount of sediment disposed in each.
- 2) No dredging activities shall occur from April 1 June 15 of each year,
- 3) The submission of the fate analysis of PCB's as conditioned by the Division of Water Resources and adherence to any additional water quality monitoring requirements resulting from said analysis;
- 4) Adherence to any Coast Guard restrictions issued when pipeline is to cross the navigation channel to reduce impacts to navigation; and
- 5) The issuance of all required permits and adherence to the restrictions and/or conditions placed on any and all permits issued to you and/or your client for this project.

If you have any questions please do not hesitate to contact me or Bonnie Arvay at (302) 739-9283.

Sincerely,

Sarah W. Cooksey, Administrator

Delaware Coastal Management Program

cc: File 08.103
John Brundage – USACE/Dover Office
Joanne Lee – DNREC/DWR



## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL

#### DIVISION OF WATER RESOURCES

WETLANDS & SUBAQUEOUS LANDS SECTION

89 Kings Highway DOVER, DELAWARE 19901

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. David Olsen
U.S. Army Corps of Engineers
Wanamaker Building
100 Penn Square East
Operations Division – 6th Floor
Philadelphia, PA 19107

NOV 3 - 2008

Dear Mr. Olsen:

Enclosed is the Water Quality Certification granted by the State of Delaware. Please read carefully all the Special and General Conditions contained within the Certification. The permittee is responsible to ensure that all conditions of the Certification are strictly observed.

Also enclosed is a copy of the Contractor's Post-Construction Completion Report. Within ten days of the completion of the project, the contractor must mail a completed and signed Post-Construction form to this office.

If you have any questions, please feel free to contact this office.

Sincerely,

Laura M. Herr Section Manager

Wetlands & Subaqueous

Lands Section

Enclosures

Cc: Charles Myers, U.S. Army Corps of Engineers



## STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL

WETLANDS & SUBAQUEOUS LANDS SECTION

DIVISION OF WATER RESOURCES
89 Kings Highway
DOVER, DELAWARE 19901

TELEPHONE (302) 739-9943 FACSIMILE (302) 739-6304

Mr. David Olsen
U.S. Army Corps of Engineers
Wanamaker Building
100 Penn Square East
Operations Division – 6th Floor
Philadelphia, PA 19107-3390

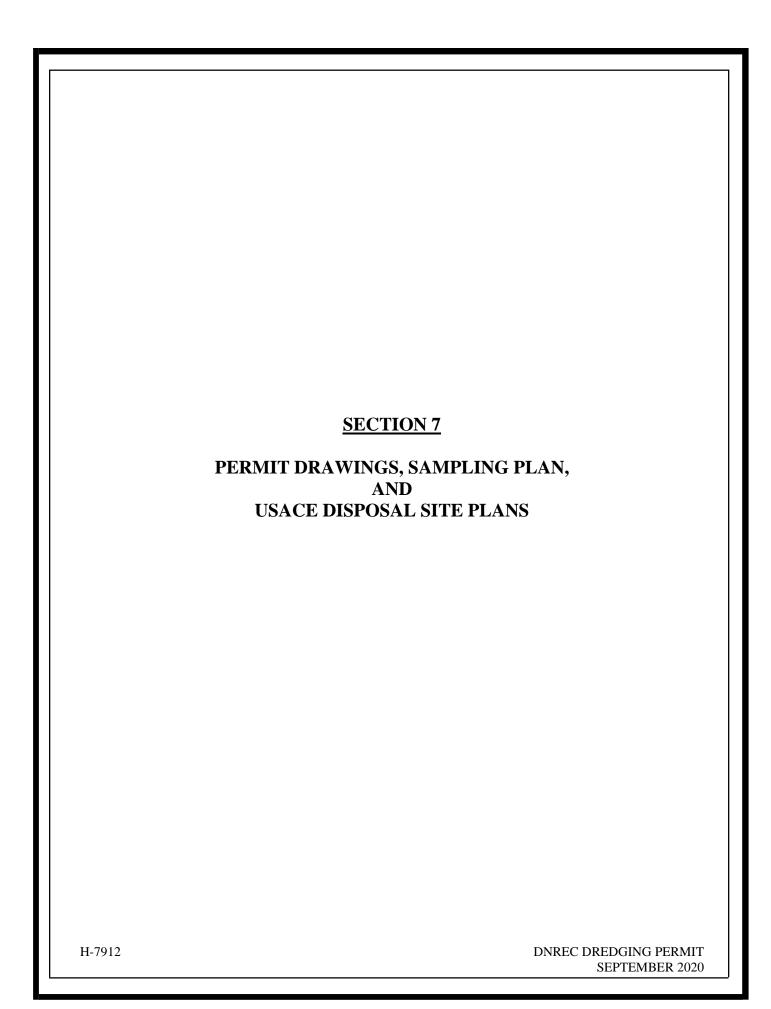
Water Quality Certification: WQ-521/07 Date of Issuance: ハトラトランド Expiration Date: ハトラトランド Amended Date:

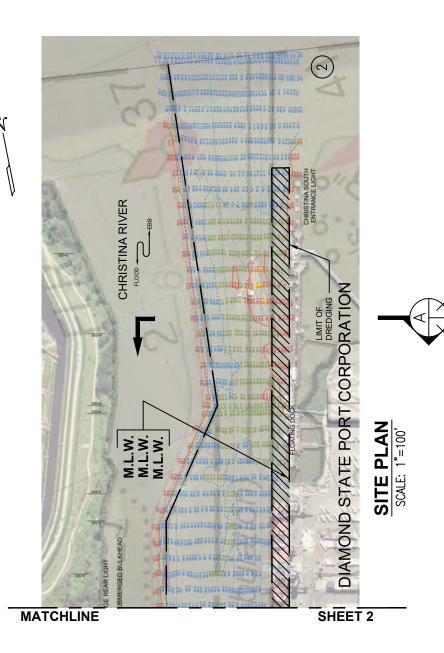
WATER QUALITY CERTIFICATION
GRANTED TO THE U.S. ARMY CORPS OF ENGINEERS
TO MAINTENANCE DREDGE THE CHRISTINA RIVER
TO DEPTHS RANGING FROM 35 FEET BELOW MEAN LOW WATER
TO 40 FEET BELOW MEAN LOW WATER,
DREDGING UP TO 650,000 CUBIC YARDS OF MATERIAL ANNUALLY,
AT THE PORT OF WILMINGTON, 1 HAUSEL ROAD,
WILMINGTON, NEW CASTLE COUNTY, DELAWARE

Pursuant to the provisions of 7 <u>Del. C.</u>, Section 6003, the Department's Regulations Governing the Control of Water Pollution and Section 401 of the <u>Clean Water Act</u>, permission is hereby granted on this <u>Srd</u> day of <u>Worker</u> A.D. 2008 to perform the above referenced project in accordance with the approved plans for this Certification (7 Sheets), as approved on October 30, 2008; and the application dated November 29, 2007 and received by this Division on December 3, 2007, with additional information received January 22, 2008 and September 19, 2008.

Whereas, in accordance with the provisions of Section 401 of the <u>Clean Water Act</u>, 33 U.S.C. Section 1341 and <u>7 Del. C.</u>, Chapter 60, the State of Delaware, by and through the Department of Natural Resources and Environmental Control, certifies that the permitted activity will be conducted in a manner which will not violate the applicable water quality standards of the State of Delaware, subject to the terms and conditions of this approval.

This Certification is issued subject to the following conditions:


#### SPECIAL CONDITIONS


- The conditions contained herein shall be included as part of the main body of the construction contract and other ancillary documents associated with earth disturbance and any other activities directly or indirectly associated with construction which may impact subaqueous lands associated with this project. The permittee is responsible for ensuring that the contractor and/or workers executing the activities authorized by this Certification have full knowledge of the terms and conditions of this Certification.
- 2. Dredging shall be conducted so as not to violate the State of Delaware Department of Natural Resources and Environmental Control <u>Surface Water Quality Standards</u> dated July 2004.
- 3. Dredging shall be conducted in a manner that minimizes the suspension of solids in the water column.
- 4. The permittee shall perform additional analysis to evaluate the fate of polychlorinated biphenyls in the sediments to be disturbed during the dredging operation and the effect of this contaminant on water quality. The analytical results shall be submitted to the WSLS at least 30 days prior to the first dredging event. If these results indicate that Water Quality Standards may be exceeded, the WSLS may require the permittee to conduct water column sampling during dredging operations and may also require the permittee to create and implement a plan that further minimizes the suspension of sediments and pollutants during dredging operations.
- 5. The WSLS authorizes the use of the Wilmington Harbor South disposal area and the Delaware portion of the Killcohook disposal areas as confined disposal facilities for the dredging authorized by this Certification. Dredge spoil disposal shall occur only in these designated, approved disposal areas.
- 6. The effluent shall be detained in the detention basin for sufficient time to allow for the maximum feasible settling of the sediments suspended in the dredge spoil effluent. The concentration of suspended solids in the water leaving the disposal site shall not exceed the concentration of the suspended solids in the receiving water body by more than 4 grams per liter.
- 7. Monitoring of the discharge from the disposal site shall be conducted during each dredging event. This data shall be submitted to the WSLS within 30 days of the completion of the dredging. Corrective action shall be taken and the WSLS shall be contacted within 24 hours if concentrations of suspended sediments exceed background condition by more than 4 grams per liter. The minimum monitoring shall include the following:
  - One composite sample of the effluent discharge water shall be collected daily and analyzed for Total Suspended Solids.
  - The effluent flow rate from the disposal site shall be recorded daily.
  - One water sample shall be collected daily from a background site on the Delaware River and analyzed for Total Suspended Solids. However, if the effluent discharge is managed so that no more than four grams of sediment per liter of water is discharged, background sampling is not required.

- 8. The schedule for the dredging shall be arranged so as to minimize the impact on anadromous fish passage. Specifically, no dredging shall be untaken between April 1 and June 15 annually.
- 9. All dredging and filling is to be conducted in a manner consistent with sound conservation and water pollution practices.
- 10. All pipelines shall be kept in good conditions at all times and any leaks or breaks shall be promptly and properly repaired
- 11. The submerged pipeline shall be placed in a manner that avoids impacts to navigation. The pipeline, when crossing the Delaware River navigation channel, shall be at a depth authorized by the U.S. Coast Guard.
- 12. The disposal areas shall be inspected prior to dredging and effectively managed and maintained in a manner that prevents the entrance of dredged materials into any waters or wetlands.
- 13. Prior to the commencement of each dredging event, the permittee shall notify the WSLS of the location of the proposed disposal area.
- 14. A minimum freeboard of two (2) feet, measured vertically between the retained material and water and the top of the adjacent confining embankment, shall be maintained at all times.
- 15. The Department reserves the right to modify the sampling parameters and other conditions for subsequent dredging events. The applicant shall contact the Wetlands and Subaqueous Lands Section prior to the commencement of subsequent dredging events so that specific details of the monitoring plans can be determined.
- 16. This Certification replaces the previously authorized Water Quality Certification WQ-250/04. All special and general conditions contained in this Certification shall supersede conditions set forth in WQ-250/04 which has become null and void.
- 17. Erosion and sediment control measures shall be implemented in accordance with the specifications and criteria in the current <u>Delaware Erosion and Sediment Control Handbook</u>, so as to minimize entry and dispersal of sediment and other contaminants in surface waters.
- 18. A copy of this Certification must be available on site during all phases of construction activity.
- 19. This Certification shall be valid for ten (10) years and authorizes a total of 10 dredging events, as depicted in the permit application and drawings. This Certification authorizes the dredging of 650,000 cubic yards of material during each dredge event.

#### **GENERAL CONDITIONS**

- 1. The project is to be undertaken in accordance with the plans submitted and attached hereto. Any activities not specifically authorized herein may require a supplemental approval from this office prior to the initiation of construction. A determination on the need for a supplemental approval will be made by this office pursuant to the permittee submitting written notification and revised plans indicating project changes to this office.
- 2. Representatives of the Department of Natural Resources and Environmental Control may inspect such work during any phase of the construction and may collect any samples or conduct any tests that are deemed necessary.
- 3. This Certification does not cover the structural stability of the project units.
- 4. Any actions, operations or installations which are considered by the Department to be contrary to the best interests of the public shall constitute reason for the discontinuance and/or removal of said action, operation or installation.
- 5. The issuance of this Certification does not imply approval of any other part, phase, or portion of any overall project the permittee may be contemplating.
- 6. This Certification is subject to the terms and conditions contained in any easement, license or lease that may have been granted by the State or any political subdivision, board, commission or agency of the State in the vicinity of the project.
- 7. This Certification and authorization are granted for the purposes as stated herein. Any other use without prior approval may constitute reason for this Certification being revoked.
- 8. The permittee shall notify the Department of Natural Resources and Environmental Control within ten (10) days of the date work will be commenced, for each dredging event.
- 9. The permittee shall at all times comply with all applicable laws and regulations of the Department of Natural Resources and Environmental Control.
- 10. The issuance of this Certification does not constitute approval for any of the activities as may be required by any other local, state or federal governmental agency.





#### **ADJACENT PROPERTY OWNERS:**

- **ALMA PROPERTIES LLC.**
- **NONE (DELAWARE RIVER)**

AREA TO BE DREDGED **476,150 SQUARE FEET** 

**DREDGE QUANTITY** 

**ESTIMATED 75,000 CUBIC YARDS** PENDING PRE-DREDGE SURVEY

#### **DATUM CHART:**

HIGH TIDE LINE (H.T.L.)+6.42

MEAN HIGH WATER (M.H.W.)+5.21

5.21 MEAN LOW WATER (M.L.W.) 0.0

NOTE: FINAL DESIGN REQUIRED FOR CONSTRUCTION. THIS DRAWING IS FOR PERMITTING PURPOSES ONLY.

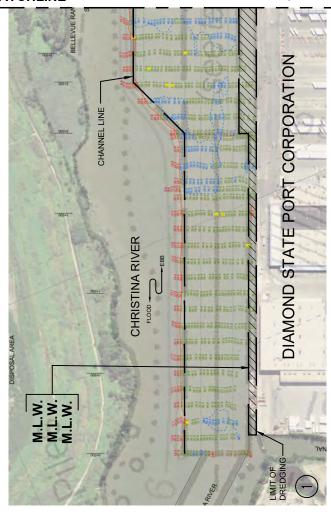
#### S.T. HUDSON ENGINEERS, INC.

PROFESSIONAL ENGINEERS & CONSULTANTS

900 Dudley Avenue Cherry Hill, NJ 08002 Phone 856-342-6600 Fax No. 856-342-8323

#### REFERENCE DRAWING:

1. PLAN TITLE: " WILMINGTON HARBOR, STA 0+00 TO STA 6+236.8 EXAMINATION+ BY: U.S. ARMY CORPS OF ENGINEERS FILE No.: E-WH-08


FILE No. G-2138 CONTRACT No. H-7912 DATE 9/29/2020

SHEET No. 1 of 3

MAINTENANCE DREDGING PROPOSED: PORT OF WILMINGTON AT: WILMINGTON COUNTY OF: DIAMOND STATE APPLICATION BY: PORT CORPORATION

**MATCHLINE** 

SHEET 1

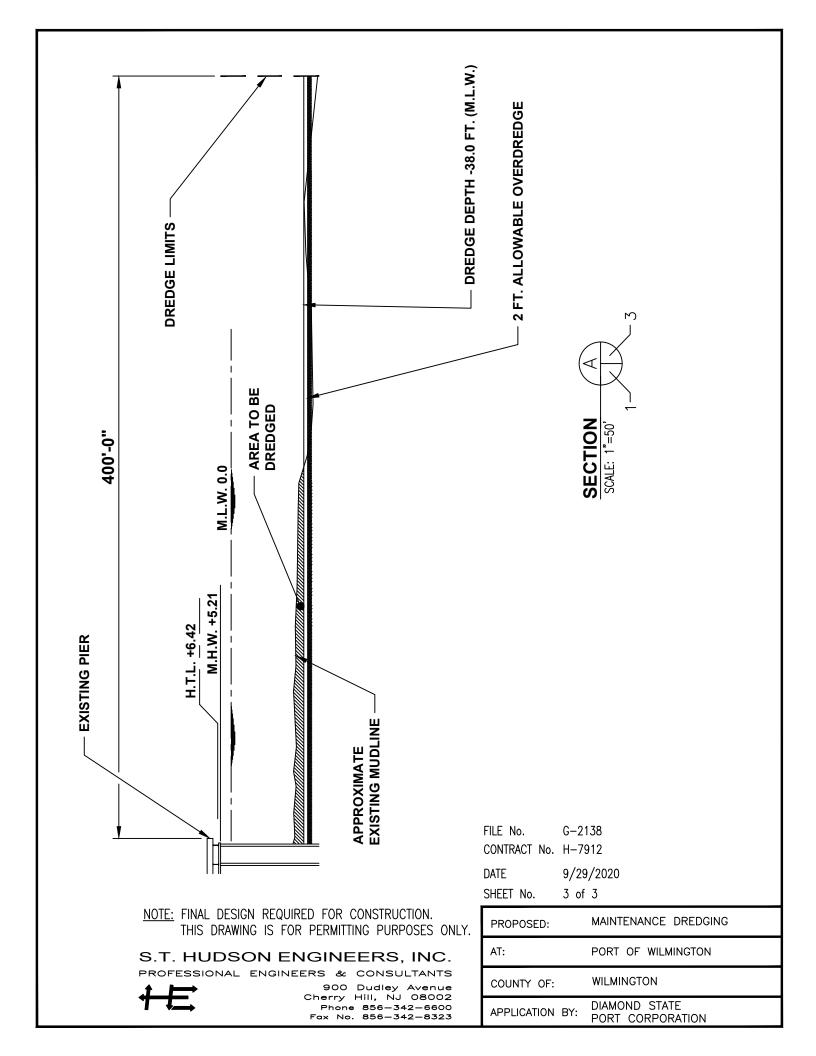


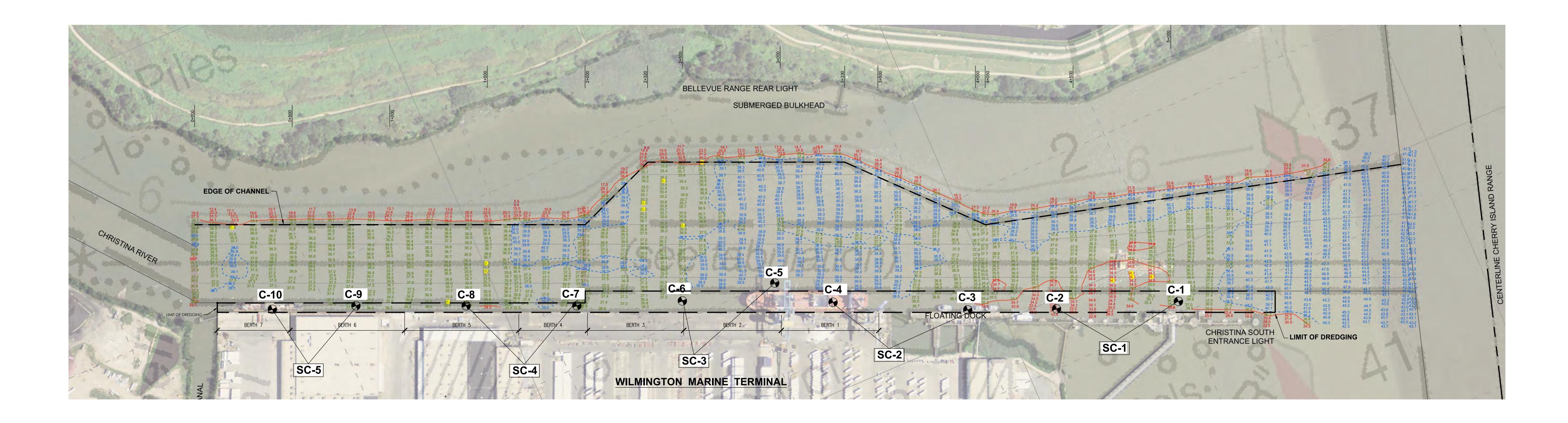
DATE SHEET No. 2 of 3

 $\underline{\text{NOTE:}}$  Final design required for construction. This drawing is for permitting purposes only.

#### S.T. HUDSON ENGINEERS, INC.

PROFESSIONAL ENGINEERS & CONSULTANTS


900 Dudley Avenue Cherry Hill, NJ 08002 Phone 856-342-6600 Fax No. 856-342-8323


MAINTENANCE DREDGING PROPOSED: AT: PORT OF WILMINGTON WILMINGTON COUNTY OF: DIAMOND STATE APPLICATION BY: PORT CORPORATION

FILE No.

G-2138 CONTRACT No. H-7912

9/29/2020





SITE PLAN

SCALE: 1" = 200'

**DATUM CHART:** 

ELEV. -2.98'

NGVD (1929 ADJUSTED) ELEV O.O

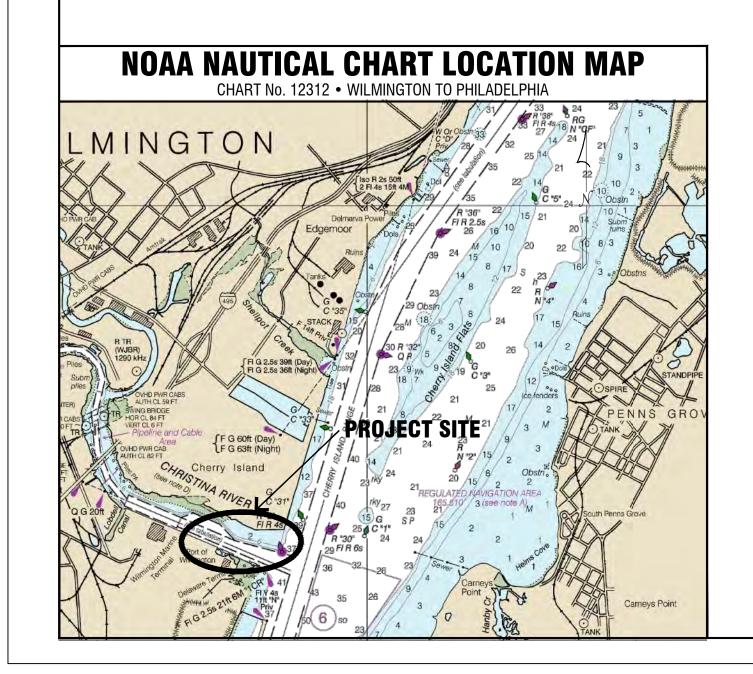
MEAN LOWER LOW WATER (M.L.L.W.)

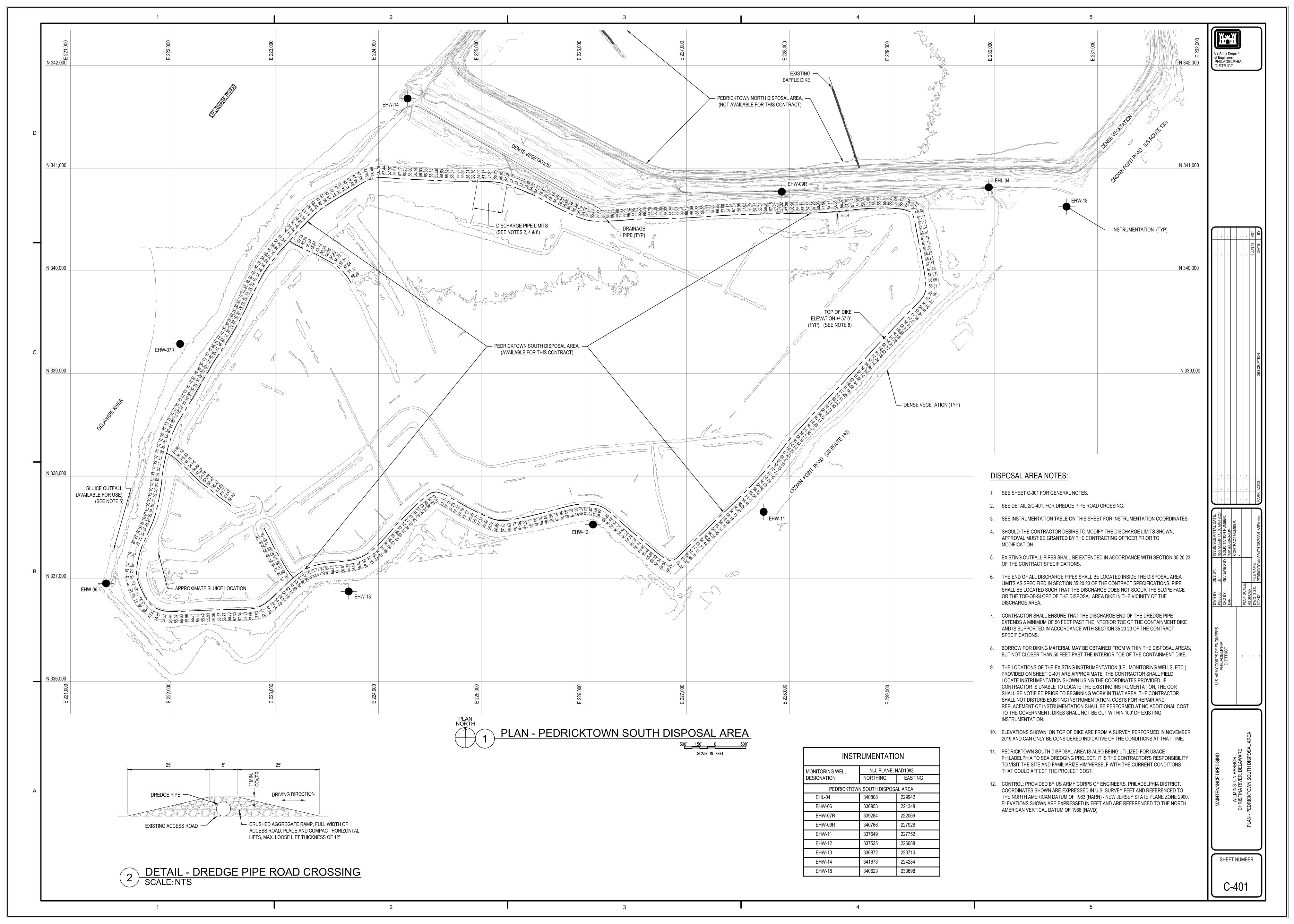
### HYDROGRAPHIC SURVEY NOTES:

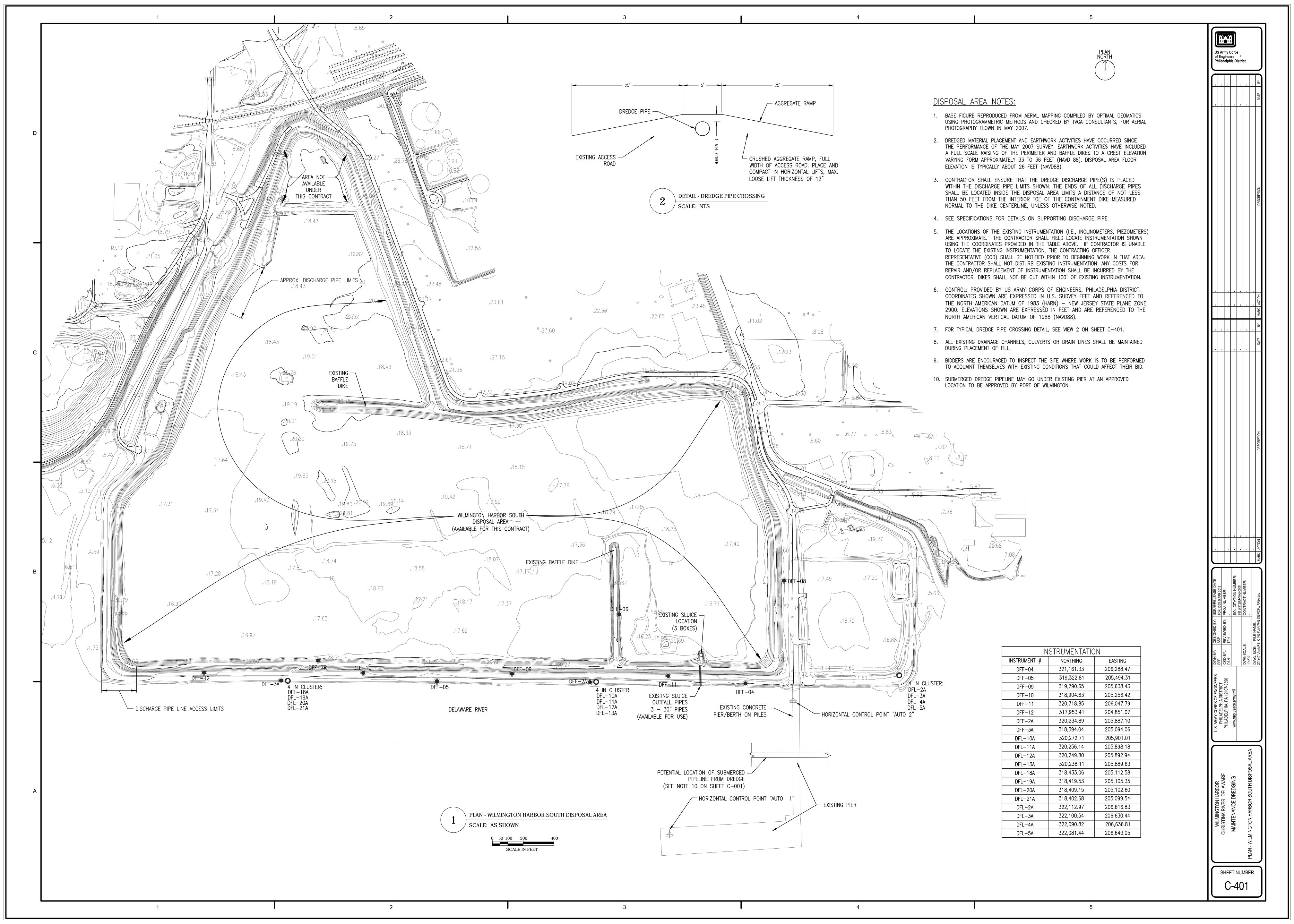
- 1. THIS SURVEY MEETS STANDARDS AS OUTLINED IN CORPS OF ENGINEERS' HYDROGRAPHIC SURVEY MANUAL EM1110-2-1003, DATED NOVEMBER 30, 2013 FOR NAVIGATION AND DREDGING SUPPORT SURVEYS.
- 2. HORIZONTAL REFERENCE-NAD 83, NEW JERSEY STATE PLANE, ZONE 2900, U.S. FOOT.
- 3. VERTICAL REFERENCE-MEAN LOWER LOW WATER WHICH IS 2.98' BELOW NAVD88
- 4. GEOID 09 AND NOAA TIDAL EPOCH: 1983-2001 WERE USED. SOUNDINGS ARE EXPRESSED IN FEET AND TENTHS AND REFER TO MEAN LOWER LOW WATER.
- 5. CONTOURS WERE GENERATED USING THE MINIMUM DEPTH WITHIN SEARCH RADIUS OF 18'.
- 6. HYPACK INC. SOFTWARE WAS USED TO PERFORM THE SOUNDING SELECTION AND CONTOUR GENERATION.
- 7. THIS INFORMATION DEPICTED ON THIS MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THE TIME.
- 8. POSITIONS OF THE AIDS TO NAVIGATION ARE PROVIDED FOR INFORMATION ONLY, AND SHOULD NOT BE USED FOR NAVIGATION.
- 9. THE LIMITS OF THE FEDERAL CHANNEL DEPICT THE MOST CURRENT CHANNEL.
- 10. BASE MAPPING LINEWORK OR ORTHOPHOTOGRAPHY HAS BEEN COMPILED FROM A VARIETY OF SOURCES AND DATES AND IS INTENDED TO PORTRAY GENERAL CHARACTERISTICS OF THE SHORELINE AND OTHER FEATURES TEMPORAL CHANGES MAY HAVE OCCURED SINCE THIS DATA SET WAS COLLECTED AND SOME PARTS OF THE DATA MAY NO LONGER BE AN ACCURATE REPRESENTATION OF THE SURFACE CONDITIONS.
- 11. HYDRO DATA AND DRAWING BACKGROUND TAKEN FROM U.S. ARMY CORPS OF ENGINEERS DRAWING NUMBER E-WH-08.

CORE SAMPLE LOCATION CHART							
CALCULATED LOCATIONS VIA PLAN			ACTUAL LOCATIONS VIA DGPS				
NORTHING	EASTING	I.D		NORTHING	EASTING		
323058.780	207000.379	C-	1	323063.21	207003.37		
323270118	206416.467	C-2	2	323274.91	206414.46		
323437.795	205989.616	C-:	3	323449.70	205994.35		
323748.673	205368.029	C-4	4	323757.66	205375.99		
323953.496	205135.731	C-	5	323966.31	205140.65		
324060.093	204668.255	C-(	6	324069.15	204669.68		
324268.886	204120.646	C-	7	324295.16	204152.73		
324523.430	203650.933	C-	В	324521.64	203645.56		
324685.149	203112.368	C-9	9	324706.93	203123.36		
324891.785	202723.986	C-1	0	324902.13	202728.66		

## CORE SAMPLING NOTES:

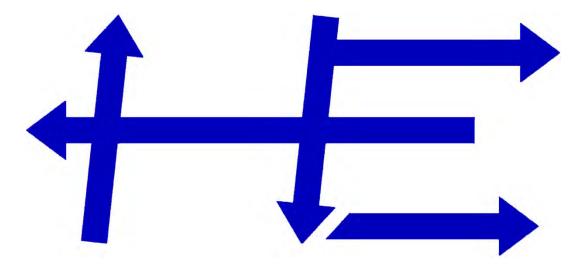

1. FOR CORE SAMPLE LOCATIONS, SEE "ACTUAL LOCATIONS VIA DGPS" IN THE SAMPLE LOCATION CHART.


2. CORE SAMPLES WERE TAKEN ON JULY 21,2020 and JULY 29, 2020.


TOTAL DREDGE AREA = 476,150 Sq. Ft.

TOTAL DREDGE VOLUME = ESTIMATED 75,000 C.Y.
PENDING PER-DREDGE SURVEY

						"Drawings issued in electronic form are provided for the convenience of the recipient and are use at the sole risk of the user. Reliance may be placed only on hard copies of drawings issued by S.T. Hudson Engineers. in the event of any discrepancy, the hard copy will govern."	d
ŧ	appr.	ap	prov	ovals		S. T. HUDSON ENGINEERS, INC	
	dр	approved by		for	date	PROFESSIONAL ENGINEERS & CONSULTANT	
bįb	by					900 Dudley Av Cherry Hill, NJ 0800	е
ns						Phone No. 856-342-660  Fax No. 856-342-832	
actual sample locations	scription	seal	sec	lc		GT USA WILMINGTON, LLC. WILMINGTON MARINE TERMINAL WILMINGTON, DELAWARE	
Added ac	Q					drawn STAFF date 04/21/20 checked PF drftg. approval ADS FILE G-1172 H-79	2
8/10/20	date					dwg. no.	rev.
1 8/	rev.					SAMPLING PLAN 1	1








PHONE 856-342-6600

FAX 856-342-8323



### S.T. HUDSON ENGINEERS, INC.

PROFESSIONAL ENGINEERS & CONSULTANTS

900 DUDLEY AVENUE, CHERRY HILL, NEW JERSEY 08002

VISIT OUR WEBSITE AT WWW.STHE.COM

B. LONLIN

WILMINGTON HARBOR DREDGING ENVIRONMENTAL EFFECTS COMPILATION
REPORT AND HISTORICAL DATABASE



# WILMINGTON HARBOR DREDGING ENVIRONMENTAL EFFECTS COMPILATION REPORT AND HISTORICAL DATABASE

#### Prepared for

U.S. Army Corps of Engineers Philadelphia District Philadelphia, PA 19107

Prepared by

Frederick S. Kelley Thuzar Myint

Versar, Inc. 9200 Rumsey Road Columbia, MD 21045

Contract No. DACW61-95-D-0011 Delivery Order No. 0029

Prepared Under the Supervision of

Principal Investigator

William H. Burton

February 1997



#### **FOREWORD**

This report, entitled, Wilmington Harbor Dredging - Environmental Effects Compilation Report and Historical Database was prepared by Versar, Inc. for Ms Barbara Conlin, Environmental Resources Branch, U.S. Army Corps of Engineers, Philadelphia District under Contract No. DACW61-95-D-0011; Task Order 0029.



### TABLE OF CONTENTS

			Page
FOREV	VORD .	· · · · · · · · · · · · · · · · · · ·	iii
1.0	INTROE	DUCTION	. 1-1
2.0	2.2 DA	ATABASE DEVELOPMENT	. 2-1 . 2-1 . 2-1
3.0	3.1 W 3.2 SE	TS  ATER QUALITY MONITORING  3.1.1 Criteria Comparison  3.1.2 Effects of Dredging on Water Quality  EDIMENT AND ELUTRIATE TESTING  3.2.1 Sediments  3.2.2 Elutriate Testing  Elutriates  ROUNDWATER MONITORING	. 3-1 . 3-1 . 3-11 . 3-16 . 3-16 . 3-26
4.0	SUMM	IARY AND CONCLUSIONS	4-1
5.0	RECO	MMENDATIONS	5-1
6.0	REFER	ENCES	6-1
7.0	DATA	BASE DESCRIPTION	7-1
APPE	NDICES		
	Α	Water Quality Database	A-1
	В	Groundwater Database	B-1
	С	Elutriate Database	C-1
	D	Sediment Database	D-1

#### 1.0 INTRODUCTION

The U.S. Army Corps of Engineers (USACE) is responsible for maintaining safe navigation within the port of Wilmington Harbor, Delaware. One aspect of maintaining safe navigation is the routine dredging of the harbor channel. Over the past 15 years, the USACE has conducted 18 maintenance dredging projects within the harbor. For each maintenance dredging project, the USACE was required to obtain a permit from the Delaware Department of Natural Resources and Environmental Control (DNREC). Over the years, the permits required environmental monitoring of the effects of dredging including: water quality monitoring at the dredge disposal site weir discharges and mixing zones, measurements of contaminant concentrations in sediments and elutriates from the harbor, and groundwater monitoring at wells located in the upland dredge disposal site. The USACE is currently pursuing a five year maintenance dredging permit from DNREC. As a condition to authorizing the current permit, DNREC has requested that the USACE summarize all of the results from environmental monitoring conducted during previous maintenance dredging projects, and provide an overview of the environmental effects of maintenance dredging at Wilmington Harbor.

The analytical results of water quality testing conducted during Wilmington Harbor dredging operations are summarized in approximately 300 pages of data tables and laboratory certificates. Sediments contaminant testing results have been summarized in two separate Greeley-Polhemus reports (Greeley-Polhemus Group 1993, 1994). Past monitoring programs were conducted by a number of other contractors who reported their results in a variety of formats including project specific data reports, laboratory analysis certificates, and data summary tables. A chronological history of the dredge monitoring studies is presented in Table 1-1. To date, none of monitoring results have been summarized in a comprehensive report and evaluated to determine if Wilmington Harbor maintenance dredging is having significant effects on ecological resources in the Delaware River.

To comply with DNREC's request for a summary of the results of maintenance dredge monitoring, and an overview of the environmental effects of maintenance dredging at Wilmington Harbor, the USACE contracted Versar to compile 15 years of monitoring data from 1980 to 1994. An electronic database was created that would facilitate data interpretation and statistical analysis, compare the monitoring results to existing criteria, and provide interpretation relating to the environmental effects of maintenance dredging on Wilmington Harbor.

	chronological history of maintenance di arbor from 1980 to 1994	redge monitoring at Wilmington
Dredge Monitoring Project	Project Description	Testing Description
1980 (January- March)	<ul> <li>On 1/22/80, water was collected at the weir outfall, 8 sites in the mixing zone, and at a background site.</li> <li>On 8 sampling dates from 1/23/80 to 3/10/80, water was collected at the weir outfall, and adjacent, upstream, and downstream of the weir outfall.</li> </ul>	- Waters collected at all sites were tested for metals and physical parameters on all dates; and PCB's on 3/10/80.
1980 (October) - 1981 (February)	<ul> <li>Pre-dredge monitoring was conducted on 10/09/80; water was collected at 2 sites in the mixing zone, and at a background site.</li> <li>During-dredge monitoring was conducted on 4 sampling dates (from 12/09/80 to 2/25/81); water was collected at the weir outfall, 8 mixing zone sites, and a background site.</li> </ul>	- Waters collected at all sites were tested for metals and physical parameters on all dates.
1981 (September- December)	<ul> <li>Pre-dredge monitoring was conducted on 9/14/81; water was collected at 2 sites in the mixing zone, and at a background site.</li> <li>During-dredge monitoring was conducted on 4 sampling dates (from 10/13/81 to 12/7/81); water was collected at the weir outfall, 4 mixing zone sites, and a background site.</li> </ul>	Waters collected at all sites were tested for metals and physical parameters on all dates.
1982 (October- December)	- Pre-, during- and post-dredge monitoring were conducted on 10/27, 11/02 and 12/15/82, respectively; water was collected at the weir, 6 sites in the mixing zone, and at a background site. (No samples were collected at the weir during post-dredge monitoring.)	<ul> <li>Waters collected at all sites were tested for metals and physical parameters on all dates.</li> <li>A composite water sample collected at the weir on 11/03/82 was measured for BOD5, COD, and flow.</li> </ul>
1983 (June)	- During-dredge monitoring was conducted on 3 sampling dates (from 6/15/83 to 6/27/83); water was collected at the weir, 6 sites in the mixing zone, and at a background site.	<ul> <li>Waters collected at all sites were tested for metals and physical parameters on all dates.</li> <li>Composite water samples collected at the weir on 2 dates were measured for BOD5, COD fecal coliforms, and flow</li> </ul>



Table 1-1. Co	ont'd	
Dredge Monitoring Project	Project Description	Testing Description
1983 (December) - 1984 (February)	<ul> <li>During-dredge monitoring was conducted on 2 dates (12/19/83 and 1/05/84); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 12/27/83 and 1/10/84.</li> <li>Post-dredge monitoring was conducted on 2/07/84; except for the weir-outfall, water was collected as before.</li> </ul>	<ul> <li>All water samples were tested for metals and physical parameters, and PCBs.</li> <li>Additional weir-outfall samples were tested for coliforms.</li> </ul>
1985 (January - February)	<ul> <li>During-dredge monitoring was conducted on 2 dates (1/03/85 and 1/14/85); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 1/7/85 and 1/15/85.</li> <li>Post-dredge monitoring was conducted on 2/07/85; except for the weir-outfall, mixing zone water was collected as before.</li> </ul>	<ul> <li>All water samples were tested for metals and physical parameters, and PCBs.</li> <li>Additional weir-outfall samples were tested for coliforms and BOD.</li> </ul>
1985 (June - August)	<ul> <li>Elutriate monitoring was conducted on 6/19/85; 10 samples were collected in the harbor.</li> <li>During-dredge monitoring was conducted on 2 dates (6/28/85 and 7/17/85); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. An additional water sample was collected from the weir-outfall on 6/30/85.</li> <li>Post-dredge monitoring was conducted on 8/08/85; except for the weir-outfall, mixing zone water was collected as hefore</li> </ul>	<ul> <li>Elutriate samples were tested for metals, PCBs, and physical parameters</li> <li>All water samples were tested for metals and physical parameters, and PCBs.</li> <li>Additional weir-outfall samples were tested for coliforms.</li> </ul>



Table 1-1. Co	ont'd	
Dredge Monitoring Project	Project Description	Testing Description
1986 (January - March)	<ul> <li>During-dredge monitoring was conducted on 2 dates (1/09/86 and 1/13/86); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 1/13/86 and 1/22/86.</li> <li>Post-dredge monitoring was conducted on 2/13/86; except for the weir-outfall, mixing zone water was collected as before.</li> <li>Groundwater well monitoring was conducted on 3/11/86; samples were collected from 6 wells.</li> </ul>	<ul> <li>All water samples were tested for metals and physical parameters, and PCBs.</li> <li>Additional weir-outfall samples were tested for coliforms and BOD.</li> <li>Groundwater samples were tested for zinc, total nitrogen, TOC and pH.</li> </ul>
1986 (September)	- During-dredge monitoring was conducted on 2 dates (9/04/86 and 9/12/86); water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site.  An additional water sample was collected from the weir-outfall on 9/10/86.	<ul> <li>All water samples were tested for metals, physical parameters, and PCBs.</li> <li>The additional weir-outfall sample was tested for BOD.</li> </ul>
1987 (April)	- Groundwater well monitoring was conducted between 4/07/87 and 4/14/87; 11 samples were collected.	- Groundwater samples were tested for TOC, chloride, zinc, TKN and pH.
1988 (October - December)	<ul> <li>During-dredge monitoring was conducted on 2 dates (10/24/88 and 11/07/88); water was collected at the weir-outfall, 7 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 11/04/88 and 11/08/88.</li> <li>Post-dredge monitoring was conducted 12/01/88; mixing zone water samples were collected as before, except no weir-outfall sample was taken</li> </ul>	<ul> <li>All water samples were tested for metals, physical parameters, and PCBs.</li> <li>Additional weir-outfall samples were tested for coliforms and BOD.</li> </ul>



Table 1-1. Co	ont'd	
Dredge Monitoring Project	Project Description	Testing Description
1989 (August - September)	<ul> <li>During-dredge monitoring was conducted on 8/15/89; water was collected at the weir-outfall, 6 sites in the mixing zone, and at a background site. An additional water sample was collected from the weir-outfall on 8/21/89.</li> <li>Post-dredge monitoring was conducted 9/12/89; mixing zone water samples were collected as before, except no weir-outfall sample was taken.</li> </ul>	<ul> <li>All water samples were tested for metals, physical parameters, and PCBs.</li> <li>Additional weir-outfall sample was tested for coliforms.</li> </ul>
1990 (May - June)	<ul> <li>During-dredge monitoring was conducted on two dates (5/02/90 and 6/15/90); water samples were collected at 8 sites in the mixing zone, and at a background site. Additional water samples were collected from the weir-outfall on 5/15/90 and 5/24/90.</li> </ul>	<ul> <li>All water samples were tested for metals, physical parameters, and PCBs.</li> <li>Additional weir-outfall sample was tested for coliforms and BOD.</li> </ul>
1991 (January)	- During-dredge monitoring was conducted on two dates (1/25/91 and 1/30/91); water samples were collected at 7 sites in the mixing zone, and at a background site. Water samples from the weir-outfall were collected on 1/24/91 and 1/30/91.	<ul> <li>Water samples collected in the mixing zone and at the background site were tested for metal, physical parameters, and PCBs. Samples from the weir- outfall were tested for coliforms and BOD.</li> </ul>
1991 (October - December)	- During-dredge monitoring conducted on 5 dates from 11/07/91 to 12/05/91; water samples were collected from the weir-outfall, 7 sites in the mixing zone, and at a background site. Additional water samples were collected almost continuously from the weir-outfall from 10/30/91 to 12/07/91.	<ul> <li>All water samples were tested for metals, physical parameters, and PCBs.</li> <li>Additional weir-outfall sample were tested for TSS and coliforms.</li> </ul>
1992 (July - August)	- During-dredge monitoring was conducted on two dates (7/22/92 and 7/27/92); water was collected at the weir-outfall, 7 sites in the mixing zone, and at a background site. Additional water samples were collected at the weir-outfall from 7/20/92 to 8/10/92.	- Water samples of the mixing zone and background were tested for physical, metals and organic parameters; weir outfall samples were tested for TSS (63 samples), coliforms (3 samples), and once for physical, metals, and organic parameters



Table 1-1. Co	ont'd	
Dredge Monitoring Project	Project Description	Testing Description
1993 (March - April)	<ul> <li>Pre-dredge monitoring was conducted 3/10-11/93; 6 sediment and elutriate, and a background water sample were collected in the Harbor.</li> <li>During-dredge monitoring was conducted from 3/23/93 to 4/09/93; samples were collected from the weir-outfall, 4 mixing zone sites and a background site on 3 dates. Additional water samples were collected from the weir-outfall on 3 dates.</li> <li>Post-dredge monitoring was conducted on 4/16/93; mixing zone water samples were collected as above excluding the weir-outfall sample.</li> </ul>	<ul> <li>Sediment and elutriate samples were tested for metals, organics, and PCBs.</li> <li>Water samples collected from the weir-outfall were tested for metals, organics, and PCBs. Mixing zone and background samples were tested for metals and organics. Additional weir-outfall samples were tested for TSS.</li> </ul>
1993 (December) - 1994 (April)	<ul> <li>Pre-dredge monitoring was conducted on 12/22/93; 2 water samples at one site, and 2 composite sediment samples at 2 sites were collected in the mixing zone.</li> <li>During-dredge monitoring was conducted on three dates; 2 water samples were collected in the mixing zone on 1/13/94, and 24-hr composite samples collected at weir outfall on 1/04/94 and 2/25/94. Additional water samples were collected every three days at weir-outfall.</li> <li>Post-dredge monitoring was conducted on two dates; water samples were collected from the weir-outfall and the two mixing zone sites on 4/15/94, and at the weir-outfall on 5/20/94.</li> </ul>	All water and sediment samples were tested for metals, PCBs, PAHs, and physical parameters. Additional during-dredge weir-outfall samples were tested for TSS.

# 2.0 METHODS

#### 2.1 DATABASE DEVELOPMENT

All of the monitoring data from 1980 to 1994 were entered into a Lotus spreadsheet from hard copy format. Each data entry included common identifiers including project name, study year, date, station identification, contractor name, and comments on specific values. Separate database files were created for water quality, groundwater, and sediment contaminant monitoring. Concentrations of each parameter monitored were adjusted to a common unit of measure (in water, mg/L for metals and miscellaneous parameters, and  $\mu$ g/L for organics and pesticides; in sediment for the parameters groups, mg/kg and  $\mu$ g/kg, respectively). Database quality control was administered by comparing data entries with the original tables or analysis certificates, checking parameter reporting units, and use of a computer program to check for out-of-range parameters and other data anomalies (e.g., missing data or invalid station names). Finally, the Lotus database spreadsheets were converted to SAS (SAS Institute 1990) data sets for data manipulation, statistical analysis, and final storage.

#### 2.2 DATA ANALYSIS

# 2.2.1 Criteria Comparison

The concentrations and measurements of parameters analyzed for water quality, sediment and elutriate contaminants, and groundwater well-monitoring were compared with current federal and state regulatory criteria (Tables 2-1 and 2-2). Water quality and elutriate parameter concentrations were compared to EPA's marine chronic criteria, or acute chronic criteria in absence of the former value (Wilmington Harbor is at the transition zone between freshwater and salt water). Sediment contaminant concentrations were compared to Long et al's (1995) effects range-low (ER-L), or effects range-median (ER-M) guidance values for sediment quality in the absence of state guidelines. A few sediment parameters had neither effects range criteria and were compared to the EPA's (1988) overall apparent effects threshold (OAET) or threshold effects levels (TEL). Groundwater well-monitoring parameter concentrations were compared to National Secondary Drinking Water Regulations (CFR 40 1996).

# 2.2.2 Effects of Dredging on Water Quality

Of the four dredge monitoring components, groundwater, sediment, elutriate and weiroutfall water quality, only the latter was conducted frequently enough to permit meaningful statistical comparisons. Data from sediment and elutriate, and groundwater monitoring were collected during only 2 and 3 of the 18 maintenance dredge projects. Additionally, data for



	Cri	eria	
Parameter	Water (μg/L)	Sediments (μg/kg)	
Chlorobenzene	129		
Chrysene		384	
Dibenzo(a,h)anthracene		63.4	
Ethylbenzene	430		
Fluoranthene	16	600	
Fluorene		19	
Hexachlorobutadiene	32		
Hexachlorocyclopentadiene	7		
Hexachloroethane	940		
Isophorone	12900		
Naphthalene	2350	160	
Nitrobenzene	6680		
Pentachlorophenol	7.9		
Phenanthrene	4.6	240	
Phenol	5800		
Pyrene		865	
Tetrachloroethene	450		
Toluene	5000		
Trichloroethene	2000		
	Pesticides		
2,4'-DDD	3.6	1.2	
2,4'-DDE	14	2.2	
2,4'-DDT	0.001	1.5	
4,4'-DDD	3.6	1.2	
4.4'-DDE	14	2.2	



Table 2-2. Cont'd					
	Criteria				
Parameter	Water (μg/L)	Sediments (μg/kg)			
4,4'-DDT	0.001	1.58			
A-BHC	0.34				
Aldrin	1.3				
B-BHC	0.34				
Chlordane	0.004	2			
Cis-chlordane	0.004				
D-BHC	0.34				
Dieldrin	0.0019	0.715			
Endosulfan I	0.0087				
Endosulfan II	0.0087				
Endrin	0.0023				
G-BHC	0.34				
Heptachlor	0.0036				
Heptachlor epoxide	0.0036				
Mirex	0.001				
Toxaphene	0.0002				
Trans-chlordane	0.004				



many of the parameters lacked variation as many concentrations were below test detection limits. Low data variability was especially true for the organic and pesticide parameters.

Statistical comparisons among water quality parameters were limited to the during-dredge phase of dredge monitoring projects. Most of the data for dredge projects were collected repeatedly through the during-dredge phase, and only once, if at all, for pre- and post-dredge monitoring. In addition, low data variability due to a high incidence of concentrations below test detection limits restricted the application of statistical comparisons. For a total of 19 water quality parameters, analysis of variance (ANOVA) tests were made to determine differences between weir-outfall sites, mixing zone sites, and background sites. Duncan's Multiple Range Test was conducted to determine statistical differences between site variables (Sokal and Rohlf 1981). Parameter measurements were treated independently for all sites; parameter means for each site category were calculated by averaging all of the concentrations measured over the 15 years of monitoring. Concentrations less than test detection limits were given the value of the detection limit for each calculation.

Water quality of the mixing zone was monitored by collecting samples within the weir turbidity plume. Fixed sites for sample collection were established within the plume at different distances from the outfall. The number of samples collected in the mixing zone on each monitoring date varied according to maintenance dredge project. In addition, different project sampling schemes often used site numbers to identify sampling locations, but did not consistently assign the same site number to a location relative to the weir-outfall. Collection site locations varied according to tide cycle, as they were always collected on the down current. These combined factors made it impossible to categorize mixing zone stations by distance from the weir-outfall with confidence, consequently, all data from samples collected within the mixing zone were pooled.



### 3.0 RESULTS

Over 100 parameters were measured for each of the monitoring components (e.g., water quality, and sediment and elutriate contaminants). This section addresses the monitoring components in order, and divides the list of parameters into general groups that include: metals, inorganic non-metals, and physical parameters; PCBs and organics; and pesticides. Only a few parameters were measured during groundwater well-monitoring of the upland disposal site, and are presented collectively.

### 3.1 WATER QUALITY MONITORING

# 3.1.1 Criteria Comparison

A total of 164 water quality parameters were monitored during maintenance dredging of Wilmington Harbor over the past 15 years (Table 3-1, 3-2, and 3-4). The parameters comprised several general groupings and included physical, metals, inorganic non-metals, and organics such as polychlorinated biphenyls (PCBs) and pesticides. The frequency of measurement among all parameters ranged from 428 for Zinc to a single measurement for two of the organics. Initially, the frequencies of measure and criteria exceedence were calculated for each parameter among all measurements disregarding the dredge phase in which it was collected and the station location. For parameters that chronically exceeded criteria discussion is included relative to the station type and dredge phase for which the exceedences occurred.

### 3.1.1.1 Metals, Physical, and Miscellaneous Parameters

Thirty-seven water quality parameters comprising metals, inorganic non-metals, nutrient measures, physical measures, and bacteria counts were analyzed during maintenance dredge monitoring at Wilmington Harbor (Table 3-1). Among these parameters, 37 had listed criteria concentrations or measures. A comparison of the criteria with water quality monitoring data identified 7 parameters that had concentrations exceeding or not in compliance with their respective criteria. These included cadmium, chromium, lead, nickel, zinc, dissolved oxygen, and pH (criteria given as a range from 6.5 to 8.5).

Cadmium concentrations were measured 127 times over the 15 years of water quality monitoring (Table 3-1). Approximately 20% (25 samples) of the concentrations measured at all sites exceeded the criterion for cadmium of less than 0.009 mg/L. However, 23 of the exceeding concentrations at 0.010 mg/L were only slightly greater than the criterion. The maximum concentration of cadmium (0.025 mg/L) was measured in a sample collected from the weir-outfall in February 1980.



Table 3-1. Frequencies of water quality parameter measurement for metals, inorganic non-metals, nutrients, physical measures, and bacteria counts monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Aluminum	109	0	NL			
Antimony	8	8	0.5	0	0	0.0
Arsenic	38	13	0.036	0	0	0.0
Beryllium	28	26	NL			
Cadmium	127	44	0.0093	1	25	19.7
Chloride	3	0	NL			
Chromium	147	84	0.05	0	2	1.4
Copper	147	53	2.9	0	0	0.0
Lead	147	47	0.0085	40	78	53.1
Mercury	281	261	0.025	0	0	0.0
Nickel	38	28	0.0083	28	8	21.1
Selenium	18	18	0.071	0	0	0.0
Silver	18	18	0.0092	16	0	0.0
Thallium	8	8	2.13	0	0	0.0
Zinc	428	46	0.086	0	144	33.6
Cyanide	6	6	0.001	6	0	0.0
Dissolved Oxygen	394	2	<5	0	29	7.4
BOD	414	192	NL_			
COD	159	7	NL			
Ammonia	3	0	0			
Nitrate	61	1	0			
Nitrite	3	0	NL			
Nitrate + Nitrite	24	0	10	0	0	0.0
Total Nitrogen	327	0	NL			
Total Kjeldahl Nitrogen	152	o	NL			
Total Phosphate	128	29	NL			

Table 3-1. Cont'd						
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Hardness	10	0	NL		,	
Oil & Grease	19	16	NL			
рН	404	0	6.5-8.5	0	7*	1.7
Settleable Solids	19	8	NL			
Temperature (°C)	394	1	NL			
Total Organic Carbon	407	0	NL			
Total Petroleum Hydrocarbons	10	10	NL			
Total Suspended Solids	925	3	NL			
Turbidity (ntu)	396	0	NL			
Fecal Coliform (#/100 ml)	56	0	NL			
Total Coliform (#/100 ml)	49	1	NL_			

^{* -} pH always below the criteria range NL - Not listed



Chromium concentrations were measured 147 times over the 15 years of water quality monitoring (Table 3-1). Less than 2% (2 samples) of the concentrations measured at all sites exceeded the criterion for chromium of less than 0.05 mg/L. However, the frequency of chromium concentrations exceeding the criterion may be less. The water quality criterion used in the comparison was based on the EPA chronic saltwater criterion for hexavalent chromium which represents only a fraction of total chromium. Applying this criterion to total chromium concentrations may have resulted in an overestimate of the number of exceeding concentrations. The exceeding chromium concentrations, approximately 2 and 11 times greater than the criterion, were measured in samples collected from the weir-outfall during February 1980.

Lead concentrations were measured 147 times over the 15 years of water quality monitoring (Table 3-1). Greater than 50% (78 samples) of the concentrations measured at all sites exceeded the criterion of less than 0.009 mg/L. The frequency of concentrations exceeding the criterion was probably underestimated. Among all samples analyzed for lead, 47 had concentrations less than test detection limits, and were not counted as exceeding the criterion. However, among these samples, 43 had test detection limits that exceeded the criterion. The distribution pattern of exceeding lead concentrations was not clearly defined. Leading concentrations above criteria were observed during all phases of dredge monitoring (pre, during, and post), and at all station types including the background station. However, the greatest concentrations of lead were measured in samples collected from the during-dredge phase of water quality monitoring.

Nickel concentrations were measured 38 times over the 15 years of water quality monitoring (Table 3-1). Approximately 20% (8 samples) of the concentrations measured among all sites exceeded the criterion for nickel of less than 0.008 mg/L. The frequency of exceeding concentrations was probably underestimated. Among all samples analyzed for nickel, 28 had concentrations less than the test detection limits. However, the test detection limit for all of these samples was greater than the criterion. All but one of the exceeding concentrations were observed in samples collected from the weir-outfall, and all but one of these was collected in the during-dredge phase of water quality monitoring. The maximum concentration of nickel (0.0320 mg/L) observed during maintenance dredge monitoring was 4 times greater than the criterion.

Zinc concentrations were measured 428 times over the 15 years of water quality monitoring (Table 3-1). Approximately 30% (144 samples) of the concentrations measured among all sites exceeded the criterion for zinc of less than 0.086 mg/L. Exceeding concentrations of zinc were observed at all station types. The weir-outfall had the greatest number of exceedences at 93, and the greatest concentration of zinc observed during monitoring at 21.0 mg/L. The mixing zone had 34 exceeding concentrations, while the background had 17.

Dissolved oxygen (DO) concentrations were measured 394 times during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-1). Less than 10% (29 measures)



of the concentrations measured among all sites were below the minimum criteria for DO of 5.0 mg/L. Low DO concentrations were observed at all of the site types. Most of the low DO concentrations (17) were observed at the mixing zone sites; low concentrations at the weir-outfall and background sites numbered 9 and 2, respectively. However, based on the percentage of DO concentrations measured below criteria, the weir-outfall was greatest (25%) followed by the mixing zone (5%) and background (4%). The concentrations of DO below criteria were different between the weir-outfall and the mixing zone-background sites. All but one of the weir-outfall DO concentrations were below 2 mg/L, while all of the mixing zone and background concentrations were greater than 4 mg/L.

Measurements of pH were collected 404 times during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-1). Less than 2% (7 measures) were outside of the criteria range for pH of 6.5 to 8.5. All but one of the noncompliant measures were too acidic and fell below the criteria range. Six of the measurements were observed at mixing zone sites, and the seventh was from the background. The lowest measurement of pH (2.89) and the only measurement exceeding the criteria range (8.55) were both recorded from mixing zone stations on the same monitoring date.

Nine other parameters were compared to water quality criteria, and had no exceeding measures during the 15 years of monitoring at Wilmington Harbor (Table 3-1). Of these, silver and cyanide had concentrations that may have exceeded their respective criteria but were confounded by test detection limits. In both cases, the test detection limits exceeded criteria concentrations. Twenty-one water quality parameters were measured that had no criteria.

### 3.1.1.2 PCBs and Organics

A total of 98 PCB and organic parameters were monitored during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-2). Among these parameters, 32 had listed criteria concentrations. A comparison of the criteria with water quality monitoring data identified only PCBs as the only parameter that had concentrations exceeding criteria.

PCB concentrations were measured 247 times over the 15 years of water quality monitoring (Table 3-2). Fourteen percent (35 samples) of the concentrations measured among all sites exceeded the water quality criterion for PCBs of less than 0.03  $\mu$ g/L. The number of concentrations exceeding the criterion was probably underestimated. Among all 247 samples, 212 had concentrations less than test detection limits and were regarded as not exceeding the criterion. However, among the 212 samples, 201 had test detection limits that were greater than the criterion. All of the site types had concentrations of PCBs that exceeded the criterion. The weir-outfall and background had the least number of exceeding concentrations at 4 and 5, respectively, while the mixing zone had 26. The greatest concentration (2.70)



Table 3-2. Frequencies of water quality parameter measurement for PCBs and organics monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
PCB's	247	212	0.03	201	35	14.2
1-Methylnaphthalene	10	10	NL			
1-Methylphenanthrene	10	10	NL			
1,1-Dichloroethane	4	4	NL			
1,1-Dichloroethene	4	4	NL			
1,1,1-Trichloroethane	4	4	31200	0	0	0.0
1,1,2-Trichloroethane	4	4	NL			
1,1,2,2-Tetrachloroethane	4	4	9020	0	0	0.0
1,2-Dichlorobenzene	4	4	NL.			
1,2-Dichloroethane	3	3	113000	0	0	0.0
1,2-Dichloroethene	4	4	NL			
1,2-Dichloropropane	4	4	3040	0	0	0.0
1,2-Diphenyl Hydrazine	4	4	NL			
1,2,4-Trichlorobenzene	4	4	129	0	0	0.0
1,3-Dichlorobenzene	4	4	129	0	0	0.0
1,4 & 1,2-Dichlorobenzene	3	3	129	0	0	0.0
1,4-Dichlorobenzene	4	4	129	0	0	0.0
2-Chloroethylvinylether	1	1	NL			
2-Chloronaphthalene	4	4	7.5	4	0	0.0
2-Chlorophenol	4	4	29700	0	0	0.0
2-Methylnaphthalene	10	10	NL			
2-Nitrophenol	4	4	4850	0	0	0.0
2,3,5-Trimethyl-naphthalene	10	10	NL			
2,4-Dichlorophenol	4	4	NL.			
2,4-Dimethylphenol	4	4	NL			
2,4-Dinitrophenol	4	4	NL			



Table 3-2. Cont'd						
Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
2,4-Dinitrotoluene	4	4	NL			
2,4,6-Trichlorophenol	4	4	NL			
2,6-Dimethylnaphthalene	10	10	NL			
2,6-Dinitrotoluene	4	4	NL			
3,3'-Dichlorobenzidine	4	4	NL			
4-Bromophenyl-phenylether	4	4	NL			
4-Chlorophenyl-phenylether	4	4	NL			
4-Nitrophenol	4	4	4850	0	0	0.0
4,6-Dinitro-2-methylphenol	4	4	NL			
4,-Chloro-3-methylphenol	4	4	NL			
Acenaphthene	14	14	710	0	0	0.0
Acenaphthylene	14	14	NL			
Acrolein	4	4	55	0	0	0.0
Acrylonitrile	4	4	NL			
Anthracene	14	14	NL			
Benzene	4	4	700	0	0	0.0
Benzidine	4	4	NL			
Benzo(a)anthracene	14	14	NL			
Benzo(a)pyrene	34	34	NL			
Benzo(b)fluoranthene	14	14	NL			
Benzo(e)pyrene	10	10	NL			
Benzo(g,h,i)perylene	14	14	NL			
Benzo(k)fluoranthene	14	14	NL			
Biphenyl	10	10	NL			
Bis(2-chloroethoxy)methane	4	4	NL.			
Bis(2-chloroethyl)ether	4	4	NL			
Bis(2-chloroisopropyl)ether	4	4	NL			
Bis(2-ethylhexyl)phthalate	24	24	NL			



Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Bromodichloromethane	4	4	NL			
Bromoform	4	4	NL			
Bromomethane	4	4	NL			
Butlybenzylphthalate	4	4	NL			
Carbon Tetrachloride	4	4	50000	0	0	0.0
Chlorobenzene	4	4	129	0	0	0.0
Chloroethane	4	4	NL			
Chloroform	24	24	NL			
Chloromethane	4	4	NL			
Chrysene	14	14	NL			
Cis-1,3-Dichloropropene	4	4	NL			
Cis,trans,1,2-Dichloroethene	1	11	NL			
Dibenzo(a,h)anthracene	14	14	NL			
Dibromochloromethane	4	4	NL			
Diethylphthalate	4	4	NL			
Dimethylphthalate	4	4	NL			
Di-n-butylphthalate	4	4	NL			
Di-n-octylphthalate	4	4	NL.			
Ethylbenzene	4	4	430	0	0	0.0
Fluoranthene	34	34	16	0	0	0.0
Fluorene	14	14	NL			
Hexachlorobenzene	4	4	NL.			
Hexachlorobutadiene	4	4	32	0	0	0.0
Hexachlorocyclopentadiene	4	4	7	4	0	0.0
Hexachloroethane	4	4	940	0	0	0.0
Indeno(1,2,3-c,d)pyrene	14	14	NL_			
Isophorone	4	4	12900	0	0	0.0
Methylene Chloride	4	4	NL			



Table 3-2. Cont'd  Parameter	# Measured	# Below Detection Limit	Criteria (µg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
Naphthalene	14	14	2350	0	0	0.0
Nitrobenzene	4	4	6680	0	0	0.0
N-nitrosodimethylamine	4	4	NL			
N-nitroso-Di-n-propylamine	4	4	NL			
N-nitrosodiphenylamine	4	4	NL			
Pentachlorophenol	4	4	7.9	4	0	0.0
Perylene	10	10	NL			
Phenanthrene	14	14	4.6	14	0	0.0
Phenol	53	36	5800	0	0	0.0
Pyrene	14	14	NL.			
Tetrachloroethene	24	24	450	0	0	0.0
Toluene	4	4	5000	0	0	0.0
Trans-1,3-Dichloropropene	4	4	NL			
Trichloroethene	4	4	2000	0	0	0.0
Trichlorofluoromethane	3	3	NL			
Vinyl Chloride	4	4	NL			

 $\mu g/L$ ) among all PCB measurements was observed at a mixing zone site during January 1985, and was 90 times greater than the criterion.

For several of the dredge water quality monitoring projects, PCBs were measured with different units of precision. In 1980 and 1993, PCBs were measured by industrial groups (Aroclors 1254, 1260, 1242, 1248, and 1221). All of the concentrations during both of these years were below test detection limits. In 1994, concentrations of total PCBs were measured in units of  $\mu g/L$  (parts per billion), and that of PCB specific congeners, in units of ng/L (parts per trillion) and pg/L (parts per quadrillion). At the total PCB level, no PCBs were detected in any of samples analyzed, however, at the specific congener level, several species were detected (Table 3-3). Predredge water quality monitoring resulted in the detection of one congener in harbor water; during-dredge monitoring resulted in 4 detections at the weir-outfall and 1 in the mixing zone; and post-dredge monitoring resulted in two detections at both weir-outfall and mixing zones. The sample with the greatest PCB concentration calculated by summing all congeners detected (475 pg/L at the weir-outfall, 25 February) was more than 60 times less than the criterion for PCBs. No regulatory criteria are published for specific PCB congeners.

	B congeners nitoring in 19		ured during V	Vilmington H	larbor water	quality				
PCB Congeners	Pr	е	Dur	ing	Po	st				
		Weir-outfall								
77 Tetra	Not sa	mpled	319	368	41.1	118				
81 Tetra			11.1	ND	ND	ND				
126 Penta			52.9	58	5.6	ND				
169 Hexa			ND	47.4	ND	ND				
			Mixing	j Zone						
	Station 1	Station 1	Station 1	Station 2	Station 1	Station 2				
77 Tetra	51.2	31	31	64.2	31.2	28.7				
126 Penta	ND	ND	ND	ND	4.9	4.6				

Thirty-one other organic parameters were compared to water quality criteria, and none had exceeding concentrations during the 15 years of monitoring at Wilmington Harbor (Table 3-2). Among these, the organics, 2-chloronaphthalene, hexachlorocyclopentadiene, pentachlorophenol, and phenanthrene had concentrations that may have exceeded their



respective criteria but were confounded by test detection limits. In both cases, the test detection limits exceeded criteria concentrations.

Sixty-six organic parameters of water quality that were measured had no criteria. All of the concentrations measured for these parameters were less than their respective test detection limits.

## 3.1.1.3 Pesticides

A total of 29 pesticide parameters were monitored during the 15 years of water quality monitoring at Wilmington Harbor (Table 3-4). Among these parameters, 22 had listed criteria concentrations. A comparison of the criteria with water quality monitoring data found no parameters with concentrations exceeding a criterion. However, among the parameters with criteria, 13 had concentrations that may have exceeded their respective criteria but were confounded by test detection limits. In all cases, the test detection limits exceeded criteria concentrations.

Seven pesticide parameters of water quality that were measured had no criteria (Table 3-4). All of the concentrations measured for these parameters were less than their respective test detection limits with one exception. Oxychlordane was detected in a sample collected from the weir-outfall in the during-dredge phase in 1994.

### 3.1.2 Effects of Dredging on Water Quality

Analysis of variance (ANOVA) was used to compare water quality of the weir-outfall, mixing zone, and background site for 19 of the water quality parameters (Table 3-5). These 19 parameters were the only ones that had enough data variability to apply a statistically meaningful comparison. The water quality comparison was restricted to data collected in the during-dredge phase of maintenance dredge monitoring.

Significant differences between monitoring sites were observed for 14 of the 19 parameters compared by ANOVA. In all 14 instances, the water quality of the weir-outfall was different from the mixing zone and background site, and that between the mixing zone and the background site was not different. Among the metals, aluminum in the weir-outfall was 5 times greater than the mixing zone and background sites. Weir concentration of arsenic was at least twice mixing zone and background levels while chromium was three times as great. Lead concentration in the weir were approximately three times higher than mixing zone and background and zinc was at least 8 times higher. No significant differences between sites were observed for cadmium or copper. Among nutrient parameters, both total nitrogen and TKN in the weir-outfall were almost 10 times greater than in the mixing zone and background sites. Total phosphorus was also greater in the weir-outfall but only by a factor of 2. The differences between sites were greatest for turbidity and total suspended solids;



Table 3-4. Frequencies of water quality parameter measurement for pesticides monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation > Criteria	% of Observation > Criteria
2,4'-DDD	10	10	3.6	0	0	0.0
2,4'-DDE	10	10	14	0	0	0.0
2,4'-DDT	10	10	0.001	10	0	0.0
4,4'-DDD	13	13	3.6	0	0	0.0
4,4'-DDE	13	13	14	0	0	0.0
4,4'-DDT	13	13	0.001	13	0	0.0
A-BHC	13	13	0.34	0	0	0.0
Aldrin	13	13	1.3	0	0	0.0
в-внс	13	13	0.34	0	0	0.0
Chlordane	7	3	0.004	3	4	57.1
Cis-chlordane	10	10	0.004	10	0	0.0
Cis-nonachlor	10	10	NL			
D-BHC	13	13	0.34	0	0	0.0
Dicofol	10	10	NL			
Dieldrin	13	13	0.0019	13	0	0.0
Endosulfan I	13	13	0.0087	13	0	0.0
Endosulfan II	13	13	0.0087	13	0	0.0
Endosulfan sulfate	13	13	NL			
Endrin	13	13	0.0023	13	0	0.0
Endrin aldehyde	13	13	NL			
G-BHC	13	13	0.34	0	0	0.0
Heptachlor	13	13	0.0036	13	0	0.0
Heptachlor epoxide	13	13	0.0036	13	0	0.0
Hexychlorobenzene	10	10	NL			
Mirex	10	10	0.001	10	0	0.0
Oxychlordane	10	9	NL			



Table 3-4. Co	ont'd					
Parameter	# Measured	# Below Detection Limit	Criteria (μg/L)	# of Detection Limits > Criteria	# of Observation >Criteria	% of Observation > Criteria
Toxaphene	17	17	0.0002	17	0	0.0
Trans-chlordane	10	10	0.004	10	0	0.0
Trans-nonachior	10	10	NL			



Table 3-5. ANOVA comparison of means for water quality parameters monitored in the during-dredge phase of maintenance dredging at Wilmington Harbor from 1980 to 1994. (Means with the same letter are not significantly different; a is significantly greater than b; total sample size is indicated in parentheses.)

Parameter	Weir-Outfall	Mixing Zone	Background
BOD (mg/L)	31.6°	3.2 ^b	3.7 ^b
	(54)	(266)	(38)
COD (mg/L)	142°	38 ^b	39 ^b
	(21)	(92)	(11)
рН	7.2ª	7.2°	7.2°
	(35)	(269)	(38)
Dissolved Oxygen (mg/L)	7.4 ^b	8.8*	8.4°
	(33)	(267)	(38)
Fecal Coliform	1913°	316°	200°
(# of colonies)	(41)	(12)	(2)
Total Coliform	14657°	1758 <b>*</b>	3250°
(# of colonies)	(34)	(12)	(2)
TOC (mg/L)	63.8°	5.6 ^b	4.8 ^b
	(38)	(269)	(38)
Total Phosphate (mg/L)	0.53°	0.21 ^b	0.18 ^b
	(20)	(86)	(10)
Total Suspended Solids (mg/L)	1430°	71 ^b	64 ^b
	(557)	(268)	(38)
Turbidity (NTUs)	3065*	42 ^b	31 ^b
	(36)	(266)	(38)
TKN (mg/L)	18.1°	2.0 ^b	1.6 ^b
	(11)	(105)	(16)
Total Nitrogen (mg/L)	38.1 ^(a)	4.0 ^b	3.5 ^b
	(27)	(225)	(31)
Aluminum (mg/L)	12.7 ^(a)	2.2 ^b	2.3 ^B
	(15)	(74)	(8)
Arsenic (mg/L)	0.0105*	0.0040 ^b	0.0023 ^b
	(9)	(15)	(3)



Table 3-5. Cont'd			
Parameter	Weir-Outfall	Mixing Zone	Background
Cadmium (mg/L)	0.0053°	0.0039°	0.0038*
	(24)	(77)	(8)
Chromium (mg/L)	0.0474°	0.0147 ^b	0.0149 ^b
	(24)	(89)	(11)
Copper (mg/L)	0.0522ª	0.0283°	0.0315°
	(24)	(89)	(11)
Lead (mg/L)	0.0889°	0.0301 ^b	0.0215 ^b
	(24)	(89)	(11)
Zinc (mg/L)	1.34°	0.07 ^b	0.16 ^b
	(40)	(280)	(41)

the former was greater in the weir-outfall by and factor of 70, and the latter was greater by a factor of 30. Concentrations of BOD, COD and TOC were greater in the weir-outfall by factors of 10, 4, and 12, respectively. Dissolved oxygen in the weir-outfall, although only 12% less than the mixing zone and background site, was still significantly lower. No differences were observed between sites for pH or the coliform parameters.

# 3.2 SEDIMENT AND ELUTRIATE TESTING

### 3.2.1 Sediments

Sediment contaminant testing was conducted twice during the 15 years of maintenance dredging at Wilmington Harbor. In total, the concentrations of 141 parameters were analyzed in sediments collected from Wilmington Harbor prior to dredging (Tables 3-6 3-7, and 3-8). Only 33 of the sediment contaminant parameters had listed sediment quality criteria. Three parameters had at least one concentration that exceeded the criterion for all of the sediment testing data (mercury, silver and phenanthrene).

Mercury was measured 8 times in sediments and exceeded the criterion of 0.15 mg/kg for only one sediment sample. This sample was collected during pre-dredge monitoring in December 1993 and exceeded the criterion by a factor of two.

Silver concentrations in sediments were also measured 8 times and exceeded the criterion of 1.0 mg/kg twice. Both exceeding concentrations were measured during predredge in December 1993 and were 3 and 4 times over the criterion.

Lastly, phenanthrene concentrations, measured 8 times, exceeded the criterion of 240  $\mu g/kg$  twice during pre-dredge monitoring conducted during March 1993 (Table 3-7). The exceeding concentrations were 2 to 2.5 times greater than the criterion. The number of exceeding phenanthrene concentrations may have been greater than 2; two concentrations, also measured in March 1993, were less than a test detection limit that was greater than the criterion.

Among the 33 sediment parameters with criteria, 17 had concentrations that may have exceeded their respective criteria. In all instances, result concentrations were less than detection limits that were in turn greater than parameter criteria. Also among the 33 parameters, 13 had concentrations that were unambiguously less than their respective criteria. These parameters included antimony, arsenic, cadmium, chromium, copper, lead, nickel, zinc, total PCBs, benzo(a)pyrene, chrysene, flouranthene, and pyrene.

A total of 108 sediment contaminant parameters had no listed sediment quality criteria. Of these parameters, 100 had resulting concentrations that were always less than their

Table 3-6. Frequencies of sediment and elutriate parameters measurement for metals, inorganic non-metals, nutrient parameters and physical measures monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

The state of the s		Sediment (mg	/kg, where	applicable)			Elutriate (m	g/L, where	applicable)	
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
Aluminum	NM					3	1	NL.		
Antimony	6	6	25	O	0	7	7	0.5	0	0
Arsenic	8	0	8.2	0	0	7	6	0.036	0	6
Beryllium	6	0	NL			7	5	NL		
Cadmium	8	6	1.2	0	0	10	10	0.0093	0	9
Chromium	8	0	81	0	0	10	9	0.05	0	0
Copper	8	0	34	0	. 0	10	7	2.9	0	0
Lead	8	0	48.7	0	0	10	8	0.0085	1	8
Mercury	8	6	0.15	1	0	21	21	0.025	O	0
Nickel	8	0	20.9	0	0	7	7	0.0083	0	7
Selenium	8	3	NL			7	7	0.071	О	6
Silver	8	6	1.0	2	0	7	7	0.0009	0	7
Thallium	6	6	NL			7	7	2.13	0	0
Zinc	8	0	150	0	0	21	5	0.086	3	0
Cyanide	6	0	NL			7	7	0.001	0	7
BOD	NM					14	9	NL		
COD	NM					3	0	NL		
Total Nitrogen	NM					11	0	NL		
Total Kjeldahl Nitrogen	NM					3	0	NL		

		Sediment (mg	/kg, where	applicable)		Elutriate (m	g/L, where	applicable)		
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
Total Phosphate	NM					3	1	NL		
Oil & Grease	NM					3	3	NL		
рН	NM					14	0	6.5-8.5	0	0
Total Organic Carbon	2	0	NL			14	0	NL		
Total Petroleum Hydrocarbons	2	0	NL			NM				

Table 3-7. Frequencies of sediment and elutriate parameters measurement for organics monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

		Sedi	ment (µg/k	g)			El	utriate (µg/L	)	
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
PCBs	8	6	0.0227	o	О	21	21	0.03	0	11
1-Methylnaphthalene	2	2	70	0	2	NM				
1-Methylphenanthrene	2	2	NL			NM				
1,1-Dichloroethane	6	6	NL			7	7	NL		
1,1-Dichloroethene	7	7	NL			7	7	NL		
1,1,1-Trichloroethane	6	6	NL			7	7	31200	0	0
1,1,2-Trichloroethane	6	6	NL			7	7	NL		
1,1,2,2-Tetrachloroethane	6	6	NL		,	7	7	9020	0	0
1,2-Dichlorobenzene	6	6	NL			7	7	NL		
1,2-Dichloroethane	6	6	NL			7	7	113000	0	0
1,2-Dichloroethene	7	7	NL			7	7	NL		
1,2-Dichloropropane	6	6	NL			7	7	3040	0	0
1,2-Diphenyl Hydrazine	6	6	NL		·	7	7	NL		
1,2,4-Trichlorobenzene	6	6	NL_			7	7	129	0	0
1,3-Dichlorobenzene	6	6	NL			7	7	129	0	0
1,4 & 1,2-Dichlorobenzene	6	6	NL			7	7	129	0	0
1,4-Dichlorobenzene	6	6	NL			7	7	129	0	0
2-Chloronaphthalene	6	6	NL			7	7	7.5	0	7
2-Chlorophenol	6	6	NL_			7	7	29700	0	0
2-Methylnaphthalene	2	2	70	0	2	NM				

		Sedi	ment (µg/k	(g)			El	utriate (µg/l	L)	
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
2-Nitrophenol	6	6	NL.			7	7	4850	0	0
2,3,5-Trimethyl-naphthalene	2	2	NL			NM				
2,4-Dichlorophenol	6	6	NL.			7	7	NL_		
2,4-Dimethylphenol	6	6	NL			7	7	NL		
2,4-Dinitrophenol	6	6	NL			7	7	NL		
2,4-Dinitrotoluene	6	6	NL			7	7	NL		
2,4,6-Trichlorophenol	6	6	NL			7	7	NL		
2,6-Dimethylnaphthalene	2	2	NL			NM				
2,6-Dinitrotoluene	6	6	NL		`	7	7	NL		
3,3'-Dichlorobenzidine	6	6	NL			7	7	NL		
4-Bromophenyl-phenylether	6	6	NL			7	7	NL		
4-Chlorophenyl-phenylether	6	6	NL.			7	7	NL		
4-Nitrophenol	6	6	NL			7	7	4850	0	0
4,6-Dinitro-2-methylphenol	6	6	NL.			7	7	NL		
4,-Chloro-3-methylphenol	6	6	NL			7	7	NL.		
Acenaphthene	8 .	8	16	0	8	7	7	710	0	0
Acenaphthylene	8	8	44	0	8	7	7	NL		
Acrolein	6	6	NL			7	7	55	0	0
Acrylonitrile	6	6	NL			7	7	NL.		
Anthracene	8	8	85.3	0	8	7	7	NL		
Benzene	6	6	NL			7	7	700	0	0

Table 3-7. Cont'd										
		Sedi	ment (µg/k	(g)			E	utriate (µg/l	.}	
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
Benzidine	6	6	NL			7	7	NL.		
Benzo(a)anthracene	8	8	261	0	8	7	7	NL		
Benzo(a)pyrene	8	8	430	0	0	7	7	NL		
Benzo(b)fluoranthene	8	8	NL			7	7	NL		
Benzo(e)pyrene	2	2	NL			NM				
Benzo(g,h,i)perylene	8	8	NL			7	7	NL		
Benzo(k)fluoranthene	8	8	NL			7	7	NL		
Biphenyl	2	2	NL			NM		NL		
Bis(2-chloroethoxy)methane	6	6	NL			7	7	NL		
Bis(2-chloroethyl)ether	6	6	NL			7	7	NL_		
Bis(2-chloroisopropyl)ether	6	6	NL			7	7	NL		
Bis(2-ethylhexyl)phthalate	6	3	NL			7	7	NL		
Bromodichloromethane	6	6	NL			7	7	NL		
Bromoform	6	6	NL			7	7	NL		
Bromomethane	6	6	NL			7	7	NL		
Butlybenzylphthalate	6	66	NL			7	7	NL		
Carbon Tetrachloride	6	6	NL			7	7	50000	0	0
Chlorobenzene	6	6	NL			7	7	129	0	0
Chloroethane	6	6	NL			7	7	NL		
Chloroform	6	6	NL			7	5	NL.		
Chloromethane	6	6	NL			7	7	NL		

transcription of the second of		Sedi	ment (µg/k	:g)		Elutriate (μg/L)					
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria	
Chrysene	8	8	384	0	0	7	7	NL			
Cis-1,3-Dichloropropene	6	6	NL			7	7	NL			
Dibenzo(a,h)anthracene	8	8	63.4	0	8	7	7	NL			
Dibromochloromethane	6	6	NL			7	7	NL			
Diethylphthalate	6	6	NL			7	7	NL			
Dimethylphthalate	6	6	NL			7	7	NL			
Di-n-butylphthalate	6	6	NL			7	7	NL			
Di-n-octylphthalate	6	6	NL			7	7	NL			
Ethylbenzene	6	6	NL			7	7	430	0	0	
Fluoranthene	8	8	600	0	0	7	7	16	0	0	
Fluorene	8	8	19	0	8	7	7	NL			
Hexachlorobenzene	6	6	NL			7	7	NL			
Hexachlorobutadiene	6	6	NL			7	7	32	0	0	
Hexachlorocyclopentadiene	6	6	NL			7	7	7	0	7	
	6	6	NL			7	7	940	0	0	
Hexachloroethane	8	8	NL.			7	7	NL.			
Indeno(1,2,3-c,d)pyrene	6	6	NL NL			7	7	12900	0	0	
Isophorone	6	6	NL NL			7	7	NL			
Methylene Chloride		8	160	0	8	7	7	2350	0	0	
Naphthalene	8			<del>                                     </del>		7	7	6680	0	0	
Nitrobenzene	6	6	NL NL			7	7	NL			

Parameter		Elutriate (μg/L)								
	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
N-nitroso-Di-n-propylamine	6	6	NL			7	7	NL		
N-nitrosodiphenylamine	6	6	NL			7	7	NL		
Pentachlorophenol	6	6	NL			7	7	7.9	0	7
Perylene	2	2	NL			NM				
Phenanthrene	8	6	240	2	2	7	7	4.6	0	7
Phenol	6	0	NL			7	1	5800	0	0
Pyrene	8	8	865	0	0	7	7	NL		
Tetrachloroethene	6	6	NL			7	7	450	0	0
Toluene	6	6	NL			7	7	5000	0	0
Trans-1,3-Dichloropropene	6	6	NL			7	7	NL		
Trichloroethene	6	6	NL			7	7	2000	0	0
Trichlorofluoromethane	6	6	NL			7	7	NL		
Vinyl Chloride	6	6	NL			7	7	NL		

Table 3-8. Frequencies of sediment and elutriate parameters measurement for pesticides monitored during maintenance dredging at Wilmington Harbor from 1980 to 1994

		Sedi	ment (µg/k	g)	Elutriate (μg/L)					
Parameter	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria
2,4'-DDD	2	2	1.22	0	2	NM				
2,4'-DDE	2	2	2.2	0	2	NM				
2,4'-DDT	2	2	1.58	0	2	NM				
4,4'-DDD	8	8	1.22	0	8	7	7	3.6	0	0
4,4'-DDE	8	8	2.2	0	8	7	7	14	0	0
4,4'-DDT	8	8	1.58	0	8	7	.7	0.001	0	7
A-BHC	8	8	NL			7	7	0.34	0	0
Aldrin	8,	8	NL			7	7	1.3	0	0
B-BHC	8	8	NL			7	7	0.34	0	0
Chlordane	6	6	2	O	6	7	7	0.004	0	7
Cis-chlordane	2	2	NL			NM				
Cis-nonachlor	2	2	NL			NM				
D-BHC	8	8	NL.			7	7	0.34	0	0
Dicofol	2	2	NL			NM				
Dieldrin	8	8	0.715	0	8	7	7	0.0019	0	7
Endosulfan I	8	8	NL			7	7	0.0087	0	7
Endosulfan II	8	8	NL			7	7	0.0087	0	7
Endosulfan sulfate	8	8	NL			7	7	NL.		
Endrin	8	8	NL			7	7	0.0023	0	7
Endrin aldehyde	8	8	NL			7	7	NL		

Table 3-8. Cont'd													
Parameter		Sediment (µg/kg)						Elutriate (μg/L)					
	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > Criteria	# of Detection Limits > Criteria	# Measured	# Below Detection Limit	Criteria (mg/L)	# of Obser- vation > criteria	# of Detection Limits > Criteria			
G-BHC	8	8	NL			7	7	0.34	0	0			
Heptachlor	8	8	NL			7	7	0.0036	0	7			
Heptachior epoxide	8	8	NL			7	7	0.0036	0	7			
Hexychlorobenzene	2	2	NL			NM							
Mirex	2	2	NL			NM							
Oxychlordane	2	1	NL			NM							
Toxaphene	8	8	NL			7	7	0.0002	0	7			
Trans-chlordane	2	2	NL			NM							
Trans-nonachlor	2	2	NL			NM							

NL - Not listed NM - Not measured



respective test detection limits. The remaining 8 parameters with at least one concentration measured above test detection limits included cyanide, total organic carbon, total petroleum hydrocarbons, beryllium, selenium, bis(2-ethylhexyl)phthalate, phenol, and oxychlordane.

#### 3.2.2 Elutriate Testing

Elutriate testing was conducted three times during the 15 years of maintenance dredging at Wilmington Harbor. In total, the concentrations of 129 elutriate parameters were analyzed from samples collected in Wilmington Harbor prior to dredging (Tables 3-6, 3-7, and 3-8). Of these, 61 parameters had listed water quality criteria. In a comparison with criteria, only 2 parameters had at least one concentration that exceeded it's criterion for all of the elutriate monitoring data (lead and zinc).

Lead was measured in 10 elutriate samples and exceeded the water quality criterion of 0.0085 mg/L only once (Table 3-6). The elutriate sample, collected during pre-dredge monitoring in December 1979, exceeded the criterion by a factor of 27. The number of lead concentrations exceeding the criterion may have been greater; 8 of the remaining concentrations were less than detection limits that were in turn greater than the criterion. The only elutriate concentration that was measured less than the criteria was from the background sample collected during March 1993.

Zinc was measured in 21 elutriate samples and exceeded the criterion of 0.086 mg/L only 3 times (Table 3-6). All of the exceeding concentrations were approximately 33% higher than the criterion. One of the elutriate samples was collected in March 1979; the remaining two were collected in June 1995.

Nineteen parameters had concentrations that may have exceeded their respective criteria, but were indeterminate because of high test detection limits. In most instances, concentrations were less than detection limits that were in turn greater than parameter criteria. Among the 61 parameters compared to water quality criteria, 41 had concentrations that were unambiguously less than their respective criteria. These parameters included pH, antimony, chromium, copper, mercury, thallium and 36 parameters comprised of organics and pesticides (Tables 3-6, 3-7, and 3-8).

A total of 67 elutriate parameters had no listed water quality criteria. Of these parameters, 58 had resulting concentrations that were always less than their respective test detection limits. The remaining 9 parameters with at least one concentration measured above test detection limits included BOD, COD, TKN, total nitrogen, TOC, total phosphate, aluminum, beryllium, and chloroform (Table 3-6).



#### 3.2.3 PCBs in Sediment Elutriates

PCBs were monitored in elutriates during two of the 15 years of maintenance dredging at Wilmington Harbor (Table 3-7). In June 1985, total PCB concentrations among 11 samples analyzed were all less than test detection limits (2 mg/L), however, the detection limits were at least 6000 times greater than the criterion of 0.00003 mg/L. In 1993, PCB concentrations were measured by industrial groups (Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260) for 7 elutriate samples. Again, all of the resulting concentrations were less than test detection limits for each industrial group, however, all of the industrial group detection limits (0.5-1.0  $\mu$ g/L) were greater than the parameter criterion by a factor greater than 10.

#### 3.3 GROUNDWATER MONITORING

Groundwater well-monitoring was conducted twice during the 15 years of maintenance-dredging environmental effects monitoring. Six parameters were analyzed for groundwater well-monitoring (Table 3-9). Of these, only three had EPA National Interim Secondary Drinking Water Maximum Contaminant Levels (MCL). Chloride had the highest percentage of exceedence (55%), but was only monitored once. The average chloride concentration was slightly below the MCL. Measurements of pH were in compliance with the MCL except for two measures in 1987 that were below the range. Zinc was measured during both monitoring years and was always at least three times below the MCL.

Table 3-9. Groundwater parameters monitored for Wilmington Harbor environmental effects of maintenance dredging. (samples collected 11-12 March 1986 and 7-14 April 1987)									
Parameter	EPA MCL	N	Exceed	AVG					
Chloride (mg/L)	250 mg/L	11	6	236					
рН	6.5-8.5	23	2	6.8					
Zinc (mg/L)	5 mg/L	23	0	0.09					
Total Organic Carbon (mg/L)	NL	23	-	74					
Total Nitrogen (mg/L)	NL	12	44	58.7					
TKN (mg/L)	NL	11		17.6					



#### 4.0 SUMMARY AND CONCLUSIONS

Environmental monitoring associated with maintenance dredging projects has been conducted at Wilmington Harbor during the past 15 years. Monitoring has focused primarily on water quality of the weir-outfall and mixing zone. A few of the monitoring studies investigated sediment and elutriate contaminant concentrations, and groundwater quality at the upland dredge disposal site. Parameters monitored among studies included metals, inorganic non-metals, nutrients, physical measures, PCBs, organics and pesticides.

All of the data collected during the dredge monitoring was compiled into an electronic database. The database facilitated parameter comparisons with federal or state criteria, and provided means for making statistical comparisons between sites monitored for water quality. These data are now available electronically and are attached to this report.

The number of parameters that exceeded water quality standards was relatively low over the 15 years of monitoring. Of the 164 water quality parameters measured during maintenance dredge monitoring, only 8 had concentrations that were not compliant with water quality criteria. Most of the exceeding parameters were metals including cadmium, chromium, lead, nickel, and zinc. Concentrations of dissolved oxygen were low at times for all sites, but were lowest in the weir-outfall. Noncompliant measurements of pH were usually below the criteria range. PCB monitoring suggested that concentrations exceeding criteria occur at a relatively low frequency, however, the frequency was confounded by many concentrations that were less than test detection limits but were in turn greater than the criteria.

Water quality comparisons between weir-outfall, mixing zone and background sites suggest that the effects of dredging activities dissipated in the approximately 0.25 acre mixing zone. Statistical comparisons for 14 of 19 water quality parameters indicated that the water quality of the weir-outfall was poorer relative to the mixing zone and background sites, but no differences existed between the mixing zone samples and background sites.

Sediment contaminant concentrations have been relatively low over the years of maintenance dredging at Wilmington Harbor. Sediment and elutriate contaminant monitoring resulted in low frequencies of exceedence among 141 and 129 parameters monitored respectively. Among sediments parameters, only mercury, silver, and the organic compound phenanthrene had concentrations exceeding criteria. Furthermore, the combined number of exceeding concentrations was only 5. Among elutriate parameters, only lead and zinc had concentrations exceeding criteria, and the total number of exceedences was 4.

Groundwater monitoring of the upland disposal site indicated minimal contamination. Only a few parameters were monitored over the 15 years and the frequencies of exceedence were low.



#### 5.0 RECOMMENDATIONS

Based on 15 years of data compiled from over 100 different parameters monitored or tested in water, sediment, sediments elutriates, and groundwater, the weight of evidence suggests that past maintenance dredging operations in Wilmington Harbor has not caused significant environmental impacts to Delaware River water quality. Thus, for future maintenance dredging projects the intensive levels of environmental monitoring conducted in past studies may be not be necessary.

However, the effectiveness of upland dredge disposal operations is to a large degree dependent on the efficient operation of the disposal site. For example, weir monitoring conducted by the USACOE in 1995 during the last disposal operation in Wilmington Harbor revealed that the suspended solids coming out of the weir were often lower than background concentrations (Versar 1995). Proper gaging of the weir height is an important factor in the operation of these facilities as increasing the retention time of water in the site increases the Since the former studies have shown the dissolved removal of suspended solids. contaminants are rarely above levels of concern, and that mixing zone concentration are not different from background levels, decreasing the suspended solids loadings is probably the most important environmental factor the can readily be controlled by the dredge operators. Thus, at minimum, we recommend that for future projects total suspended solids and turbidity be measured at the weir-outfall throughout dredging operation. This will provide a general characterization of the function of the dredge disposal weir and will provide the operator immediate feedback as to whether they need to alter the operation (e.g., increase the weir height, decrease the flow rate) to minimize the dredging operations affects on water quality effects in the Delaware River.



#### 6.0 REFERENCES

- Code of Federal Regulations (CFR). 1996. Title 40 Protection of Environment. Part 143 National Secondary Drinking Water Regulations.
- Delaware Department of Natural Resources and Environmental Control. 1993. State of Delaware, surface water quality standards. Dover, DE.
- Greeley-Polhemus Group, Inc., and RMC Environmental Services, Inc. 1994. Water quality monitoring for Wilmington Harbor maintenance dredging operations, Winter 1994. Prepared for U.S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA.
- Greeley-Polhemus Group, Inc., and RMC Environmental Services, Inc. 1993. Water quality monitoring for Wilmington Harbor maintenance dredging operations, Spring 1993. Prepared for U.S. Army Corps of Engineers, Philadelphia District, Philadelphia, PA.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. *Environmental Management* 19:81-97.
- SAS Institute Inc. 1990. SAS Language: Reference, Version 6, First Edition, 1042 pp. Cary, NC.
- Sokal, R.R., and F.J. Rohlf. 1981. Biometry. W.H. Freeman and Company. New York, NY.
- U.S. EPA. 1992. Quality criteria for water
- U.S. EPA. 1988. The apparent effects threshold approach; briefing report to the EPA Science Advisory Board.
- Versar. 1995. Water quality monitoring for Wilmington Harbor maintenance dredging operations. Prepared for U.S. Army Corps of Engineers Philadelphia District. Philadelphia, PA.



#### 7.0 DATABASE DESCRIPTION

All testing data from 1979 through the most recent studies in 1994 were entered into a series of Lotus spreadsheets for four packets of data received from the Corps of Engineers. The data packets included old laboratory analysis certificates, handwritten station location maps, and in some cases data reports. These materials were reviewed to identify the test results which were entered into a spreadsheet. Each data record included common identifiers such as sample type, study year, date, and station identification. Quality control for the data included: comparing all data entries with the original report tables or analysis certificates, checking parameter reporting units, and use of computer programs to check for out-of-range parameters and other data anomalies (e.g., missing data or invalid station names). Specific parameters are reported in the same units for all years and are described in the data dictionaries presented in the following appendices. The Lotus spreadsheets were combined into four separate SAS data sets each of which contain:

- discharge water quality monitoring related to the upland disposal sites,
- groundwater testing at the upland site,
- elutriate testing of dredged sediment, and
- bulk analysis of sediment contaminant concentrations.

The data are stored as SAS data sets to facilitate statistical analysis and because of the large number of variables (over 400 for the water quality data set) is beyond the number of columns a Lotus spreadsheet can handle. In addition, a hard copy appendix of all data was not produced as it would be excessively long (over 2,000 pages just for the water quality data set). Therefore, the electronic data set contained on the attached computer disk is intended to served as the data appendix for the Wilmington Harbor Compilation Report.



# Appendix A - Water Quality Database

Name:

WQ.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 1001 observations and 479 variables in the dataset. Each observation represents a water quality sample and a series of chemical and biological measurements. A sample can be uniquely identified by station type, station name, sampling date, time, tide, tributary, and dredging period. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Silver is detected the concentration value is stored in the AG variable and a blank space exists in S_AG (Flag variable for Silver). If the parameter was not detected, the detection limit is stored in AG and less than sign (<) is stored in S_AG. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

Samples are categorized into four types of stations: Background, Mixing Zone, Outfall, and Weir; and four types of dredging periods: Pre, During, Post, and Drawdown. There are two water bodies associated with the samples: Christina River and Delaware River. If a sample does not have tributary information, blank space is stored in its variable.

#### CONTENTS PROCEDURE

Data Set Name: WORK.WQ Observations: 1001 Member Type: DATA Variables: 479 Engine: V611 Indexes: 0 Created: 10:36 Wednesday, February 19, 1997 Observation Length: 4699 Last Modified: 10:36 Wednesday, February 19, 1997 Deleted Observations: 0 Protection: Compressed: NO Sorted: Data Set Type: NO

----Engine/Host Dependent Information----

Label:

Data Set Page Size: 14336
Number of Data Set Pages: 338
File Format: 607
First Data Page: 5
Max Obs per Page: 3
Obs in First Data Page: 2

-----Alphabetic List of Variables and Attributes-----

#	Variable	Туре	Len	Pos	Format ,	Label		
72	AG	Num	8	662		Silver (mg/l)		
54	AL	Num	8	519	Aluminum (mg/l)			
55	AS	Num	8	527	Arsenic (mg/l)			
57	BE	Num	8	541	Beryllium (mg/l)			
23	BOD	Num	8	243	Biochemical Oxygen Demand (mg/l)			
60	CD	Num	8	569	Cadmium (mg/l)			
58	CHLR	Num	8	549		Chloride (mg/l)		
37	COD	Num	8	368		Chemical Oxygen Demand (mg/l)		
6	COMMENT	Char	32	52	32.	Sample Comment		
62	CR	Num	8	589		Chromium (mg/l)		
64	CU	Num	8	609		Copper (mg/l)		
76	CY	Num	8	704		Cyanide (mg/l)		
5	DATE	Num	8	44	MMDDYY8.	Sampling Date		
28	DO	Num	8	287		Dissolved Oxygen (mg/l)		
396	D_8	Num	8	4019	8 Di (ng/L)			
395	D_209	Num	8	4011	209 Deca (ng/L)			
20	FC	Num	8	215		Fecal Coliform (#/100 ml)		
38	FLOW	Num	8	376		Flow (mgd)		
397	H38_58	Num	8	4027		138,158 Hexa (ng/L)		
398	H70_90	Num	8	4035		170,190 Hepta (ng/L)		
399	HARD	Num	8	4043		Hardness (mg/L)		
35	HG	Num	8	348		Mercury (mg/l)		
400	H_128	Num	8	4051		128 Hexa (ng/L)		
401	H_137	Num	8	4059		137 Hexa (ng/L)		
402	H_149	Num	8	4067		149 Hexa (ng/L)		
403	H_151	Num	8	4075		151 Hexa (ng/L)		
404	H_153	Num	8	4083	153 Hexa (ng/L)			
405	H_156	Num	8	4091		156 Hexa (ng/L)		
406	H_157	Num	8	4099		157 Hexa (ng/L)		
407	H_166	Num	8	4107		166 Hexa (ng/L)		
408	_ Н 167	Num	8	4115		167 Hexa (ng/L)		
409	H_168	Num	8	4123		168 Hexa (ng/L)		

#	Variable	Туре	Len	Pos	Format	Label			
410	H_169	Num	8	4131		169 Hexa (pg/L)			
411	H_177	Num	8	4139					
412	H_179	Num	8	4147	, , ,				
413	H_180	Num	8	4155	180 Hepta (ng/L)				
414	H_183	Num	8	4163		183 Hepta (ng/L)			
415	H_185	Num	8	4171		185 Hepta (ng/L)			
416	H_187	Num	8	4179		187 Hepta (ng/L)			
417	H_189	Num	8	4187		189 Hepta (ng/L)			
418	H_191	Num	8	4195		191 Hepta (ng/L)			
296	NH3	Num	8	3219		Ammonia (mg/L)			
68	NI	Num	8	640		Nickel (mg/l)			
39	NN	Num	8	384		Nitrate+Nitrite (mg/l)			
297	NO2	Num	8	3227		Nitrite (mg/l)			
88	NO3	Num	8	794		Nitrate (mg/l)			
419	N_206	Num	8	4203		206 Nona (ng/L)			
420	N_207	Num	8	4211		207 Nona (ng/L)			
421	N_208	Num	8	4219		208 Nona (ng/L)			
48	OG	Num	8	472		Oil & Grease (mg/l)			
422	ORG_1	Num	8	4227		1-Methylnaphthalene (ug/L)			
423	ORG_2	Num	8	4235		1-Methylphenanthrene (ug/L)			
314	ORG_3	Num	8	3363		1,1-Dichloroethane (ug/L)			
325	ORG_4	Num	8	3451	1,1-Dichloroethene (ug/L)				
333	ORG_5	Num	8	3515		1,1,1-Trichloroethane (ug/L)			
343	ORG_6	Num	8	3595		1,1,2-Trichloroethane (ug/L)			
352	ORG_7	Num	8	3667	1,1,2,2-Tetrachloroethane (ug/L)				
362	ORG_8	Num	8	3747	1,2-Dichlorobenzene (ug/L)				
372	ORG_9	Num	8	3827		1,2-Dichloroethane (ug/L)			
298	ORG_10	Num	8	3235		1,2-Dichloroethene (ug/L)			
299	ORG_11	Num	8	3243		1,2-Dichloropropane (ug/L)			
300	ORG_12	Num	8	3251		1,2-Diphenyl Hydrazine (ug/L)			
301	ORG_13	Num	8	3259		1,2,4-Trichlorobenzene (ug/L)			
302	ORG_14	Num	8	3267		1,3-Dichlorobenzene (ug/L)			
303	ORG_15	Num	8	3275		1,4 & 1,2-Dichlorobenzene (ug/L)			
304	ORG_16	Num	8	3283		1,4-Dichlorobenzene (ug/L)			
478	ORG_17	Num	8	4683		2-Chloroethylvinylether (ug/l)			
305	ORG_18	Num	8	3291		2-Chloronaphthalene (ug/L)			
306	ORG_19	Num	8	3299		2-Chlorophenol (ug/L)			
424	ORG_20	Num	8	4243		2-Methylnaphthalene (ug/L)			
307	ORG_21	Num	8	3307		2-Nitrophenol (ug/L)			
425	ORG_22	Num	8	4251		2,3,5-Trimethyl-naphthalene (ug/L)			
308	ORG_23	Num	8	3315		2,4-Dichlorophenol (ug/L)			
309	ORG_24	Num	8	3323		2,4-Dimethylphenol (ug/L)			
310	ORG_25	Num	8	3331		2,4-Dinitrophenol (ug/L)			
311	ORG_26	Num	8	3339		2,4-Dinitrotoluene (ug/L)			
312	ORG_27	Num	8	3347		2,4,6-Trichlorophenol (ug/L)			
426	ORG_28	Num	8	4259		2,6-Dimethylnaphthalene (ug/L)			
313	ORG_29	Num	8	3355		2,6-Dinitrotoluene (ug/L)			
315	ORG_30	Num	8	3371		3,3'-Dichlorobenzidine (ug/L)			
316	ORG_31	Num	8	3379		4-Bromophenyl-phenylether (ug/L)			
317	ORG_32	Num	8	3387		4-Chlorophenyl-phenylether (ug/L)			
318	ORG_33	Num	8	3395		4-Nitrophenol (ug/L)			
319	ORG 34	Num	8	3403		4 6-Dinitro-2-methylphenol (ug/l)			

#	Variable	Туре	Len	Pos	Format	Label	
320	ORG_35	Num	8	3411		4,-Chloro-3-methylphenol (ug/L)	
321	ORG_36	Num	8	3419		Acenaphthene (ug/L)	
322	ORG_37	Num	8	3427		Acenaphthylene (ug/L)	
323	ORG_38	Num .	8	3435		Acrolein (ug/L)	
324	ORG_39	Num	8	3443		Acrylonitrile (ug/L)	
326	ORG_40	Num	8	3459		Anthracene (ug/L)	
327	ORG_41	Num	8	3467		Benzene (ug/L)	
328	ORG_42	Num	8	3475		Benzidine (ug/L)	
329	ORG_43	Num	8	3483		Benzo(a)anthracene (ug/L)	
291	ORG44	Num	8	3179		Benzo(a)pyrene (ug/L)	
330	ORG_45	Num	8	3491		Benzo(b)fluoranthene (ug/L)	
427	ORG_46	Num	8	4267		Benzo(e)pyrene (ug/L)	
331	ORG_47	Num	8	3499		Benzo(g,h,i)perylene (ug/L)	
332	ORG_48	Num	8	3507		Benzo(k)fluoranthene (ug/L)	
428	ORG_49	Num	8	4275		Biphenyl (ug/L)	
334	ORG_50	Num	8	3523		Bis(2-chloroethoxy)methane (ug/L)	
335	ORG_51	Num	8	3531		Bis(2-chloroethyl)ether (ug/L)	
336	ORG 52	Num	8	3539		Bis(2-chloroisopropyl)ether (ug/L)	
292	ORG_53	Num	8	3187		Bis(2-ethylhexyl)phthalate (ug/L)	
337	ORG_54	Num	8	3547			
338	ORG_55	Num	8	3555	· · · · · · · · · · · · · · · · · · ·		
339	ORG_56	Num	8	3563	Bromomethane (ug/L)		
340	ORG_57	Num	8	3571		Butlybenzylphthalate (ug/L)	
341	ORG_58	Num	8	3579		Carbon Tetrachloride (ug/L)	
342	ORG_59	Num	8	3587		Chlorobenzene (ug/L)	
344	ORG_60	Num	8	3603	Chloroethane (ug/L)		
293	ORG_61	Num	8	3195	Chloroform (ug/L)		
345	ORG_62	Num	8	3611		Chloromethane (ug/L)	
346	ORG_63	Num	8	3619		Chrysene (ug/L)	
347	ORG_64	Num	8	3627		Cis-1,3-Dichloropropene (ug/L)	
479	ORG_65	Num	8	4691		Cis,trans,1,2-Dichloroethene (ug/l)	
348	ORG_66	Num	8	3635		Dibenzo(a,h)anthracene (ug/L)	
349	ORG_67	Num	8	3643		Dibromochloromethane (ug/L)	
350	ORG_68	Num	8	3651		Diethylphthalate (ug/L)	
351	ORG_69	Num	8	3659		Dimethylphthalate (ug/L)	
353	ORG_70	Num	8	3675		Di-n-butylphthalate (ug/L)	
354	ORG_71	Num	8	3683		Di-n-octylphthalate (ug/L)	
355	ORG_72	Num	8	3691		Ethylbenzene (ug/L)	
294	ORG_73	Num	8	3203		Fluoranthene (ug/L)	
356	ORG_74	Num	8	3699		Fluorene (ug/L)	
357	ORG_75	Num	8	3707		Hexachlorobenzene (ug/L)	
358	ORG_76	Num		3707 3715		Hexachlorobetzene (dg/L)	
	_		8			, <del>.</del> .	
359	ORG_77	Num	8	3723		Hexachlorocyclopentadiene (ug/L)	
360	ORG_78	Num	8	3731		Hexachloroethane (ug/L)	
361	ORG_79	Num	8	3739		Indeno(1,2,3-c,d)pyrene (ug/L)	
363	ORG_80	Num	8	3755		Isophorone (ug/L)	
364	ORG_81	Num	8	3763		Methylene Chloride (ug/L)	
365	ORG_82	Num	8	3771		Naphthalene (ug/L)	
366	ORG_83	Num	8	3779		Nitrobenzene (ug/L)	
367	ORG_84	Num	8	3787		N-nitrosodimethylamine (ug/L)	
368	ORG_85	Num	8	3795		N-nitroso-Di-n-propylamine (ug/L)	
369	ORG_86	Num	8	3803		N-nitrosodiphenylamine (ug/L)	

370	
429         ORG_88         Num         8         4283         Perylene (ug/L)           371         ORG_89         Num         8         3819         Phenol (mg/l)           373         ORG_91         Num         8         3412         Phenol (mg/l)           373         ORG_91         Num         8         3835         Pyrene (ug/L)           295         ORG_92         Num         8         3843         Toluene (ug/L)           374         ORG_93         Num         8         3843         Toluene (ug/L)           375         ORG_94         Num         8         3851         Trans-1,3-Dichloropropene (ug/L)           376         ORG_95         Num         8         3859         Trichloroethene (ug/L)           377         ORG_96         Num         8         3857         Vinyl Chloride (ug/L)           430         O_194         Num         8         4291         194 Octa (ng/L)           431         O_195         Num         8         4299         195 Octa (ng/L)           432         O_196         Num         8         4315         200 Octa (ng/L)           433         O_200         Num         8         4323	
371	
42         ORG_00         Num         8         412         Phenol (mg/L)           373         ORG_91         Num         8         3835         Pyrene (ug/L)           374         ORG_93         Num         8         3211         Tetrachloroethene (ug/L)           375         ORG_93         Num         8         3843         Toluene (ug/L)           375         ORG_95         Num         8         3851         Trachloroethene (ug/L)           376         ORG_95         Num         8         3867         Trichloroethene (ug/L)           378         ORG_97         Num         8         3867         Trichloroethene (ug/L)           378         ORG_97         Num         8         3867         Trichloroethene (ug/L)           430         O_194         Num         8         4291         194         Octa (ng/L)           431         O_195         Num         8         4299         195         Octa (ng/L)           432         O_196         Num         8         4307         198         Octa (ng/L)           433         O_200         Num         8         4315         200         Octa (ng/L)           435	
295 ORG_92 Num 8 3211 Tetrachloroethene (ug/L) 374 ORG_93 Num 8 3843 Toluene (ug/L) 375 ORG_94 Num 8 3851 Trans-1,3-Dichloropropene (ug/L) 376 ORG_95 Num 8 3859 Trichloroethene (ug/L) 377 ORG_96 Num 8 3859 Trichlorofluoromethane (ug/L) 378 ORG_97 Num 8 3875 Vinyl Chloride (ug/L) 430 O_194 Num 8 4299 195 Octa (ng/L) 431 O_195 Num 8 4299 195 Octa (ng/L) 432 O_196 Num 8 4307 196 Octa (ng/L) 433 O_200 Num 8 4315 200 Octa (ng/L) 434 O_201 Num 8 4323 201 Octa (ng/L) 435 O_203 Num 8 4331 203 Octa (ng/L) 436 O_205 Num 8 8331 PCB-1016 (ug/L) 93 P1016 Num 8 831 PCB-1016 (ug/L) 94 P1221 Num 8 180 PCB-1221 (ug/L) 95 P1232 Num 8 851 PCB-1222 (ug/L) 95 P1242 Num 8 871 PCB-1224 (ug/L) 99 P1248 Num 8 891 PCB-1242 (ug/L) 101 P1254 Num 8 891 PCB-1260 (ug/L) 103 P1260 Num 8 160 PCB-1224 (ug/L) 104 P42_48 Num 8 911 PCB-1254 (ug/L) 105 P1260 Num 8 140 PCB-1248 (ug/L) 106 PB Num 8 12 Report Page Number 12 PAGE Num 8 12 Report Page Number 14 P42_48 Num 8 12 Report Page Number 15 PB Num 8 120 PCB-1240 (ug/L) 16 PCB Num 8 120 PCB-1254, 1260 (ug/L) 17 PCB SC (ug/L) 18 PBB Num 8 200 PBB (mg/L) 19 PCB SC (ug/L) 10 PCB Num 8 4347 PCB-1254, 1260 (ug/L) 10 PCB Num 8 4347 PCB-124 (ug/L) 10 PCB-3 Num 8 4399 PCB-10D (ug/L) 10 PCB-5 Num 8 3971 A,4'-DDD (ug/L) 10 PCB-5 Num 8 3971 A,4'-DDD (ug/L) 10 PCB-6 Num 8 3971 A,4'-DDD (ug/L)	
374	
375	
376 ORG_95 Num 8 3859 Trichloroethene (ug/L) 377 ORG_96 Num 8 3867 Trichlorofluoromethane (ug/L) 378 ORG_97 Num 8 3867 Vinyl Chloride (ug/L) 430 O_194 Num 8 4299 194 Octa (ng/L) 431 O_195 Num 8 4299 195 Octa (ng/L) 432 O_196 Num 8 4307 196 Octa (ng/L) 433 O_200 Num 8 4315 200 Octa (ng/L) 434 O_201 Num 8 4323 201 Octa (ng/L) 435 O_203 Num 8 4331 203 Octa (ng/L) 436 O_205 Num 8 4339 205 Octa (ng/L) 93 P1016 Num 8 831 PCB-1021 (ug/l) 95 P1232 Num 8 851 PCB-1016 (ug/l) 97 P1242 Num 8 851 PCB-1221 (ug/l) 98 P1254 Num 8 851 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1242 (ug/l) 101 P1254 Num 8 891 PCB-1244 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 12 P54_60 Num 8 140 PCB-1224, 1248 (ug/l) 12 P54_60 Num 8 12 Report Page Number 66 PB Num 8 12 Report Page Number 18 PBB Num 8 629 Lead (mg/l) 10 PCB 1224, 1248 (ug/l) 10 PCB Num 8 120 PCB'1248, 1260 (ug/l) 10 PCB Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 390 PES_5 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L)	
377         ORG_96         Num         8         3867         Trichlorofluoromethane (ug/L)           378         ORG_97         Num         8         3875         Vinyl Chloride (ug/L)           430         O_194         Num         8         4291         194 Octa (ng/L)           431         O_195         Num         8         4299         195 Octa (ng/L)           432         O_196         Num         8         4307         196 Octa (ng/L)           433         O_200         Num         8         4315         200 Octa (ng/L)           434         O_201         Num         8         4323         201 Octa (ng/L)           436         O_205         Num         8         4331         203 Octa (ng/L)           436         O_205         Num         8         831         PCB-1016 (ug/L)           93         P1016         Num         8         831         PCB-1212 (ug/l)           95         P1221         Num         8         851         PCB-1222 (ug/l)           97         P1242         Num         8         871         PCB-1242 (ug/l)           99         P1248         Num         8         891         PCB-1240	
378 ORG_97 Num 8 3875 Vinyl Chloride (ug/L) 430	
430	
431	
432	
433	
434	
435	
436	
93 P1016 Num 8 831 PCB-1016 (ug/l) 16 P1221 Num 8 180 PCB-1221 (ug/l) 95 P1232 Num 8 851 PCB-1232 (ug/l) 97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 931 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 12 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PCB-1252 (ug/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4347 2,4'-DDD (ug/L) 447 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
16 P1221 Num 8 180 PCB-1221 (ug/l) 95 P1232 Num 8 851 PCB-1232 (ug/l) 97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1240 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDD (ug/L) 347 PES_3 Num 8 4427 2,4'-DDD (ug/L) 349 PES_5 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDD (ug/L)	
95 P1232 Num 8 851 PCB-1232 (ug/l) 97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1244 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdov PST) 50 PEST Num 8 4347 2,4'-DDD (ug/L) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 347 PES_3 Num 8 4427 2,4'-DDD (ug/L) 349 PES_5 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
97 P1242 Num 8 871 PCB-1242 (ug/l) 99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow DEST Num 8 4347 PES_1 Num 8 4347 PES_1 Num 8 4347 PES_1 Num 8 4379 PES_1 Num 8 4379 PES_4 Num 8 3963 A,4'-DDE (ug/L) 390 PES_5 Num 8 3971 A,4'-DDE (ug/L) 391 PES_6 Num 8 3979 A,4'-DDE (ug/L)	
99 P1248 Num 8 891 PCB-1248 (ug/l) 101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
101 P1254 Num 8 911 PCB-1254 (ug/l) 103 P1260 Num 8 931 PCB-1260 (ug/l) 14 P42_48 Num 8 160 PCB-1242,1248 (ug/l) 12 P54_60 Num 8 140 PCB-1254,1260 (ug/l) 2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow PES_1 Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDD (ug/L) 447 PES_3 Num 8 4427 2,4'-DDD (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDD (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
103       P1260       Num       8       931       PCB-1260 (ug/l)         14       P42_48       Num       8       160       PCB-1242,1248 (ug/l)         12       P54_60       Num       8       140       PCB-1254,1260 (ug/l)         2       PAGE       Num       8       12       Report Page Number         66       PB       Num       8       629       Lead (mg/l)         18       PBB       Num       8       200       PBB (mg/l)         10       PCB       Num       8       120       PCB's (ug/l)         8       PERIOD       Char       12       96       12       Dredging (PRE,D=During,POST,Drawdow         50       PEST       Num       8       492       Pesticides (mg/l)         437       PES_1       Num       8       4347       2,4'-DDD (ug/L)         441       PES_2       Num       8       4379       2,4'-DDE (ug/L)         447       PES_3       Num       8       4427       2,4'-DDD (ug/L)         389       PES_4       Num       8       3971       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-	
14       P42_48       Num       8       160       PCB-1242,1248 (ug/l)         12       P54_60       Num       8       140       PCB-1254,1260 (ug/l)         2       PAGE       Num       8       12       Report Page Number         66       PB       Num       8       629       Lead (mg/l)         18       PBB       Num       8       200       PBB (mg/l)         10       PCB       Num       8       120       PCB's (ug/l)         8       PERIOD       Char       12       96       12       Dredging (PRE,D=During,POST,Drawdow         50       PEST       Num       8       492       Pesticides (mg/l)         437       PES_1       Num       8       4347       2,4'-DDD (ug/L)         441       PES_2       Num       8       4379       2,4'-DDE (ug/L)         447       PES_3       Num       8       4427       2,4'-DDT (ug/L)         389       PES_4       Num       8       3963       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-DDT (ug/L)	
12  P54_60	
2 PAGE Num 8 12 Report Page Number 66 PB Num 8 629 Lead (mg/l) 18 PBB Num 8 200 PBB (mg/l) 10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdov 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
66       PB       Num       8       629       Lead (mg/l)         18       PBB       Num       8       200       PBB (mg/l)         10       PCB       Num       8       120       PCB's (ug/l)         8       PERIOD       Char       12       96       12       Dredging (PRE,D=During,POST,Drawdown)         50       PEST       Num       8       492       Pesticides (mg/l)         437       PES_1       Num       8       4347       2,4'-DDD (ug/L)         441       PES_2       Num       8       4379       2,4'-DDE (ug/L)         447       PES_3       Num       8       4427       2,4'-DDT (ug/L)         389       PES_4       Num       8       3963       4,4'-DDD (ug/L)         390       PES_5       Num       8       3971       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-DDT (ug/L)	
18       PBB       Num       8       200       PBB (mg/l)         10       PCB       Num       8       120       PCB's (ug/l)         8       PERIOD       Char       12       96       12       Dredging (PRE,D=During,POST,Drawdown Post)         50       PEST       Num       8       492       Pesticides (mg/l)         437       PES_1       Num       8       4347       2,4'-DDD (ug/L)         441       PES_2       Num       8       4379       2,4'-DDE (ug/L)         447       PES_3       Num       8       4427       2,4'-DDT (ug/L)         389       PES_4       Num       8       3963       4,4'-DDD (ug/L)         390       PES_5       Num       8       3971       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-DDT (ug/L)	
10 PCB Num 8 120 PCB's (ug/l) 8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdow 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
8 PERIOD Char 12 96 12. Dredging (PRE,D=During,POST,Drawdown 50 PEST Num 8 492 Pesticides (mg/l) 437 PES_1 Num 8 4347 2,4'-DDD (ug/L) 441 PES_2 Num 8 4379 2,4'-DDE (ug/L) 447 PES_3 Num 8 4427 2,4'-DDT (ug/L) 389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
50       PEST       Num       8       492       Pesticides (mg/l)         437       PES_1       Num       8       4347       2,4'-DDD (ug/L)         441       PES_2       Num       8       4379       2,4'-DDE (ug/L)         447       PES_3       Num       8       4427       2,4'-DDT (ug/L)         389       PES_4       Num       8       3963       4,4'-DDD (ug/L)         390       PES_5       Num       8       3971       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-DDT (ug/L)	
437       PES_1       Num       8       4347       2,4'-DDD (ug/L)         441       PES_2       Num       8       4379       2,4'-DDE (ug/L)         447       PES_3       Num       8       4427       2,4'-DDT (ug/L)         389       PES_4       Num       8       3963       4,4'-DDD (ug/L)         390       PES_5       Num       8       3971       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-DDT (ug/L)	wn)
441       PES_2       Num       8       4379       2,4'-DDE (ug/L)         447       PES_3       Num       8       4427       2,4'-DDT (ug/L)         389       PES_4       Num       8       3963       4,4'-DDD (ug/L)         390       PES_5       Num       8       3971       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-DDT (ug/L)	
447       PES_3       Num       8       4427       2,4'-DDT (ug/L)         389       PES_4       Num       8       3963       4,4'-DDD (ug/L)         390       PES_5       Num       8       3971       4,4'-DDE (ug/L)         391       PES_6       Num       8       3979       4,4'-DDT (ug/L)	
389 PES_4 Num 8 3963 4,4'-DDD (ug/L) 390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
390 PES_5 Num 8 3971 4,4'-DDE (ug/L) 391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
391 PES_6 Num 8 3979 4,4'-DDT (ug/L)	
392 PES_7 Num 8 3987 A-BHC (ug/L)	
394 PES_9 Num 8 4003 B-BHC (ug/L)	
79 PES_10 Num 8 732 Chlorodane (ug/l)	
438 PES_11 Num 8 4355 Cis-chlordane (ug/L)	
439 PES_12 Num 8 4363 Cis-nonachlor (ug/L)	
379 PES_13 Num 8 3883 D-BHC (ug/L)	
440 PES_14 Num 8 4371 Dicofol (ug/L)	
380 PES_15 Num 8 3891 Dieldrin (ug/L)	
381 PES_16 Num 8 3899 Endosulfan I (ug/L)	
382 PES_17 Num 8 3907 Endosulfan II (ug/L)	
383 PES_18 Num 8 3915 Endosulfan sulfate (ug/L)	
384 PES_19 Num 8 3923 Endrin (ug/L)	

#	Variable	Type	Len	Pos	Format	Label			
385	PES_20	Num	8	3931		Endrin aldehyde (ug/L)			
386	PES_21	Num	8	3939		G-BHC (ug/L)			
387	PES_22	Num	8	3947		Heptachlor (ug/L)			
388	PES_23	Num	8	3955		Heptachlor epoxide (ug/L)			
442	PES_24	Num	8	4387		Hexychlorobenzene (ug/L)			
443	PES_25	Num	8	4395		Mirex (ug/L)			
444	PES_26	Num	8	4403		Oxychlordane (ug/L)			
78	PES_27	Num	8	724		Toxaphene (ug/l)			
445	PES_28	Num	8	4411		Trans-chlordane (ug/L)			
446	PES_29	Num	8	4419		Trans-nonachlor (ug/L)			
26	PH	Num	8	267		рН			
457	P_82	Num	8	4507		82 Penta (ng/L)			
458	P_87	Num	8	4515		87 Penta (ng/L)			
459	P_95	Num	8	4523		95 Penta (ng/L)			
460	P_99	Num	8	4531		99 Penta (ng/L)			
448	P_101	Num	8	4435		101 Penta (ng/L)			
449	P_105	Num	8	4443		105 Penta (ng/L)			
450	P_110	Num	8	4451		110 Penta (ng/L)			
451	P_114	Num	8	4459		114 Penta (ng/L)			
452	P_118	Num	8	4467		118 Penta (ng/L)			
453	P_119	Num	8	4475		119 Penta (ng/L)			
454	P_123	Num	8	4483		123 Penta (ng/L)			
455	P_126	Num	8	4491		126 Penta (pg/L)			
456	P_127	Num	8	4499		127 Penta (ng/L)			
52	SB	Num	8	506		Antimony (mg/l)			
70	SE	Num	8	651		Selenium (mg/l)			
46	SS	Num	8	452		Settleable Solids (mg/l)			
4	STATION	Char	12	32	12.	Sampling Station			
71	S_AG	Char	3	659	3.	Flag for AG (Less than DL)			
53	S_AL	Char	5	514	5.	Flag for AL (Less than DL)			
90	S_AS	Char	5	807	5.	Flag for AS (Less than DL)			
56	S_BE	Char	6	535	6.	Flag for BE (Less than DL)			
22	S_BOD	Char	12	231	12.	Flag for BOD (Less than DL)			
59	s_cd	Char	12	557	12.	Flag for CD (Less than DL)			
36	s_cod	Char	12	356	12.	Flag for COD (Less than DL)			
61	S_CR	Char	12	577	12.	Flag for CR (Less than DL)			
63	s_cu	Char	12	597	12.	Flag for CU (Less than DL)			
75	s_cy	Char	12	692	12.	Flag for CY (Less than DL)			
27	S_DO	Char	12	275	12.	Flag for DO (Less than DL)			
211	S_D_8	Char	12	2219	12.	Flag for D_8 (Less than DL)			
210	S_D_209	Char	12	2207	12.	Flag for D_209 (Less than DL)			
19	S_FC	Char	7	208	7.	Flag for FC (Less than DL)			
212	S_H38_58	Char	12	2231	12.	Flag for H38_58 (Less than DL)			
213	S_H70_90	Char	12	2243	12.	Flag for H70_90 (Less than DL)			
214	S_HARD	Char	12	2255	12.	Flag for HARD (Less than DL)			
34	S_HG	Char	12	336	12.	Flag for HG (Less than DL)			
215	S_H_128	Char	12	2267	12.	Flag for H_128 (Less than DL)			
216	S_H_137	Char	12	2279	12.	Flag for H_137 (Less than DL)			
217	S_H_149	Char	12	2291	12.	Flag for H_149 (Less than DL)			
218	S_H_151	Char	12	2303	12.	Flag for H_151 (Less than DL)			
219	S_H_153	Char	12	2315	12.	Flag for H_153 (Less than DL)			
220	S_H_156	Char	12	2327	12.	Flag for H_156 (Less than DL)			
						<u> </u>			

#	Variable	Туре	Len	Pos	Format	Label
221	S_H_157	Char	12	2339	12.	Flag for H_157 (Less than DL)
222	S_H_166	Char	12	2351	12.	Flag for H_166 (Less than DL)
223	S_H_167	Char	12	2363	12.	Flag for H_167 (Less than DL)
224	S_H_168	Char	12	2375	12.	Flag for H_168 (Less than DL)
225	S_H_169	Char	12	2387	12.	Flag for H_169 (Less than DL)
226	S_H_177	Char	12	2399	12.	Flag for H_177 (Less than DL)
227	S_H_179	Char	12	2411	12.	Flag for H_179 (Less than DL)
228	S_H_180	Char	12	2423	12.	Flag for H_180 (Less than DL)
229	S_H_183	Char	12	2435	12.	Flag for H_183 (Less than DL)
230	S_H_185	Char	12	2447	12.	Flag for H_185 (Less than DL)
231	S_H_187	Char	12	2459	12.	Flag for H_187 (Less than DL)
232	S_H_189	Char	12	2471	12.	Flag for H_189 (Less than DL)
233	S_H_191	Char	12	2483	12.	Flag for H_191 (Less than DL)
110	S_NH3	Char	12	1007	12.	Flag for NH3 (Less than DL)
67	S_NI	Char	3	637	3.	Flag for NI (Less than DL)
91	S_NN	Char	7	812 1019	7. 12.	Flag for NN (Less than DL) Flag for NO2 (Less than DL)
111 87	S_NO2 S_NO3	Char Char	12 6	788	6.	Flag for NO3 (Less than DL)
234	S_N_206	Char	12	2495	12.	Flag for N_206 (Less than DL)
235	S_N_207	Char	12	2507	12.	Flag for N_207 (Less than DL)
236	S_N_208	Char	12	2519	12.	Flag for N_208 (Less than DL)
47	s_og	Char	12	460	12.	Flag for OG (Less than DL)
237	S_ORG_1	Char	12	2531	12.	Flag for ORG_1 (Less than DL)
238	S_ORG_2	Char	12	2543	12.	Flag for ORG_2 (Less than DL)
128	S_ORG_3	Char	12	1223	12.	Flag for ORG_3 (Less than DL)
139	s_org_4	Char	12	1355	12.	Flag for ORG_4 (Less than DL)
147	S_ORG_5	Char	12	1451	12.	Flag for ORG_5 (Less than DL)
157	s_org_6	Char	12	1571	12.	Flag for ORG_6 (Less than DL)
166	S_ORG_7	Char	12	1679	12.	Flag for ORG_7 (Less than DL)
176	S_ORG_8	Char	12	1799	12.	Flag for ORG_8 (Less than DL)
186	S_ORG_9	Char	12	1919	12.	Flag for ORG_9 (Less than DL)
112	S_ORG_10	Char	12	1031	12.	Flag for ORG_10 (Less than DL)
113	S_ORG_11	Char	12	1043	12.	Flag for ORG_11 (Less than DL)
114	S_ORG_12	Char	12	1055	12.	Flag for ORG_12 (Less than DL)
115	S_ORG_13	Char	12	1067	12.	Flag for ORG_13 (Less than DL)
116	S_ORG_14	Char	12	1079	12.	Flag for ORG_14 (Less than DL)
117	S_ORG_15	Char	12	1091	12.	Flag for ORG_15 (Less than DL)
118	S_ORG_16	Char	12	1103	12.	Flag for ORG_16 (Less than DL)
476	S_ORG_17	Char	12 12	4659	12.	Flag for ORG_17 (Less than DL)
119	S_ORG_18	Char Char	12	1115 1127	12. 12.	Flag for ORG_18 (Less than DL) Flag for ORG_19 (Less than DL)
120	S_ORG_19	Char	12	2555	12.	Flag for ORG_20 (Less than DL)
239 121	S_ORG_20 S_ORG_21	Char	12	1139	12.	Flag for ORG_21 (Less than DL)
240	S_ORG_22	Char	12	2567	12.	Flag for ORG_22 (Less than DL)
122	S_ORG_23	Char	12	1151	12.	Flag for ORG_23 (Less than DL)
123	S_ORG_24	Char	12	1163	12.	Flag for ORG_24 (Less than DL)
124	S_ORG_25	Char	12	1175	12.	Flag for ORG_25 (Less than DL)
125	S_ORG_26	Char	12	1187	12.	Flag for ORG_26 (Less than DL)
126	S_ORG_27	Char	12	1199	12.	Flag for ORG_27 (Less than DL)
241	S_ORG_28	Char	12	2579	12.	Flag for ORG_28 (Less than DL)
127	S_ORG_29	Char	12	1211	12.	Flag for ORG_29 (Less than DL)
129	S_ORG_30	Char	12	1235	12.	Flag for ORG_30 (Less than DL)
		<del></del>			. = •	

#	Variable	Type	Len	Pos	Format	Label
130	S_ORG_31	Char	12	1247	12.	Flag for ORG_31 (Less than DL)
131	S_ORG_32	Char	12	1259	12.	Flag for ORG_32 (Less than DL)
132	S_ORG_33	Char	12	1271	12.	Flag for ORG_33 (Less than DL)
133	S_ORG_34	Char	12	1283	12.	Flag for ORG_34 (Less than DL)
134	S_ORG_35	Char	12	1295	12.	Flag for ORG_35 (Less than DL)
135	s_org_36	Char	12	1307	12.	Flag for ORG_36 (Less than DL)
136	S_ORG_37	Char	12	1319	12.	Flag for ORG_37 (Less than DL)
137	S_ORG_38	Char	12	1331	12.	Flag for ORG_38 (Less than DL)
138	S_ORG_39	Char	12	1343	12.	Flag for ORG_39 (Less than DL)
140	S_ORG_40	Char	12	1367	12.	Flag for ORG_40 (Less than DL)
141	S_ORG_41	Char	12	1379	12.	Flag for ORG_41 (Less than DL)
142	S_ORG_42	Char	12	1391	12.	Flag for ORG_42 (Less than DL)
143	S_ORG_43	Char	12	1403	12.	Flag for ORG_43 (Less than DL)
105	S_ORG_44	Char	12	947	12.	Flag for ORG 44 (Less than DL)
144	S_ORG_45	Char	12	1415	12.	Flag for ORG_45 (Less than DL)
242	S_ORG_46	Char	12	2591	12.	Flag for ORG_46 (Less than DL)
145	S_ORG_47	Char	12	1427	12.	Flag for ORG_47 (Less than DL)
146	S_ORG_48	Char	12	1439	12.	Flag for ORG_48 (Less than DL)
243	S_ORG_49	Char	12	2603	12.	Flag for ORG_49 (Less than DL)
148	S ORG 50	Char	12	1463	12.	Flag for ORG_50 (Less than DL)
149	S_ORG_51	Chan	12	1475	12.	Flag for ORG_51 (Less than DL)
150	S_ORG_52	Char	12	1487	12.	Flag for ORG_52 (Less than DL)
106	S_ORG_53	Char	12	959	12.	Flag for ORG_53 (Less than DL)
151	S_ORG_54	Char	12	1499	12.	Flag for ORG_54 (Less than DL)
152	S_ORG_55	Char	12	1511	12.	Flag for ORG_55 (Less than DL)
153	S_ORG_56	Char	12	1523	12.	Flag for ORG_56 (Less than DL)
154	S_ORG_57	Char	12	1535	12.	Flag for ORG_57 (Less than DL)
155	S_ORG_58	Char	12	1547	12.	Flag for ORG_58 (Less than DL)
156	S_ORG_59	Char	12	1559	12.	Flag for ORG_59 (Less than DL)
158	S_ORG_60	Char	12	1583	12.	Flag for ORG_60 (Less than DL)
107	S_ORG_61	Char	12	971	12.	Flag for ORG 61 (Less than DL)
159	S_ORG_62	Char	12	1595	12.	Flag for ORG 62 (Less than DL)
160	S_ORG_63	Char	12	1607	12.	Flag for ORG_63 (Less than DL)
161	S_ORG_64	Char	12	1619	12.	Flag for ORG_64 (Less than DL)
477	S_ORG_65	Char	12	4671	12.	Flag for ORG 65 (Less than DL)
162	S_ORG_66	Char	12	1631	12.	Flag for ORG_66 (Less than DL)
163	S ORG 67	Char	12	1643	12.	Flag for ORG_67 (Less than DL)
164	S_ORG_68	Char	12	1655	12.	Flag for ORG_68 (Less than DL)
165	S_ORG_69	Char	12	1667	12.	Flag for ORG_69 (Less than DL)
167		Char	12	1691	12.	Flag for ORG_70 (Less than DL)
168	S_ORG_70 S_ORG_71	Char	12	1703	12.	Flag for ORG_70 (Less than DL)
		Char	12	1715	12.	<u> </u>
169 108	S_ORG_72	Char	12	983	12.	Flag for ORG_72 (Less than DL) Flag for ORG_73 (Less than DL)
	S_ORG_73	Char	12	1727	12.	
170	S_ORG_74					Flag for ORG_74 (Less than DL)
171	S_ORG_75	Char	12	1739	12.	Flag for ORG_75 (Less than DL)
172	S_ORG_76	Char	12	1751	12.	Flag for ORG_76 (Less than DL)
173	S_ORG_77	Char	12	1763	12.	Flag for ORG_77 (Less than DL)
174	S_ORG_78	Char	12	1775	12.	Flag for ORG_78 (Less than DL)
175	s_ORG_79	Char	12	1787	12.	Flag for ORG_79 (Less than DL)
177	S_ORG_80	Char	12	1811	12.	Flag for ORG_80 (Less than DL)
178	S_ORG_81	Char	12	1823	12.	Flag for ORG_81 (Less than DL)
179	S_ORG_82	Char	12	1835	12.	Flag for ORG_82 (Less than DL)

#	Variable	Туре	Len	Pos	Format	Label
180	S_ORG_83	Char	12	1847	12.	Flag for ORG_83 (Less than DL)
181	s_org_84	Char	12	1859	12.	Flag for ORG_84 (Less than DL)
182	S_ORG_85	Char	12	1871	12.	Flag for ORG_85 (Less than DL)
183	S_ORG_86	Char	12	1883	12.	Flag for ORG_86 (Less than DL)
184	S_ORG_87	Char	12	1895	12.	Flag for ORG_87 (Less than DL)
244	S_ORG_88	Char	12	2615	12.	Flag for ORG_88 (Less than DL)
185	S_ORG_89	Char	12	1907	12.	Flag for ORG_89 (Less than DL)
41	S_ORG_90	Char	12	400	12.	Flag for ORG_90 (Less than DL)
187	S_ORG_91	Char	12	1931	12.	Flag for ORG_91 (Less than DL)
109	S_ORG_92	Char	12	995	12.	Flag for ORG_92 (Less than DL)
188	S_ORG_93	Char	12	1943	12.	Flag for ORG_93 (Less than DL)
189	S_ORG_94	Char	12	1955	12.	Flag for ORG_94 (Less than DL)
190	S_ORG_95	Char	12	1967	12.	Flag for ORG_95 (Less than DL)
191	S_ORG_96	Char	12	1979	12.	Flag for ORG_96 (Less than DL)
192	S_ORG_97	Char	12	1991	12.	Flag for ORG_97 (Less than DL) Flag for O_194 (Less than DL)
245	S_0_194	Char Char	12 12	2627 2639	12. 12.	Flag for 0_195 (Less than DL)
246 247	S_0_195 S_0_196	Char	12	2651	12.	Flag for 0_196 (Less than DL)
248	S_0_190 S_0_200	Char	12	2663	12.	Flag for 0_200 (Less than DL)
249	S_0_201	Char	12	2675	12.	Flag for 0_201 (Less than DL)
250	S_0_203	Char	12	2687	12.	Flag for 0_203 (Less than DL)
251	S_0_205	Char	12	2699	12.	Flag for O_205 (Less than DL)
92	S_P1016	Char	12	819	12.	Flag for P1016 (Less than DL)
15	S_P1221	Char	12	168	12.	Flag for P1221 (Less than DL)
94	S_P1232	Char	12	839	12.	Flag for P1232 (Less than DL)
96	S_P1242	Char	12	859	12.	Flag for P1242 (Less than DL)
98	S_P1248	Char	12	879	12.	Flag for P1248 (Less than DL)
100	S_P1254	Char	12	899	12.	Flag for P1254 (Less than DL)
102	S_P1260	Char	12	919	12.	Flag for P1260 (Less than DL)
13	S_P42_48	Char	12	148	12.	Flag for P42_48 (Less than DL)
11	S_P54_60	Char	12	128	12.	Flag for P54_60 (Less than DL)
65	S_PB	Char	12	617	12.	Flag for PB (Less than DL)
17	S_PBB	Char	12	188	12.	Flag for PBB (Less than DL)
9	S_PCB	Char	12	108	12.	Flag for PCB (Less than DL)
49	S_PEST	Char	12	480	12.	Flag for PEST (Less than DL)
252	S_PES_1	Char	12	2711	12.	Flag for PES_1 (Less than DL)
256	S_PES_2	Char	12	2759	12.	Flag for PES_2 (Less than DL)
262	S_PES_3	Char	12	2831	12.	Flag for PES_3 (Less than DL)
204	S_PES_4	Char	12	2135 2147	12. 12.	Flag for PES_4 (Less than DL) Flag for PES_5 (Less than DL)
205	S_PES_5	Char	12		12.	Flag for PES_6 (Less than DL)
206	S_PES_6	Char	12 12	2159 2171	12.	Flag for PES_7 (Less than DL)
207	S_PES_7	Char Char	12	2171	12.	Flag for PES_8 (Less than DL)
208 209	S_PES_8	Char	12	2195	12.	Flag for PES_9 (Less than DL)
	S_PES_9	Char	12	2003	12.	Flag for PES_10 (Less than DL)
193 253	S_PES_10 S_PES_11	Char	12	2723	12.	Flag for PES_11 (Less than DL)
253 254	S_PES_11	Char	12	2735	12.	Flag for PES_12 (Less than DL)
194	S_PES_12	Char	12	2015	12.	Flag for PES_13 (Less than DL)
255	S_PES_14	Char	12	2747	12.	Flag for PES_14 (Less than DL)
195	S_PES_15	Char	12	2027	12.	Flag for PES_15 (Less than DL)
196	S_PES_16	Char	12	2039	12.	Flag for PES_16 (Less than DL)
197	S_PES_17	Char	12	2051	12.	Flag for PES_17 (Less than DL)
.07	~_, ~~ __ ,		• •		•	_

#	Variable	Туре	Len	Pos	Format	Label				
198	S_PES_18	Char	12	2063	12.	Flag for PES_18 (Less than DL)				
199	S_PES_19	Char	12	2075	12.	Flag for PES_19 (Less than DL)				
200	S_PES_20	Char	12	2087	12.	Flag for PES_20 (Less than DL)				
201	S_PES_21	Char	12	2099	12.	Flag for PES_21 (Less than DL)				
202	S_PES_22	Char	12	2111	12.	Flag for PES_22 (Less than DL)				
203	S_PES_23	Char	12	2123	12.	Flag for PES_23 (Less than DL)				
257	S_PES_24	Char	12	2771	12.	Flag for PES_24 (Less than DL)				
258	S_PES_25	Char	12	2783	12.	Flag for PES_25 (Less than DL)				
259	S_PES_26	Char	12	2795	12.	Flag for PES_26 (Less than DL)				
77	S_PES_27	Char	12	712	12.	Flag for TOXAPE (Less than DL)				
260	S_PES_28	Char	12	2807	12.	Flag for PES_28 (Less than DL)				
261	S_PES_29	Char	12	2819	12.	Flag for PES_29 (Less than DL)				
84	S_PH	Char	5	770	5.	Flag for pH (Less than DL)				
272	S_P_82	Char	12	2951	12.	Flag for P_82 (Less than DL)				
273	S_P_87	Char	12	2963	12.	Flag for P_87 (Less than DL)				
274	S_P_95	Char	12	2975	12.	Flag for P_95 (Less than DL)				
275	S_P_99	Char	12-	2987	12.	Flag for P_99 (Less than DL)				
263	S_P_101	Char	12	2843	12.	Flag for P_101 (Less than DL)				
264	S_P_105	Char	12	2855	12.	Flag for P_105 (Less than DL)				
265	S_P_110	Char	12	2867	12.	Flag for P_110 (Less than DL)				
266	S_P_114	Char	12	2879	12.	Flag for P_114 (Less than DL)				
267	S_P_118	Char	12	2891	12.	Flag for P_118 (Less than DL)				
268	S_P_119	Char	12	2903	12.	Flag for P_119 (Less than DL)				
269	S_P_123	Char	12	2915	12.	Flag for P_123 (Less than DL)				
270	S_P_126	Char	12	2927	12.	Flag for P_126 (Less than DL)				
271	S_P_127	Char	12	2939	12.	Flag for P_127 (Less than DL)				
51	S_SB	Char	6	500	6.	Flag for SB (Less than DL)				
69	S_SE	Char	3	648	3.	Flag for SE (Less than DL)				
45	S_SS	Char	12	440	12.	Flag for SS (Less than DL)				
82	S_TC	Char	5	760 765	5.	Flag for TC (Less than DL)				
83	S_TEMP	Char	5	765	5.	Flag for TEMP (Less than DL)				
89	S_TKN	Char	5	802	5.	Flag for TKN (Less than DL)				
73	S_TL	Char	14	670	14.	Flag for TL (Less than DL)				
85	S_TN	Char	7	775	7.	Flag for TN (Less than DL)				
32	S_TOC	Char	5	323	5.	Flag for TOC (Less than DL)				
43	S_TP	Char	12	420	12.	Flag for TP (Less than DL)				
276	S_TPH	Char	12	2999	12.	Flag for TPH (Less than DL)				
81	S_TSS	Char	12	748 780	12.	Flag for TSS (Less than DL)				
86 077	S_TURB	Char	6	782	6.	Flag for TURB (Less than DL)				
277	S_T_18	Char	12	3011 3023	12.	Flag for T_18 (Less than DL)				
278	S_T_28	Char Char	12 12	3035	12. 12.	Flag for T_28 (Less than DL)				
279	S_T_37	Char	12	3047	12.	Flag for T_37 (Less than DL)				
280	S_T_44					Flag for T_44 (Less than DL)				
281	S_T_47	Char	12 12	3059 3071	12. 12.	Flag for T_47 (Less than DL)				
282	S_T_49	Char				Flag for T_49 (Less than DL)				
283	S_T_52	Char	12	3083	12.	Flag for T_52 (Less than DL)				
284	S_T_60	Char	12	3095	12.	Flag for T_60 (Less than DL)				
285	S_T_66	Char	12	3107	12.	Flag for T_66 (Less than DL)				
286	S_T_70	Char	12	3119	12.	Flag for T_70 (Less than DL)				
287	S_T_74	Char	12	3131	12.	Flag for T_74 (Less than DL)				
288	S_T_77	Char	12	3143	12.	Flag for T_77 (Less than DL)				
289	S_T_80	Char	12	3155	12.	Flag for T_80 (Less than DL)				

#	Variable	Type	Len	Pos	Format	Label			
290	S_T_81	Char	12	3167	12.	Flag for T_81 (Less than DL)			
30	s_zn	Char	12	303	303 12. Flag for ZN (Less than DL)				
21	ΤC	Num	8	223		Total Coliform (#/100 ml)			
25	TEMP	Num	8	259		Temperature (Degrees Centigrade)			
1	TIDE	Char	12	0	12.	12. Tide			
104	TIME	Num	8	939	TIME5.	, <del>-</del>			
40	TKN	Num	8	392	Total Kjeldahl Nitrogen (mg/l)				
74	TL	Num	8	684	Thallium (mg/l)				
80	TN	Num	8	740	Total Nitrogen (mg/l)				
33	TOC	Num	8	328	Total Organic Carbon (mg/l)				
44	TP	Num	8	432	Total Phosphate (mg/l)				
461	TPH	Num	8	4539					
7	TRIB	Char	12	84	84 12. CR=Christina River,DR=Delaware Ri				
29	TSS	Num	8	295	Total Suspended Solids (mg/l)				
24	TURB	Num	8	251	Turbidity (ntu)				
3	TYPE	Char	12	20	12. B=Backgrnd, M=Mixing Z., O=Outfall, W=V				
462	T_18	Num	8	4547	18 Tri (ng/L)				
463	T_28	Num	8	4555		28 Tri (ng/L)			
464	T_37	Num	8	4563		37 Tri (ng/L)			
465	T_44	Num	8	4571		44 Tetra (ng/L)			
466	T_47	Num	8	4579	•	47 Tetra (ng/L)			
467	T_49	Num	8	4587		49 Tetra (ng/L)			
468	T_52	Num	8	4595		52 Tetra (ng/L)			
469	T_60	Num	8	4603	60 Tetra (ng/L)				
470	T_66	Num	8	4611	66 Tetra (ng/L)				
471	T_70	Num	8	4619	70 Tetra (ng/L)				
472	T_74	Num	8	4627		74 Tetra (ng/L)			
473	T77	Num	8	4635	77 Tetra (pg/L)				
474	T_80	Num	8	4643		80 Tetra (ng/L)			
475	T_81	Num	8	4651		81 Tetra (pg/L)			
31	ZN	Num	8	315		Zinc (mg/l)			

Variab	le Label	N	Nmiss	Mean	Minimum	Maximum
PAGE	Report Page Number	1001	0	402.9500500	1.0000000	858.0000000
DATE	Sampling Date	1001	0	10729.62	7326.00	13328.00
PCB	PCB's (ug/l)	237	764	7.6258650	0	500.0000000
P54_60	• = -	4	997	10.0000000	10.0000000	10,0000000
P42_48		4	997	50.0000000	50.0000000	50,0000000
P1221	PCB-1221 (ug/l)	25	976	17.1600000	0.5000000	100.000000
PBB	PBB (mg/l)	4	997	20.0000000	20,0000000	20.0000000
FC FC	Fecal Coliform (#/100 ml)	56	945	1497.43	30.0000000	10000.00
тс	Total Coliform (#/100 ml)	49	952	11549.80	500.0000000	160000.00
BOD	Biochemical Oxygen Demand (mg/l)	414	587	6.9205314	2.4000000	310.0000000
TURB	Turbidity (ntu)	396	605	316.9184343	6.2000000	55000.00
TEMP	Temperature (Degrees Centigrade)	394	607	12.0651015	0	58.0000000
PH	Hq	404	597	7.2137129	2.8900000	8,5500000
DO	Dissolved Oxygen (mg/l)	394	607	8.6180203	0.2000000	15.0000000
TSS	Total Suspended Solids (mg/l)	924	77	890.1643939	0	77700.00
ZN	Zinc (mg/l)	428	573	0.2139019	0.0090000	21.0000000
TOC	Total Organic Carbon (mg/l)	407	594	11,2146437	1,4000000	1000.00
HG	Mercury (mg/l)	281	720	0.000804626	0.000100000	0.0200000
COD	Chemical Oxygen Demand (mg/l)	159	842	60.3647799	5.0000000	430.0000000
FLOW	Flow (mgd)	4	997	26.9700000	2.9600000	70.8000000
NN	Nitrate+Nitrite (mg/l)	24	977	1.7166667	1.4100000	2.1500000
TKN	Total Kjeldahl Nitrogen (mg/l)	152	849	3.2377632	0.5000000	25.0000000
ORG 90	<del>-</del>	53	948	0.0068755	0.0040000	0.0200000
TP	Total Phosphate (mg/l)	128	873	0.2504688	0.0300000	2.0000000
SS	Settleable Solids (mg/l)	19	982	60.4931579	0.0700000	640.0000000
OG	Oil & Grease (mg/l)	19	982	1.7894737	1.0000000	7.0000000
PEST	Pesticides (mg/l)	5	996	0.0804000	0.0020000	0.1000000
SB	Antimony (mg/l)	8	993	0.0042500	0.0020000	0.0100000
AL.	Aluminum (mg/l)	109	892	3.6431193	0.6000000	110.0000000
- a AS	Arsenic (mg/l)	38	963	0.0051816	0.0020000	0.0176000
BE	Beryllium (mg/l)	28	973	0.0025750	0.000200000	0.0200000
CHLR	Chloride (mg/l)	3	998	1400.00	1100.00	1800.00
CD	Cadmium (mg/l)	127	874	0.0046614	0.000300000	0.0250000
CR	Chromium (mg/l)	147	854	0.0222238	0.0010000	0.5800000
J cu	Copper (mg/l)	147	854	0.0340612	0.0040000	0.4400000
" PB	Lead (mg/l)	147	854	0.0419320	0.0010000	0.9600000
NI	Nickel (mg/l)	38	963	0.0141947	0.0066000	0.1000000
SE	Selenium (mg/l)	18	983	0.0024444	0.0020000	0.0050000
AG	Silver (mg/l)	18	983	0.0048889	0.000500000	0.0200000
TL	Thallium (mg/l)	8	993	0.0170000	0.0020000	0.1000000
_ CY	Cyanide (mg/l)	6	995	0.0075000	0.0050000	0.0100000
PES_2	•	17	984	1.2941176	1,0000000	2.0000000
PES_1		7	994	1.9285714	0.5000000	3.0000000
TN -	Total Nitrogen (mg/l)	327	674	6.8274618	0.4500000	260.0000000
NO3	Nitrate (mg/l)	61	940	2.0440984	0.0500000	2.8000000
P1016		21	980	1.3809524	0.5000000	5.0000000
P1232	•	21	980	1.3809524	0.5000000	5.0000000
P1242	·	21	980	1.3809524	0.5000000	5.0000000
P1248	PCB-1248 (ug/l)	21	980	1.3809524	0.5000000	5.0000000
P1254	• • •	21	980	1.7142857	1.0000000	5.0000000
P1260		21	980	1.7142857	1.0000000	5.0000000
TIME	Sampling Time	945		44172.38	3600.00	84900.00
ORG_4	· -	34		10.0000000	10.0000000	10.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum 1
ORG_53	Bis(2-ethylhexyl)phthalate (ug/L)	24	977	9.8333333	6.0000000	10.000000
ORG_61	Chloroform (ug/L)	24	977	4.8333333	1.0000000	5.0000000
ORG_73	Fluoranthene (ug/L)	34	967	10.0000000	10.0000000	10.0000000
ORG_92	Tetrachloroethene (ug/L)	24	977	4.8333333	1.0000000	5.0000000
NH3	Ammonia (mg/L)	3	998	9.7000000	6.1000000	12.0000000
N02	Nitrite (mg/l)	3	998	0.1726667	0.1350000	0.2180000
ORG_10	1,2-Dichloroethene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_11	1,2-Dichloropropane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_12	1,2-Diphenyl Hydrazine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_13	1,2,4-Trichlorobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_14	1,3-Dichlorobenzene (ug/L)	4	997	6.2500000	5.0000000	10.0000000
ORG_15	1,4 & 1,2-Dichlorobenzene (ug/L)	3	998	5.0000000	5.0000000	5.0000000
ORG_16	1,4-Dichlorobenzene (ug/L)	4	997	10,0000000	10.0000000	10.0000000
ORG_18	2-Chloronaphthalene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_19	2-Chlorophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG 21	2-Nitrophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_23	2,4-Dichlorophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_24	2,4-Dimethylphenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_25	2,4-Dinitrophenol (ug/L)	4	997	45.0000000	30.0000000	50.0000000
ORG_26	2,4-Dinitrotoluene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_27	2,4,6-Trichlorophenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_29	2,6-Dinitrotoluene (ug/L)	4	, 997	10.0000000	10.0000000	10.0000000
ORG_3	1,1-Dichloroethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_30	3,3'-Dichlorobenzidine (ug/L)	4	997	17.5000000	10.0000000	20.0000000 🚎
ORG_31	4-Bromophenyl-phenylether (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_32	4-Chlorophenyl-phenylether (ug/L)	4	997	10.0000000	10.0000000	10.0000000 📑
ORG_33	4-Nitrophenol (ug/L)	4	997	45.0000000	30.0000000	50.0000000
ORG_34	4,6-Dinitro-2-methylphenol (ug/L)	4	997	40.0000000	10.0000000	50.0000000
ORG_35	4,-Chloro-3-methylphenol (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_36	Acenaphthene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_37	Acenaphthylene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG 38	Acrolein (ug/L)	4	997	8.7500000	5.0000000	10.0000000 🍱
ORG_39	Acrylonitrile (ug/L)	4	997	8.7500000	5.0000000	10.0000000
ORG_4	1,1-Dichloroethene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_40	Anthracene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_41	Benzene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG 42	Benzidine (ug/L)	4	997	67.5000000	30.0000000	80.0000000
ORG_43	Benzo(a)anthracene (ug/L)	14	987	10.0000000	10.0000000	10.0000000 🥼
ORG_45	Benzo(b)fluoranthene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_47	Benzo(g,h,i)perylene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_48	Benzo(k)fluoranthene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_5	1,1,1-Trichloroethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_50	Bis(2-chloroethoxy)methane (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_51	Bis(2-chloroethyl)ether (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_52	Bis(2-chloroisopropyl)ether (ug/L)	4	997	10,0000000	10.0000000	10.0000000
ORG_54	Bromodichloromethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_55	Bromoform (ug/L)	4	997	4.2500000	2.0000000	5.0000000
ORG_56	Bromomethane (ug/L)	4		8.7500000	5.0000000	10.0000000
ORG_57	Butlybenzylphthalate (ug/L)	4		10.0000000	10.0000000	10.0000000
ORG_58	Carbon Tetrachloride (ug/L)	4		4.0000000	1.0000000	5.0000000
ORG_59	Chlorobenzene (ug/L)	4		4.0000000	1.0000000	5.0000000
ORG_6	1,1,2-Trichloroethane (ug/L)	4		4.0000000	1.0000000	5.0000000
ORG_60	Chloroethane (ug/L)	4		7.7500000	1.0000000	10.0000000
5.14_00						

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
ORG_62	Chloromethane (ug/L)	4	997	8.7500000	5.0000000	10.0000000
ORG_63	Chrysene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_64	Cis-1,3-Dichloropropene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_66	Dibenzo(a,h)anthracene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_67	Dibromochloromethane (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_68	Diethylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_69	Dimethylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_7	1,1,2,2-Tetrachloroethane (ug/L)	4	997	4.2500000	2.0000000	5.0000000
ORG_70	Di-n-butylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_71	Di-n-octylphthalate (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_72	Ethylbenzene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_74	Fluorene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
DRG_75	Hexachlorobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_76	Hexachlorobutadiene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_77	Hexachlorocyclopentadiene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG 78	Hexachloroethane (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_79	Indeno(1,2,3-c,d)pyrene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_8	1,2-Dichlorobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_80	Isophorone (ug/L)	4	997	10.0000000	10.000000	10.0000000
ORG_81	Methylene Chloride (ug/L)	4	997	4.7500000	1.0000000	7.0000000
ORG_82	Naphthalene (ug/L)	14	987	10,0000000	10.0000000	10.0000000
ORG_83	Nitrobenzene (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_84	N-nitrosodimethylamine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_85	N-nitroso-Di-n-propylamine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_86	N-nitrosodiphenylamine (ug/L)	4	997	10.0000000	10.0000000	10.0000000
ORG_87	Pentachlorophenol (ug/L)	4	997	45.0000000	30.0000000	50.0000000
- ORG_89	Phenanthrene (ug/L)	14	987	10.0000000	10.0000000	10,0000000
ORG_9	1,2-Dichloroethane (ug/L)	3	998	5.0000000	5.0000000	5.0000000
ORG_91	Pyrene (ug/L)	14	987	10.0000000	10.0000000	10.0000000
ORG_93	Toluene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG 94	Trans-1,3-Dichloropropene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG_95	Trichloroethene (ug/L)	4	997	4.0000000	1.0000000	5.0000000
ORG 96	Trichlorofluoromethane (ug/L)	3	998	5.0000000	5.0000000	5.0000000
ORG_97	Vinyl Chloride (ug/L)	4	997	7.7500000	1.0000000	10.0000000
PES_13	D-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_15	Dieldrin (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES 16	Endosulfan I (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_17	Endosulfan II (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_18	Endosulfan sulfate (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_19	Endrin (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_20	Endrin aldehyde (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_21	G-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_22	Heptachlor (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES 23	Heptachlor epoxide (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_4	4,4'-DDD (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_5	4,4'-DDE (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_6	4,4'-DDT (ug/L)	13	988	0.1076923	0.1000000	0.2000000
PES_7	A-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_8	Aldrin (ug/L)	13	988	0.0538462	0.0500000	0.1000000
PES_9	B-BHC (ug/L)	13	988	0.0538462	0.0500000	0.1000000
D_209	209 Deca (ng/L)	10		62,5000000	62,5000000	62.5000000
B B	8 Di (ng/L)	10		31.3000000	31.3000000	31.3000000
H38 58	138,158 Hexa (ng/L)	10		50.0000000	50.0000000	50.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum 🛶
H70_90	170,190 Hepta (ng/L)	10	991	62.5000000	62.5000000	62.5000000
HARD	Hardness (mg/L)	10	991	168.1200000	58.6000000	444.0000000
H_128	128 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_137	137 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_149	149 Hexa (ng/L)	10	991	20.0000000	20.0000000	20.0000000
H_151	151 Hexa (ng/L)	10	991	31.3000000	31.3000000	31.3000000
H_153	153 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_156	156 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_157	157 Hexa (ng/L)	10	991	24.1000000	24.1000000	24.1000000
H_166	166 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_167	167 Hexa (ng/L)	10	991	25.0000000	25.0000000	25.0000000
H_168	168 Hexa (ng/L)	10	991	21.8000000	21.8000000	21.8000000
H_169	169 Hexa (pg/L)	10	991	40.7400000	40.0000000	47.4000000
H_177	177 Hepta (ng/L)	10	991	30.0000000	30.000000	30.0000000
H_179	179 Hepta (ng/L)	10	991	30.0000000	30.0000000	30.0000000
H_180	180 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_183	183 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_185	185 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_187	187 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_189	189 Hepta (ng/L)	10	991	37.5000000	37.5000000	37.5000000
H_191	191 Hepta (ng/L)	10	991	27.3000000	27.3000000	27.3000000
N_206	206 Nona (ng/L)	10,	991	62.0000000	62.0000000	62.0000000
N_207	207 Nona (ng/L)	10	991	37.5000000	37.5000000	37.5000000
N_208	208 Nona (ng/L)	10	991	40.0000000	40.0000000	40.0000000
ORG_1	1-Methylnaphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_2	1-Methylphenanthrene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_20	2-Methylnaphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_22	2,3,5-Trimethyl-naphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_28	2,6-Dimethylnaphthalene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_46	Benzo(e)pyrene (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_49	Biphenyl (ug/L)	10	991	10.0000000	10.0000000	10.0000000
ORG_88	Perylene (ug/L)	10	991	10.0000000	10.0000000	10.0000000 🧦
0_194	194 Octa (ng/L)	10	991	37.5000000	37.5000000	37.5000000
0_195	195 Octa (ng/L)	10	991	30.0000000	30,0000000	30.0000000
0_196	196 Octa (ng/L)	10	991	30.0000000	30.0000000	30.0000000
0_200	200 Octa (ng/L)	10	991	37,5000000	37.5000000	37.5000000
0_201	201 Octa (ng/L)	10	991	30.0000000	30.0000000	30.0000000
0_203	203 Octa (ng/L)	10	991	30.0000000	30.0000000	30.0000000
0_205	205 Octa (ng/L)	10	991	37.5000000	37.5000000	37.5000000
PES_1	2,4'-DDD (ug/L)	10	991	0.1100000	0.1000000	0.2000000
PES_11	Cis-chlordane (ug/L)	10	991	0.5500000	0.5000000	1.0000000
PES 12	Cis-nonachlor (ug/L)	10	991	0.5500000	0.5000000	1.0000000
 .PES_14	Dicofol (ug/L)	10	991	0.4000000	0.4000000	0.4000000
PES_2	2,4'-DDE (ug/L)	10	991	0.1100000	0.1000000	0.2000000
PES_24	Hexychlorobenzene (ug/L)	10	991	0.1100000	0.1000000	0.2000000
PES_25	Mirex (ug/L)	10	991	0.1000000	0.1000000	0.1000000.
PES_26	Oxychlordane (ug/L)	10	991	0.1996000	0.1960000	0.2000000
PES_28	Trans-chlordane (ug/L)	10	991	0.5500000	0.5000000	1.0000000
PES_29	Trans-nonachlor (ug/L)	10	991	0.5500000	0.5000000	1.0000000
PES_3	2,4'-DDT (ug/L)	10	991	0.1100000	0.1000000	0.2000000
P_101	101 Penta (ng/L)	10	991	25.0000000	25.0000000	25.0000000
_	•	10	991			25,0000000
P_105	105 Penta (ng/L)			25.0000000	25.0000000	: 1
P_110	110 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000

Wilmington Harbor - Water Quality Data

	Variable	Label	N	Nmiss	Mean	Minimum	Maximum
	P_114	114 Penta (ng/L)	· 10	991	25.0000000	25.0000000	25.0000000
	_ P_118	118 Penta (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	P_119	119 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	P_123	123 Penta (ng/L)	10	991	20.8000000	20.8000000	20.8000000
	P_126	126 Penta (pg/L)	10	991	32.6000000	4.6000000	58.0000000
	P_127	127 Penta (ng/L)	10	991	20.0000000	20.0000000	20.0000000
Commercial	P_82	82 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000
Secondary	P_87	87 Penta (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	P_95	95 Penta (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	P_99	99 Penta (ng/L)	10	991	14.0000000	14.0000000	14.0000000
	TPH	Total Petroleum Hydrocarbons (mg/l)	10	991	0.2460000	0.2400000	0.2500000
	T_18	18 Tri (ng/L)	10	991	12.5000000	12.5000000	12.5000000
De come	T_28	28 Tri (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	T_37	37 Tri (ng/L)	10	991	31.3000000	31.3000000	31.3000000
. 4	T_44	44 Tetra (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	T_47	47 Tetra (ng/L)	10	991	28.1000000	28.1000000	28.1000000
	T_49	49 Tetra (ng/L)	10	991	31.3000000	31.3000000	31.3000000
¥	T_52	52 Tetra (ng/L)	10	991	25.0000000	25.0000000	25.0000000
, <u>.</u>	T_60	60 Tetra (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	T_66	66 Tetra (ng/L)	10	991	32.6000000	32.6000000	32.6000000
	T_70	70 Tetra (ng/L)	10	991	28.4000000	28.4000000	28.4000000
50000	T_74	74 Tetra (ng/L)	10	991	25.0000000	25.0000000	25.0000000
	T_77	77 Tetra (pg/L)	10	991	108.3400000	28.7000000	368.0000000
,	T_80	80 Tetra (ng/L)	10	991	31.3000000	31.3000000	31.3000000
	T_81	81 Tetra (pg/L)	10	991	37.1100000	11.1000000	40.0000000
	ORG_17	2-Chloroethylvinylether (ug/l)	1	1000	10.0000000	10.0000000	10.0000000
10000	ORG_65	Cis,trans,1,2-Dichloroethene (ug/l)	1	1000	1.0000000	1.0000000	1.0000000



# **Appendix B - Groundwater Database**

Name:

GW.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 22 observations and 16 variables in the dataset. Each observation represents a groundwater sample and a series of chemical and biological measurements. A sample can be uniquely identified by station name and sampling date. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Chloride is detected the concentration value is stored in the CHLR variable and a blank space exists in S_CHLR (Flag variable for Chloride). If the parameter was not detected, the detection limit is stored in CHLR and less than sign (<) is stored in S_CHLR. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

## Wilmington Harbor - Groundwater Data

#### CONTENTS PROCEDURE

22 Observations: Data Set Name: WORK.GW 16 Variables: Member Type: DATA 0 Indexes: V611 Engine: Observation Length: 93 12:12 Wednesday, February 19, 1997 Created: Deleted Observations: 0 Last Modified: 12:12 Wednesday, February 19, 1997 NO Compressed: Protection: NO Sorted: Data Set Type:

----Engine/Host Dependent Information----

Label:

Data Set Page Size: 8192
Number of Data Set Pages: 1
File Format: 607
First Data Page: 1
Max Obs per Page: 87
Obs in First Data Page: 22

-----Alphabetic List of Variables and Attributes-----

#	Variable	Туре	Len	Pos	Format	Label
9	CHLR	Num	8	22		Chloride (mg/l)
15	DATE	Num	8	77	MMDDYY8.	Sampling Date
14	LOCATION	Char	15	62		Study Site
16	PAGE	Num	8	85		Report Page Number
12	PH	Num	8	46		pH
1	STATION	Char	8	0		Sampling Well Identification
3	S CHLR	Char	1	9		Flag for CHLR (Less than DL)
6	S_PH	Char	1	12		Flag for PH (Less than DL)
5	S_TKN	Char	1	11		Flag for TKN (Less than DL)
7	S_TN	Char	1	13		Flag for TN (Less than DL)
2	S_TOC	Char	1	8		Flag for TOC (Less than DL)
4	S_ZN	Char	1	10		Flag for ZN (Less than DL)
11	TKN	Num	8	38		Total Kjeldahl Nitrogen (mg/l)
13	TN	Num	8	54		Total Nitrogen (mg/l)
8	TOC	Num	8	14		Total Organic Carbon (mg/l)
10	ZN	Num	8	30		Zinc (mg/l)

Wilmington Harbor - Groundwater Data

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
TOC CHLR	Total Organic Carbon (mg/l) Chloride (mg/l)	22 10	0	74.4454545 258.0000000	1.1000000	170.0000000 437.0000000
ZN TKN	Zinc (mg/l) Total Kjeldahl Nitrogen (mg/l) pH	22 10 22	0 12 0	0.0981818 16.6230000 6.8004545	0.0100000 0.4000000 5.5500000	1.4000000 54.0000000 8.1500000
PH TN DATE	Total Nitrogen (mg/l) Sampling Date	12 22	10 0	58.666667 9746.41	26.0000000 9566.00	80.0000000 9965.00
PAGE	Report Page Number	22	0	104.6363636	73.0000000	131.0000000



# Appendix C - Elutriate Database

Name:

ELU.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 21 observations and 273 variables in the dataset. Each observation represents an elutriate sample and a series of chemical and biological measurements. A sample can be uniquely identified by station name, sampling date, time, and tributary. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Silver is detected the concentration value is stored in the AG variable and a blank space exists in S_AG (Flag variable for Silver). If the parameter was not detected, the detection limit is stored in AG and less than sign (<) is stored in S_AG. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

There are two water bodies associated with the samples: Christina River and Delaware River. If a sample does not have tributary information, blank space is stored in its variable.

#### Wilmington Harbor - Elutriate Data

#### CONTENTS PROCEDURE

Data Set Name: WORK.ELU Observations: 21 Variables: 273 Member Type: DATA V611 Indexes: Engine: 0 2714 Created: 10:36 Wednesday, February 19, 1997 Observation Length: Last Modified: 10:36 Wednesday, February 19, 1997 Deleted Observations: 0 Compressed: NO Protection: NO Data Set Type: Sorted:

Label:

#### ----Engine/Host Dependent Information----

Data Set Page Size: 16384

Number of Data Set Pages: 6

File Format: 607

First Data Page: 3

Max Obs per Page: 6

Obs in First Data Page: 5

#### -----Alphabetic List of Variables and Attributes-----

#	Variable	Туре	Len	Pos	Format	Label
154	AG	Num	8	1754		Silver (mg/L)
30	AL	Num	8	278		Aluminum (mg/l)
155	AS	Num	8	1762		Arsenic (mg/L)
156	BE	Num	8	1770		Beryllium (mg/L)
8	BOD	Num	8	75		Biochemical Oxygen Demand (mg/l)
25	CD	Num	8	230		Cadmium (mg/l)
31	COD	Num	8	286		Chemical Oxygen Demand (mg/l)
4	COMMENT	Char	21	28	21.	Sample Comment
28	CR	Num	8	258		Chromium (mg/l)
26	CU	Num	8	238		Copper (mg/l)
157	CY	Num	8	1778		Cyanide (mg/L)
3	DATE	Num	8	20	MMDDYY8.	Sampling Date
14	HG	Num	8	131		Mercury (mg/l)
158	NI	Num	8	1786		Nickel (mg/L)
18	OG	Num	8	171		Oil & Grease (mg/l)
175	ORG_3	Num	8	1922		1,1-Dichloroethane (ug/L)
186	ORG_4	Num	8	2010		1,1-Dichloroethene (ug/L)
195	ORG_5	Num	8	2082		1,1,1-Trichloroethane (ug/L)
206	ORG_6	Num	8	2170		1,1,2-Trichloroethane (ug/L)
216	ORG_7	Num	8	2250		1,1,2,2-Tetrachloroethane (ug/L)
227	ORG_B	Num	8	2338		1,2-Dichlorobenzene (ug/L)
237	ORG_9	Num	8	2418		1,2-Dichloroethane (ug/L)
159	ORG_10	Num	8	1794		1,2-Dichloroethene (ug/L)
160	ORG_11	Num	8	1802		1,2-Dichloropropane (ug/L)
161	ORG_12	Num	8	1810		1,2-Diphenyl Hydrazine (ug/L)
162	ORG_13	Num	8	1818		1,2,4-Trichlorobenzene (ug/L)
163	ORG_14	Num	8	1826		1,3-Dichlorobenzene (ug/L)
164	ORG_15	Num	8	1834		1,4 & 1,2-Dichlorobenzene (ug/L)
165	ORG_16	Num	8	1842		1,4-Dichlorobenzene (ug/L)
166	ORG_18	Num	8	1850		2-Chloronaphthalene (ug/L)
167	ORG_19	Num	8	1858		2-Chlorophenol (ug/L)
168	ORG 21	Num	8	1866		2-Nitrophenol (ug/L)

#	Variable	Туре	Len	Pos	Format	Label
169	ORG_23	Num	8	1874		2,4-Dichlorophenol (ug/L)
170	ORG_24	Num	8	1882		2,4-Dimethylphenol (ug/L)
171	ORG_25	Num	8	1890		2,4-Dinitrophenol (ug/L)
172	ORG_26	Num	8	1898		2,4-Dinitrotoluene (ug/L)
173	ORG_27	Num	8	1906		2,4,6-Trichlorophenol (ug/L)
174	ORG_29	Num	8	1914		2,6-Dinitrotoluene (ug/L)
176	ORG_30	Num	8	1930		3,3'-Dichlorobenzidine (ug/L)
177	ORG_31	Num	8	1938		4-Bromophenyl-phenylether (ug/L)
178	ORG_32	Num	8	1946		4-Chlorophenyl-phenylether (ug/L)
179	ORG_33	Num	8	1954		4-Nitrophenol (ug/L)
180	ORG_34	Num	8	1962		4,6-Dinitro-2-methylphenol (ug/L)
181	ORG_35	Num	8	1970		4,-Chloro-3-methylphenol (ug/L)
182	ORG_36	Num	8	1978		Acenaphthene (ug/L)
183	ORG_37	Num	8	1986		Acenaphthylene (ug/L)
184	ORG_38	Num	8	1994		Acrolein (ug/L)
185	ORG_39	Num	8	2002		Acrylonitrile (ug/L)
187	ORG_40	Num	8	2018		Anthracene (ug/L)
188	ORG_41	Num	8	2026		Benzene (ug/L)
189	ORG_42	Num	8	2034		Benzidine (ug/L)
190	ORG_43	Num	8	2042		Benzo(a)anthracene (ug/L)
191	ORG_44	Num	8	2050		Benzo(a)pyrene (ug/L)
192	ORG_45	Num	8	2058		Benzo(b)fluoranthene (ug/L)
193	ORG_47	Num	8	2066		Benzo(g,h,i)perylene (ug/L)
194	ORG_48	Num	8	2074		Benzo(k)fluoranthene (ug/L)
196	ORG_50	Num	8	2090		Bis(2-chloroethoxy)methane (ug/L)
197	ORG_51	Num	8	2098		Bis(2-chloroethyl)ether (ug/L)
198	ORG_52	Num	8	2106		Bis(2-chloroisopropyl)ether (ug/L)
199	ORG_53	Num	8	2114		Bis(2-ethylhexyl)phthalate (ug/L)
200	ORG_54	Num	8	2122		Bromodichloromethane (ug/L)
201	ORG_55	Num	8	2130		Bromoform (ug/L)
202	ORG_56	Num	8	2138		Bromomethane (ug/L)
203	ORG_57	Num	8	2146		Butlybenzylphthalate (ug/L)
204	ORG_58	Num	8	2154		Carbon Tetrachloride (ug/L)
205	ORG_59	Num	8	2162		Chlorobenzene (ug/L)
207	ORG_60	Num	8	2178		Chloroethane (ug/L)
208	ORG_61	Num	8	2186		Chloroform (ug/L)
209	ORG_62	Num	8	2194		Chloromethane (ug/L)
210	ORG_63	Num	8	2202		Chrysene (ug/L)
211	ORG_64	Num	8	2210		Cis-1,3-Dichloropropene (ug/L)
212	ORG_66	Num	8	2218		Dibenzo(a,h)anthracene (ug/L)
213	ORG_67	Num	8	2226		Dibromochloromethane (ug/L)
214	ORG_68	Num	8	2234		Diethylphthalate (ug/L)
215	ORG_69	Num	8	2242		Dimethylphthalate (ug/L)
217	ORG_70	Num	8	2258		Di-n-butylphthalate (ug/L)
218	ORG_71	Num	8	2266		Di-n-octylphthalate (ug/L)
219	ORG_72	Num	8	2274		Ethylbenzene (ug/L)
220	ORG_73	Num	8	2282		Fluoranthene (ug/L)
221	ORG_74	Num	8	2290		Fluorene (ug/L)
222	ORG_75	Num	8	2298		Hexachlorobenzene (ug/L)
223	ORG_76	Num	8	2306		Hexachlorobutadiene (ug/L)
224	ORG_77	Num	8	2314		Hexachlorocyclopentadiene (ug/L)
225	ORG 78	Num	8	2322		Hexachloroethane (ug/L)
	5,,6 10		•			\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

### Wilmington Harbor - Elutriate Data

#	Variable	Туре	Len	Pos	Format	Label
226	ORG_79	Num	8	2330		Indeno(1,2,3-c,d)pyrene (ug/L)
228	ORG_80	Num	8	2346		Isophorone (ug/L)
229	ORG_81	Num	8	2354		Methylene Chloride (ug/L)
230	ORG_82	Num	8	2362		Naphthalene (ug/L)
231	ORG_83	Num	8	2370		Nitrobenzene (ug/L)
232	ORG_84	Num	8	2378		N-nitrosodimethylamine (ug/L)
233	ORG_85	Num	8	2386		N-nitroso-Di-n-propylamine (ug/L)
234	ORG_86	Num	8	2394		N-nitrosodiphenylamine (ug/L)
235	ORG_87	Num	8	2402		Pentachlorophenol (ug/L)
236	ORG_89	Num	8	2410		Phenanthrene (ug/L)
238	ORG_90	Num	8	2426		Phenol (mg/L)
239	ORG_91	Num	8	2434		Pyrene (ug/L)
240	ORG_92	Num	8	2442		Tetrachloroethene (ug/L)
241	ORG_93	Num	8	2450		Toluene (ug/L)
242	ORG_94	Num	8	2458		Trans-1,3-Dichloropropene (ug/L)
243	ORG_95	Num	8	2466		Trichloroethene (ug/L)
244	ORG_96	Num	8	2474		Trichlorofluoromethane (ug/L)
245	ORG_97	Num	8	2482		Vinyl Chloride (ug/L)
246	P1016	Num	8	2490		PCB-1016 (ug/L)
247	P1221	Num	8	2498		PCB-1221 (ug/L)
248	P1232	Num	8	2506		PCB-1232 (ug/L)
249	P1242	Num	8	2514		PCB-1242 (ug/L)
250	P1248	Num	8	2522		PCB-1248 (ug/L)
251	P1254	Num	8	2530		PCB-1254 (ug/L)
252	P1260	Num	8	2538		PCB-1260 (ug/L)
1	PAGE	Num	8	0		Report Page Number
23	PB	Num	8	210		Lead (mg/l)
16	PCB	Num	8	151		PCB's (mg/l)
265	PES_4	Num	8	2642		4,4'-DDD (ug/L)
266	PES_5	Num	8	2650		4,4'-DDE (ug/L)
267	PES_6	Num	8	2658		4,4'-DDT (ug/L)
268	PES_7	Num	8	2666		A-BHC (ug/L)
269	PES_8	Num	8	2674		Aldrin (ug/L)
270	PES_9	Num	8	2682		B-BHC (ug/L)
253	PES_10	Num	8	2546		Chlordane (ug/L)
254	PES_13	Num	8	2554		D-BHC (ug/L)
255	PES_15	Num	8	2562		Dieldrin (ug/L)
256	PES_16	Num	8	2570		Endosulfan I (ug/L)
257	PES_17	Num	8	2578		Endosulfan II (ug/L)
258	PES_18	Num	8	2586		Endosulfan sulfate (ug/L)
259	PES 19	Num	8	2594		Endrin (ug/L)
260	PES_20	Num	8	2602		Endrin aldehyde (ug/L)
261	PES_21	Num	8	2610		G-BHC (ug/L)
262	PES_22	Num	8	2618		Heptachlor (ug/L)
263	PES_23	Num	8	2626		Heptachlor epoxide (ug/L)
264	PES_27	Num	8	2634		Toxaphene (ug/L)
6	PH	Num	. 8	55		pH
271	SB	Num	8	2690		Antimony (mg/L)
272	SE	Num	8	2698		Selenium (mg/L)
2/2	STATION	Char	12	20 <del>3</del> 8	12.	Sampling Station
		Char	12	302	12.	Flag for AG (Less than DL)
33	S_AG					
29	S_AL	Char	12	266	12.	Flag for AL (Less than DL)

## Wilmington Harbor - Elutriate Data

#	Variable	Туре	Len	Pos	Format	Label
34	S_AS	Char	12	314	12.	Flag for AS (Less than DL)
35	S_BE	Char	12	326	12.	Flag for BE (Less than DL)
7	S_BOD	Char	12	63	12.	Flag for BOD (Less than DL)
24	s_cd	Char	12	218	12.	Flag for CD (Less than DL)
27	s_cr	Char	12	246	12.	Flag for CR (Less than DL)
36	\$_CU	Char	12	338	12.	Flag for CU (Less than DL)
37	s_cy	Char	12	350	12.	Flag for CY (Less than DL)
13	S_HG	Char	12	119	12.	Flag for HG (Less than DL)
38	S_NI	Char	12	362	12	Flag for NI (Less than DL)
17	s_og	Char	12	159	12.	Flag for OG (Less than DL)
55	S_ORG_3	Char	12	566	12.	Flag for ORG_3 (Less than DL)
66	S_ORG_4	Char	12	698	12.	Flag for ORG_4 (Less than DL)
75	S_ORG_5	Char	12	806	12.	Flag for ORG_5 (Less than DL) Flag for ORG_6 (Less than DL)
86	S_ORG_6	Char	12	938	12.	Flag for ORG_7 (Less than DL)
96	s_org_7	Char	12	1058	12.	Flag for ORG_8 (Less than DL)
107	S_ORG_8	Char	12	1190	12.	Flag for ORG_9 (Less than DL)
117	S_ORG_9	Char	12	1310	12. 12.	Flag for ORG_10 (Less than DL)
39	S_ORG_10	Char	12	374 386	12.	Flag for ORG_11 (Less than DL)
40	S_ORG_11	Char	12 12	398	12.	Flag for ORG_12 (Less than DL)
41	S_ORG_12	Char Char	12	410	12.	Flag for ORG_13 (Less than DL)
42	S_ORG_13	Char	12	422	12.	Flag for ORG_14 (Less than DL)
43	S_ORG_14	Char	12	434	12.	Flag for ORG_15 (Less than DL)
44 45	S_ORG_15 S_ORG_16	Char	12	446	12.	Flag for ORG_16 (Less than DL)
46	S_ORG_18	Char	12	458	12.	Flag for ORG_18 (Less than DL)
47	S_ORG_19	Char	12	470	12.	Flag for ORG_19 (Less than DL)
48	S_ORG_21	Char	12	482	12.	Flag for ORG_21 (Less than DL)
49	S_ORG_23	Char	12	494	12.	Flag for ORG_23 (Less than DL)
50	S_ORG_24	Char	12	506	12.	Flag for ORG_24 (Less than DL)
51	S_ORG_25	Char	12	518	12.	Flag for ORG_25 (Less than DL)
52	S_ORG_26	Char	12	530	12.	Flag for ORG_26 (Less than DL)
53	s_org_27	Char	12	542	12.	Flag for ORG_27 (Less than DL)
54	s_ORG_29	Char	12	554	12.	Flag for ORG_29 (Less than DL)
56	S_ORG_30	Char	12	578	12.	Flag for ORG_30 (Less than DL)
57	S_ORG_31	Char	12	590	12.	Flag for ORG_31 (Less than DL)
58	S_ORG_32	Char	12	602	12.	Flag for ORG_32 (Less than DL)
59	S_ORG_33	Char	12	614	12.	Flag for ORG_33 (Less than DL)
60	S_ORG_34	Char	12	626	12.	Flag for ORG_34 (Less than DL)
61	S_ORG_35	Char	12	638	12.	Flag for ORG_35 (Less than DL)
62	S_ORG_36	Char	12	650	12.	Flag for ORG_36 (Less than DL)
63	S_ORG_37	Char	12	662	12.	Flag for ORG_37 (Less than DL)
64	s_org_38	Char	12	674	12.	Flag for ORG_38 (Less than DL)
65	S_ORG_39	Char	12	686	12.	Flag for ORG_39 (Less than DL) Flag for ORG_40 (Less than DL)
67	s_ORG_40	Char	12	710	12.	Flag for ORG_40 (Less than DL)
68	S_ORG_41	Char	12	722	12.	Flag for ORG_42 (Less than DL)
69	s_ORG_42	Char	12	734	12.	Flag for ORG_42 (Less than DL)
70	S_ORG_43	Char	12	746	12.	Flag for ORG_44 (Less than DL)
71	S_ORG_44	Char	12	758 770	12.	Flag for ORG_44 (Less than DL) Flag for ORG_45 (Less than DL)
72	S_ORG_45	Char	12	770	12.	Flag for ORG_45 (Less than DL)
73	s_ORG_47	Char	12	782	12.	Flag for ORG_48 (Less than DL)
74	S_ORG_48	Char	12	794	12.	Flag for ORG 50 (Less than DL)
7^	0 000 E0	Chan	10	Q1Q	1.7	FIAG IDE UNG SU (LESS LHGH UL)

#	Variable	Туре	Len	Pos	Format	Label
77	S_ORG_51	Char	12	830	12.	Flag for ORG_51 (Less than DL)
78	 S_ORG_52	Char	12	842	12.	Flag for ORG_52 (Less than DL)
79	S_ORG_53	Char	12	854	12.	Flag for ORG_53 (Less than DL)
80	S_ORG_54	Char	12	866	12.	Flag for ORG_54 (Less than DL)
81	s_ORG_55	Char	12	878	12.	Flag for ORG_55 (Less than DL)
82	s_ORG_56	Char	12	890	12.	Flag for ORG_56 (Less than DL)
83	S_ORG_57	Char	12	902	12.	Flag for ORG_57 (Less than DL)
84	S_ORG_58	Char	12	914	12.	Flag for ORG_58 (Less than DL)
85	s_ORG_59	Char	12	926	12.	Flag for ORG_59 (Less than DL)
87	s_org_60	Char	12	950	12.	Flag for ORG_60 (Less than DL)
88	S_ORG_61	Char	12	962	12.	Flag for ORG_61 (Less than DL)
89	S_ORG_62	Char	12	974	12.	Flag for ORG_62 (Less than DL)
90	S_ORG_63	Char	12	986	12.	Flag for ORG_63 (Less than DL)
91	S_ORG_64	Char	12	998	12.	Flag for ORG_64 (Less than DL)
92	S_ORG_66	Char	12	1010	12.	Flag for ORG_66 (Less than DL)
93	s_o RG_67	Char	12	1022	12.	Flag for ORG_67 (Less than DL)
94	s_org_68	Char	12	1034	12.	Flag for ORG_68 (Less than DL)
95	s_org_69	Char	12	1046	12.	Flag for ORG_69 (Less than DL)
97	S_ORG_70	Char	12	1070	12.	Flag for ORG_70 (Less than DL)
98	s_ORG_71	Char	12	1082	12.	Flag for ORG_71 (Less than DL)
99	s_ORG_72	Char	12	1094	12.	Flag for ORG_72 (Less than DL)
100	S_ORG_73	Char	12	1106	12.	Flag for ORG_73 (Less than DL)
101	S_ORG_74	Char	12	1118	12.	Flag for ORG_74 (Less than DL)
102	S_ORG_75	Char	12	1130	12.	Flag for ORG_75 (Less than DL) Flag for ORG_76 (Less than DL)
103	S_ORG_76	Char	12	1142	12.	Flag for ORG_77 (Less than DL)
104	S_ORG_77	Char	12	1154	12.	Flag for ORG_78 (Less than DL)
105	S_ORG_78	Char	12	1166	12. 12.	Flag for ORG_79 (Less than DL)
106	S_ORG_79	Char	12 12	1178 1202	12.	Flag for ORG_80 (Less than DL)
108	S_ORG_80	Char Char	12	1214	12.	Flag for ORG 81 (Less than DL)
109	S_ORG_81	Char	12	1226	12.	Flag for ORG_82 (Less than DL)
110	S_ORG_82	Char	12	1238	12.	Flag for ORG 83 (Less than DL)
111 112	S_ORG_83 S_ORG_84	Char	12	1250	12.	Flag for ORG_84 (Less than DL)
113	S_ORG_85	Char	12	1262	12.	Flag for ORG_85 (Less than DL)
114	S_ORG_86	Char	12	1274	12.	Flag for ORG 86 (Less than DL)
115	S_ORG_87	Char	12	1286	12.	Flag for ORG 87 (Less than DL)
116	S_ORG_89	Char	12	1298	12.	Flag for ORG_89 (Less than DL)
118	S_ORG_90	Char	12	1322	12.	Flag for ORG_90 (Less than DL)
119	S_ORG_91	Char	12	1334	12.	Flag for ORG_91 (Less than DL)
120	S_ORG_92	Char	12	1346	12.	Flag for ORG_92 (Less than DL)
121	S_ORG_93	Char	12	1358	12.	Flag for ORG_93 (Less than DL)
122	S_ORG_94	Char	12	1370	12.	Flag for ORG_94 (Less than DL)
123	S_ORG_95	Char	12	1382	12.	Flag for ORG_95 (Less than DL)
124	S_ORG_96	Char	12	1394	12.	Flag for ORG_96 (Less than DL)
125	S_ORG_97	Char	12	1406	12.	Flag for ORG_97 (Less than DL)
126	S_P1016	Char	12	1418	12.	Flag for P1016 (Less than DL)
127	S P1221	Char	12	1430	12.	Flag for P1221 (Less than DL)
128	S_P1232	Char	12	1442	12.	Flag for P1232 (Less than DL)
129	S_P1242	Char	12	1454	12.	Flag for P1242 (Less than DL)
130	S_P1248	Char	12	1466	12.	Flag for P1248 (Less than DL)
131	S_P1254	Char	12	1478	12.	Flag for P1254 (Less than DL)
132	S P1260	Char	12	1490	12.	Flag for P1260 (Less than DL)
11.15	S I IZOU	wirel!	,			

## Wilmington Harbor - Elutriate Data

#	Variable	Type	Len	Pos	Format	Label
22	S PB	Char	12	198	12.	Flag for PB (Less than DL)
15	s_PCB	Char	12	139	12.	Flag for PCB (Less than DL)
145	S_PES_4	Char	12	1646	12.	Flag for PES_4 (Less than DL)
146	S_PES_5	Char	12	1658	12.	Flag for PES_5 (Less than DL)
147	S_PES_6	Char	12	1670	12.	Flag for PES_6 (Less than DL)
148	S_PES_7	Char	12	1682	12.	Flag for PES_7 (Less than DL)
149	S_PES_8	Char	12	1694	12.	Flag for PES_8 (Less than DL)
150	S_PES_9	Char	12	1706	12.	Flag for PES_9 (Less than DL)
133	S_PES_10	Char	12	1502	12.	Flag for PES_10 (Less than DL)
134	S_PES_13	Char	12	1514	12.	Flag for PES_13 (Less than DL)
135	S_PES_15	Char	12	1526	12.	Flag for PES_15 (Less than DL)
136	S_PES_16	Char	12	1538	12.	Flag for PES_16 (Less than DL)
137	S_PES_17	Char	12	1550	12.	Flag for PES_17 (Less than DL)
138	S_PES_18	Char	12	1562	12.	Flag for PES_18 (Less than DL)
139	S_PES_19	Char	12	1574	12.	Flag for PES_19 (Less than DL)
140	S_PES_20	Char	12	1586	12.	Flag for PES_20 (Less than DL)
141	S_PES_21	Char	12	1598	12.	Flag for PES_21 (Less than DL)
142	S_PES_22	Char	12	1610	12.	Flag for PES_22 (Less than DL)
143	S_PES_23	Char	12	1622	12.	Flag for PES_23 (Less than DL)
144	S_PES_27	Char	12	1634	12.	Flag for PES_27 (Less than DL)
151	S_SB	Char	12	1718	12.	Flag for SB (Less than DL)
152	S_SE	Char	12	1730	12.	Flag for SE (Less than DL)
153	S_TL	Char	12	1742	12.	Flag for TL (Less than DL)
20	S_TP	Char	3	187	з.	Flag for TP (Less than DL)
11	s_zn	Char	12	99	12.	Flag for ZN (Less than DL)
32	TIME	Num	8	294	TIME5.	Sampling Time
19	TKN	Num	8	179		Total Kjeldahl Nitrogen (mg/l)
273	TL	Num	8	2706		Thallium (mg/L)
10	TN	Num	8	91		Total Nitrogen (mg/l)
9	TOC	Num	8	83		Total Organic Carbon (mg/l)
21	TP	Num	8	190		Total Phosphate (mg/l)
5	TRIB	Char	6	49	6.	CR=Christina River,DR=Delaware River
12	ZN	Num	8	111		Zinc (mg/l)

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
PAGE	Report Page Number	21	0	360.0952381	170.0000000	671.0000000
DATE	Sampling Date	21	0	9953.24	7284.00	12123.00
PH	pH	14	7	7.5357143	6.6000000	8.1000000
BOD	Biochemical Oxygen Demand (mg/l)	14	7	8.4642857	2.4000000	11.0000000
TOC	Total Organic Carbon (mg/l)	14	7	27.7857143	8.0000000	44.0000000
TN	Total Nitrogen (mg/l)	11	10	15.4000000	3.4000000	28.0000000
ZN	Zinc (mg/l)	21	0	0.0645238	0.0300000	0.1200000
<b>HG</b>	Mercury (mg/l)	21	0	0.000733333	0.000200000	0.0010000
PCB	PCB's (mg/1)	11	10	2.0000000	2.0000000	2.0000000
OG	Oil & Grease (mg/l)	3	18	1.0000000	1.0000000	1.0000000
TKN	Total Kjeldahl Nitrogen (mg/l)	3	18	5.0000000	1.1000000	10.0000000
TP	Total Phosphate (mg/l)	3	18	0.1933333	0.0600000	0.4500000
PB	Lead (mg/l)	10	11	0.0933000	0.0030000	0.2300000
CD	Cadmium (mg/l)	10	11	0.0332000	0.0020000	0.0500000
CU	Copper (mg/l)	10	11	0.0480000	0.0300000	0.0600000
CR	Chromium (mg/l)	10	. 11	0.0365000	0.0050000	0.0500000
, AL.	Aluminum (mg/l)	3	18	1.3000000	0.1000000	3.3000000
COD	Chemical Oxygen Demand (mg/l)	3	18	38.0000000	17.0000000	72.0000000
) TIME	Sampling Time	14	7	42724.29	38700.00	47700.00
. AG	Silver (mg/L)	7	14	0.0435714	0.0050000	0.0500000
AS	Arsenic (mg/L)	7	14	0.0861429	0.0030000	0.1000000
BE	Beryllium (mg/L)	7	14	0.000500000	0.000500000	0.000500000
CY	Cyanide (mg/L)	7	14	0.0050000	0.0050000	0.0050000
NI	Nickel (mg/L)	7	14	0.0442857	0.0100000	0.0500000
9 ORG_10	1,2-Dichloroethene (ug/L)	7	14	5.0000000	5.0000000	5.0000000
ORG_11	1,2-Dichloropropane (ug/L)	7	14	5.0000000	5.0000000	5.0000000
ORG_12	1,2-Diphenyl Hydrazine (ug/L)	7	14	10.0000000	10.0000000	10.0000000
ORG_13	1,2,4-Trichlorobenzene (ug/L)	7	14	10.0000000	10.0000000	10.0000000
ORG_14	1,3-Dichlorobenzene (ug/L)	7		5.0000000	5.0000000	5.0000000
] ORG_15	1,4 & 1,2-Dichlorobenzene (ug/L)	7		5.0000000	5.0000000	5.0000000
ORG_16	1,4-Dichlorobenzene (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_18	2-Chloronaphthalene (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_19	2-Chlorophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_21	2-Nitrophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_23	2,4-Dichlorophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_24	2,4-Dimethylphenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_25	2,4-Dinitrophenol (ug/L)	7		50.0000000	50.0000000	50.0000000
ORG_26	2,4-Dinitrotoluene (ug/L)	7		10.0000000	10.0000000	10.0000000
, ORG_27	2,4,6-Trichlorophenol (ug/L)	7		10.0000000	10.0000000	10.0000000
ORG_29	2,6-Dinitrotoluene (ug/L)	7		10.0000000	10.0000000	10.0000000
DRG_3	1,1-Dichloroethane (ug/L)	7		5.0000000	5.000000	5.000000
ORG_30	3,3'-Dichlorobenzidine (ug/L)	7		20.0000000	20.0000000	20.0000000
ORG_31	4-Bromophenyl-phenylether (ug/L)	7		10.0000000	10.0000000	10.0000000
DRG_32	4-Chlorophenyl-phenylether (ug/L)	7			10.0000000	10.0000000
ORG_33	4-Nitrophenol (ug/L)	7		50.0000000	50.0000000	50.000000
ORG_34	4,6-Dinitro-2-methylphenol (ug/L)	7		50,0000000	50.0000000	50.0000000
ORG_35	4,-Chloro-3-methylphenol (ug/L)	7			10.0000000	10.0000000
ORG_36	Acenaphthene (ug/L)	7			10.0000000	
· —	Acenaphthylene (ug/L)	7			10.0000000	10.0000000
ORG_37	* **- *********************************				40 0000000	40 0000000
ORG_37	Acrolein (ug/L)	7			10.0000000	
4	•		7 14	10.0000000	10.0000000	10.000000
ORG_38	Acrolein (ug/L)	7		10.0000000 5.0000000		10.0000000 5.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum	?
ORG_41	Benzene (ug/L)	 7	14	5.000000	5.0000000	5.000000	:
ORG_42	Benzidine (ug/L)	7	14	80.0000000	80.0000000	80.0000000	7
ORG_43	Benzo(a)anthracene (ug/L)	7	14	10.0000000	10,0000000	10.0000000	
ORG_44	Benzo(a)pyrene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	7
ORG_45	Benzo(b)fluoranthene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	-5
ORG_47	Benzo(g,h,i)perylene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	
ORG_48	Benzo(k)fluoranthene (ug/L)	7	14	10.0000000	10.0000000	10.0000000	>
ORG_5	1,1,1-Trichloroethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000	75
ORG_50	Bis(2-chloroethoxy)methane (ug/L)	7	14	10.0000000	10.0000000	10.0000000	Ÿ
ORG_51	Bis(2-chloroethyl)ether (ug/L)	7	14	8.0000000	2.0000000	10.0000000	~
ORG_52	Bis(2-chloroisopropyl)ether (ug/L)	7	14	10.0000000	10.0000000	10.0000000	
ORG_53	Bis(2-ethylhexyl)phthalate (ug/L)	7	14	10.0000000	10.0000000	10.0000000	-
ORG_54	Bromodichloromethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000	á
ORG_55	Bromoform (ug/L)	7	14	5.0000000	5.0000000	5.0000000	
ORG_56	Bromomethane (ug/L)	7	14	10.0000000	10.0000000	10.0000000	è
ORG_57	Butlybenzylphthalate (ug/L)	7	14	10.0000000	10.0000000	10.0000000	~
ORG_58	Carbon Tetrachloride (ug/L)	7	14	5.0000000	5.0000000	5.0000000	
ORG_59	Chlorobenzene (ug/L)	7	14	5.0000000	5.0000000	5.0000000	71.00
_	1,1,2-Trichloroethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000	
ORG_6	Chloroethane (ug/L)	7	14	10,0000000	10.0000000	10.0000000	
ORG_60	Chloroform (ug/L)	7	14	4.4285714	3.0000000	6.0000000	ż
ORG_61	Chloromethane (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_62	Chrysene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_63	Cis-1,3-Dichloropropene (ug/L)	7		5.0000000	5.0000000	5.0000000	
ORG_64	Dibenzo(a,h)anthracene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_66	Dibromochloromethane (ug/L)	7		5.0000000	5.0000000	5.0000000	7
ORG_67	Diethylphthalate (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_68	Dimethylphthalate (ug/L)	7		10.0000000	10.0000000	10.0000000	1
ORG_69	1,1,2,2-Tetrachloroethane (ug/L)	7		5.0000000	5.0000000	5.0000000	
ORG_7	Di-n-butylphthalate (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_70	Di-n-octylphthalate (ug/L)	, 7		10.0000000	10.0000000	10.0000000	:
ORG_71	Ethylbenzene (ug/L)	7		5.0000000	5.0000000	5.0000000	
ORG_72	-	7		10.0000000	10.0000000	10.0000000	
ORG_73	Fluoranthene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_74	Fluorene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_75	Hexachlorobenzene (ug/L) Hexachlorobutadiene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_76		7		10.0000000	10.0000000	10.0000000	
ORG_77	Hexachlorocyclopentadiene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_78	Hexachloroethane (ug/L) Indeno(1,2,3-c,d)pyrene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_79	1,2-Dichlorobenzene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_8	-	7		10.0000000	10.0000000	10.0000000	
ORG_80	Isophorone (ug/L)	7		9.7142857	5.0000000	12.0000000	
ORG_81	Methylene Chloride (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_82	Naphthalene (ug/L)				10.0000000	10.0000000	
ORG_83	Nitrobenzene (ug/L)	7		10.0000000		10.0000000	
ORG_84	N-nitrosodimethylamine (ug/L)	7		10.0000000	10.0000000		
ORG_85	N-nitroso-Di-n-propylamine (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_86	N-nitrosodiphenylamine (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_87	Pentachlorophenol (ug/L)	7		50.0000000	50.0000000	50.0000000	
ORG_89	Phenanthrene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_9	1,2-Dichloroethane (ug/L)	7		5.0000000	5.0000000	5.0000000	
ORG_90	Phenol (mg/L)	7		0.0067143	0.0050000	0.0090000	
ORG_91	Pyrene (ug/L)	7		10.0000000	10.0000000	10.0000000	
ORG_92	Tetrachloroethene (ug/L)	7	14	5.0000000	5.0000000	5.0000000	

## Wilmington Harbor - Elutriate Data

	Variable	Label	N	Nmiss	Mean	Minimum	Maximum
	ORG_93	Toluene (ug/L)	7	14	5.0000000	5.000000	5.0000000
1	ORG_94	Trans-1,3-Dichloropropene (ug/L)	7	14	5.0000000	5.0000000	5.0000000
	ORG_95	Trichloroethene (ug/L)	7	14	5.0000000	5.0000000	5.0000000
	ORG_96	Trichlorofluoromethane (ug/L)	7	14	5.0000000	5.0000000	5.0000000
1	ORG_97	Vinyl Chloride (ug/L)	7	14	10.0000000	10.0000000	10.0000000
	P1016	PCB-1016 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
	P1221	PCB-1221 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
	P1232	PCB-1232 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
	P1242	PCB-1242 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
** 8	P1248	PCB-1248 (ug/L)	7	14	0.5000000	0.5000000	0.5000000
f 1	P1254	PCB-1254 (ug/L)	7	14	1.0000000	1.0000000	1.0000000
	P1260	PCB-1260 (ug/L)	7	14	1.0000000	1.0000000	1.0000000
÷	PES_10	Chlordane (ug/L)	7	14	0.5000000	0.5000000	0.5000000
great of the	PES_13	D-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
	PES_15	Dieldrin (ug/L)	7	14	0.1000000	0.1000000	0.1000000
٤٤	PES_16	Endosulfan I (ug/L)	7	14	0.0500000	0.0500000	0.0500000
F-MA	PES_17	Endosulfan II (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_18	Endosulfan sulfate (ug/L)	7	14	0.1000000	0.1000000	0.1000000
÷	PES_19	Endrin (ug/L)	7	14	0.1000000	0.1000000	0.1000000
June	PES_20	Endrin aldehyde (ug/L)	7	14	0.1000000	0.1000000	0.1000000
91100000	PES_21	G-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
أسرة	PES_22	Heptachlor (ug/L)	7	14	0.0500000	0.0500000	0.0500000
_	PES_23	Heptachlor epoxide (ug/L)	7	14	0.0500000	0.0500000	0.0500000
	PES_27	Toxaphene (ug/L)	7	14	1.0000000	1.0000000	1.0000000
	PES_4	4,4'-DDD (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_5	4,4'-DDE (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_6	4,4'-DDT (ug/L)	7	14	0.1000000	0.1000000	0.1000000
	PES_7	A-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
	PES_8	Aldrin (ug/L)	7	14	0.0500000	0.0500000	0.0500000
/	PES_9	B-BHC (ug/L)	7	14	0.0500000	0.0500000	0.0500000
Marian	SB	Antimony (mg/L)	7	14	0.0860000	0.0020000	0.1000000
- 92,000	SE	Selenium (mg/L)	7		0.0860000	0.0020000	0.1000000
,	TL	Thallium (mg/L)	7	14	0.0431429	0.0020000	0.0500000
10000							



# Appendix D - Sediment Database

Name:

SED.SD2

Type:

SAS dataset (Windows Version 6.11)

Location:

Floppy disk attached with report

Structure: There are 8 observations and 425 variables in the dataset. Each observation represents a sediment sample and a series of chemical and biological measurements. A sample can be uniquely identified by station type, station name, sampling date, tributary, and dredging period. For each parameter there are 2 variables: one is the concentration and the other is a detection limit flag. For example, if Silver is detected the concentration value is stored in the AG variable and a blank space exists in S_AG (Flag variable for Silver). If the parameter was not detected, the detection limit is stored in AG and less than sign (<) is stored in S_AG. A list of variable names, types (Character or Numeric), and labels are contained within this appendix.

All sediment samples were taken from Christina River, Background station type, and were before dredging period.

#	Variable	Туре	Len	Pos	Format	Label
17	S_ORG_10	Char	12	198	12.	Flag for ORG_10 (Less than DL)
18	S_ORG_11	Char	12	210	12.	Flag for ORG_11 (Less than DL)
19	S_ORG_12	Char	12	222	12.	Flag for ORG_12 (Less than DL)
20	S_ORG_13	Char	12	234	12.	Flag for ORG_13 (Less than DL)
21	S_ORG_14	Char	12	246	12.	Flag for ORG_14 (Less than DL)
22	S_ORG_15	Char	12	258	12.	Flag for ORG_15 (Less than DL)
23	S_ORG_16	Char	12	270	12.	Flag for ORG_16 (Less than DL)
24	S_ORG_18	Char	12	282	12.	Flag for ORG_18 (Less than DL)
25	S_ORG_19	Char	12	294	12.	Flag for ORG_19 (Less than DL)
162	S_ORG_20	Char	12	1938	12.	Flag for ORG_20 (Less than DL)
26	S_ORG_21	Char	12	306	12.	Flag for ORG_21 (Less than DL)
163	S_ORG_22	Char	12	1950	12.	Flag for ORG_22 (Less than DL)
27	S_ORG_23	Char	12	318	12.	Flag for ORG_23 (Less than DL)
28	S_ORG_24	Char	12	330	12.	Flag for ORG_24 (Less than DL)
29	S_0RG_25	Char	12	342	12.	Flag for ORG_25 (Less than DL)
30	S_ORG_26	Char	12	354	12.	Flag for ORG_26 (Less than DL)
31	S_ORG_27	Char	12	366	12.	Flag for ORG_27 (Less than DL)
164	S_ORG_28	Char	12	1962	12.	Flag for ORG_28 (Less than DL)
32	S_ORG_29	Char	12	378	12.	Flag for ORG_29 (Less than DL)
34	S_0RG_30	Char	12	402	12. ´	Flag for ORG_30 (Less than DL)
35	S_ORG_31	Char	12	414	12.	Flag for ORG_31 (Less than DL)
36	S_ORG_32	Char	12	426	12.	Flag for ORG_32 (Less than DL)
37	S_ORG_33	Char	12	438	12.	Flag for ORG_33 (Less than DL)
38	S_ORG_34	Char	12	450	12.	Flag for ORG_34 (Less than DL)
39	S_ORG_35	Char	12	462	12.	Flag for ORG_35 (Less than DL)
40	s_0RG_36	Char	12	474	12.	Flag for ORG_36 (Less than DL)
41	S_ORG_37	Char	12	486	12.	Flag for ORG_37 (Less than DL)
42	S_ORG_38	Char	12	498	12.	Flag for ORG_38 (Less than DL)
43	S_ORG_39	Char	12	510	12.	Flag for ORG_39 (Less than DL)
45	S_ORG_40	Char	12	534	12.	Flag for ORG_40 (Less than DL)
46	S_ORG_41	Char	12	546	12.	Flag for ORG_41 (Less than DL)
47	S_ORG_42	Char	12	558	12.	Flag for ORG_42 (Less than DL)
48	S_ORG_43	Char	12	570	12.	Flag for ORG_43 (Less than DL)
49	S_ORG_44	Char	12	582	12.	Flag for ORG_44 (Less than DL)
50	S_ORG_45	Char	12	594	12.	Flag for ORG_45 (Less than DL)
165	S_ORG_46	Char	12	1974	12.	Flag for ORG_46 (Less than DL)
51	S_ORG_47	Char	12	606	12.	Flag for ORG_47 (Less than DL)
52	S_ORG_48	Char	12	618	12.	Flag for ORG_48 (Less than DL)
166	S_ORG_49	Char	12	1986	12.	Flag for ORG_49 (Less than DL)
- 54	S_ORG_50	Char	12	642	12.	Flag for ORG_50 (Less than DL)
55	S_ORG_51	Char	12	654	12.	Flag for ORG_51 (Less than DL)
56	S_ORG_52	Char	12	666	12.	Flag for ORG_52 (Less than DL)
57	S_ORG_53	Char	12	678	12.	Flag for ORG_53 (Less than DL)
58	S_ORG_54	Char	12	690	12.	Flag for ORG_54 (Less than DL)
59	S_ORG_55	Char	12	702	12.	Flag for ORG_55 (Less than DL)
60	S_ORG_56	Char	12	714	12.	Flag for ORG_56 (Less than DL)
61	S_ORG_57	Char	12	726	12.	Flag for ORG_57 (Less than DL)
62	S_ORG_58	Char	12	738	12.	Flag for ORG_58 (Less than DL)
63	S_ORG_59	Char	12	750	12.	Flag for ORG_59 (Less than DL)
65	S_ORG_60	Char	12	774	12.	Flag for ORG_60 (Less than DL)
66	S_ORG_61	Char	12	786	12.	Flag for ORG_61 (Less than DL)
67	s ORG 62	Char	12	798	12.	Flag for ORG 62 (Less than DL)

#	Variable	Туре	Len	Pos	Format	Label
68	S_ORG_63	Char	12	810	12.	Flag for ORG_63 (Less than DL)
69	S_ORG_64	Char	12	822	12.	Flag for ORG_64 (Less than DL)
70	S_ORG_66	Char	12	834	12.	Flag for ORG_66 (Less than DL)
71	S_ORG_67	Char	12	846	12.	Flag for ORG_67 (Less than DL)
72	S_ORG_68	Char	12	858	12.	Flag for ORG_68 (Less than DL)
73	S_ORG_69	Char	12	870	12.	Flag for ORG_69 (Less than DL)
75	S_ORG_70	Char	12	894	12.	Flag for ORG_70 (Less than DL)
76	S_ORG_71	Char	12	906	12.	Flag for ORG_71 (Less than DL)
77	S_ORG_72	Char	12	918	12.	Flag for ORG_72 (Less than DL)
78	S_ORG_73	Char	12	930	12.	Flag for ORG_73 (Less than DL)
79	S_ORG_74	Char	12	942	12.	Flag for ORG_74 (Less than DL)
80	S_ORG_75	Char	12	954	12.	Flag for ORG_75 (Less than DL)
81	S_ORG_76	Char	12	966	12.	Flag for ORG_76 (Less than DL)
82	S_ORG_77	Char	12	978	12.	Flag for ORG_77 (Less than DL)
83	S_ORG_78	Char	12	990	12.	Flag for ORG_78 (Less than DL)
84	S_ORG_79	Char	12	1002	12.	Flag for ORG_79 (Less than DL)
86	S_ORG_80	Char	12	1026	12.	Flag for ORG_80 (Less than DL)
87	S_ORG_81	Char	12	1038	12.	Flag for ORG_81 (Less than DL)
88	S_ORG_82	Char	12	1050	12.	Flag for ORG_82 (Less than DL)
89	S_ORG_83	Char	12	1062	12.	Flag for ORG_83 (Less than DL)
90	S_ORG_84	Char	12	1074	12.	Flag for ORG_84 (Less than DL)
91	S_ORG_85	Char	12	1086	12.	Flag for ORG_85 (Less than DL)
92	S_ORG_86	Char	12	1098	12.	Flag for ORG_86 (Less than DL)
93	S_ORG_87	Char	12	1110	12.	Flag for ORG_87 (Less than DL)
167	S_ORG_88	Char	12	1998	12.	Flag for ORG_88 (Less than DL)
94	S_ORG_89	Char	12	1122	12.	Flag for ORG_89 (Less than DL)
96	S_ORG_90	Char	12	1146	12.	Flag for ORG_90 (Less than DL)
97	S_ORG_91	Char	12	1158	12.	Flag for ORG_91 (Less than DL)
98	S_ORG_92	Char	12	1170	12.	Flag for ORG_92 (Less than DL)
99	S_ORG_93	Char	12	1182	12.	Flag for ORG_93 (Less than DL)
100	S_ORG_94	Char	12	1194	12.	Flag for ORG_94 (Less than DL)
101	S_ORG_95	Char	12	1206	12.	Flag for ORG_95 (Less than DL)
102	S_ORG_96	Char	12	1218	12.	Flag for ORG_96 (Less than DL)
103	S_ORG_97	Char	12	1230	12.	Flag for ORG_97 (Less than DL)
168	S_O_194	Char	12	2010	12.	Flag for O_194 (Less than DL)
169	S_O_195	Char	12	2022	12.	Flag for O_195 (Less than DL)
170	S_0_196	Char	12	2034	12.	Flag for O_196 (Less than DL)
171	S_O_200	Char	12	2046	12.	Flag for O_200 (Less than DL)
172	S_0_201	Char	12	2058	12.	Flag for O_201 (Less than DL)
- 173	S_0_203	Char	12	2070	12.	Flag for O_203 (Less than DL)
174	S_O_205	Char	12	2082	12.	Flag for O_205 (Less than DL)
104	S_P1016	Char	12	1242	12.	Flag for P1016 (Less than DL)
105	S_P1221	Char	12	1254	12.	Flag for P1221 (Less than DL)
106	S_P1232	Char	12	1266	12.	Flag for P1232 (Less than DL)
107	S_P1242	Char	12	1278	12.	Flag for P1242 (Less than DL)
108	S_P1248	Char	12	1290	12.	Flag for P1248 (Less than DL)
109	S_P1254	Char	12	1302	12.	Flag for P1254 (Less than DL)
110	S_P1260	Char	12	1314	12.	Flag for P1260 (Less than DL)
111	S_PB	Char	12	1326	12.	Flag for PB (Less than DL)
175	S_PCB	Char	12	2094	12.	Flag for PCB (Less than DL)
176	S_PES_1	Char	12	2106	12.	Flag for PES_1 (Less than DL)
180	S PES 2	Char	12	2154	12.	Flag for PES 2 (Less than DL)

#	Variable	Туре	Len	Pos	Format	Label
186	S_PES_3	Char	12	2226	12.	Flag for PES_3 (Less than DL)
124	S_PES_4	Char	12	1482	12.	Flag for PES_4 (Less than DL)
125	S_PES_5	Char	12	1494	12.	Flag for PES_5 (Less than DL)
126	S_PES_6	Char	12	1506	12.	Flag for PES_6 (Less than DL)
127	S_PES_7	Char	12	1518	12.	Flag for PES_7 (Less than DL)
128	S_PES_8	Char	12	1530	12.	Flag for PES_8 (Less than DL)
129	S_PES_9	Char	12	1542	12.	Flag for PES_9 (Less than DL)
112	S_PES_10	Char	12	1338	12.	Flag for PES_10 (Less than DL)
177	S_PES_11	Char	12	2118	12.	Flag for PES_11 (Less than DL)
178	S_PES_12	Char	12	2130	12.	Flag for PES_12 (Less than DL)
113	S_PES_13	Char	12	1350	12.	Flag for PES_13 (Less than DL)
179	S_PES_14	Char	12	2142	12.	Flag for PES_14 (Less than DL)
114	S_PES_15	Char	12	1362	12.	Flag for PES_15 (Less than DL)
115	S_PES_16	Char	12	1374	12.	Flag for PES_16 (Less than DL)
116	S_PES_17	Char	12	1386	12.	Flag for PES_17 (Less than DL)
117	S_PES_18	Char	12	1398	12.	Flag for PES_18 (Less than DL)
118	S_PES_19	Char	12	1410	12.	Flag for PES_19 (Less than DL)
119	S_PES_20	Char	12	1422	12.	Flag for PES_20 (Less than DL)
120	S_PES_21	Char	12	1434	12.	Flag for PES_21 (Less than DL)
121	S_PES_22	Char	12	1446	12.	Flag for PES_22 (Less than DL)
122	S_PES_23	Char	12	1458	12.	Flag for PES_23 (Less than DL)
181	S_PES_24	Char	12	2166	12.	Flag for PES_24 (Less than DL)
182	S_PES_25	Char	12	2178	12.	Flag for PES_25 (Less than DL)
183	S_PES_26	Char	12	2190	12.	Flag for PES_26 (Less than DL)
123	S_PES_27	Char	12	1470	12.	Flag for PES_27 (Less than DL)
184	S_PES_28	Char	12	2202	12.	Flag for PES_28 (Less than DL)
185	S_PES_29	Char	12	2214	12.	Flag for PES_29 (Less than DL)
196	S_P_82	Char	12	2346	12.	Flag for P_82 (Less than DL)
197	S_P_87	Char	12	2358	12.	Flag for P_87 (Less than DL)
198	S_P_95	Char	12	2370	12.	Flag for P_95 (Less than DL)
199	S_P_99	Char	12	2382	12.	Flag for P_99 (Less than DL)
187	S_P_101	Char	12	2238	12.	Flag for P_101 (Less than DL)
188	S_P_105	Char	12	2250	12.	Flag for P_105 (Less than DL)
189	S_P_110	Char	12	2262	12.	Flag for P_110 (Less than DL)
190	S_P_114	Char	12	2274	12.	Flag for P_114 (Less than DL)
191	S_P_118	Char	12	2286	12.	Flag for P_118 (Less than DL)
192	S_P_119	Char	12	2298	12.	Flag for P_119 (Less than DL)
193	S_P_123	Char	12	2310	12.	Flag for P_123 (Less than DL)
194	S_P_126	Char	12	2322	12.	Flag for P_126 (Less than DL)
195	S_P_127	Char	12	2334	12.	Flag for P_127 (Less than DL)
130	S_SB	Char	12	1554	12.	Flag for SB (Less than DL)
131	S_SE	Char	12	1566	12.	Flag for SE (Less than DL)
200	S_SOLID	Char	12	2394	12.	Flag for SOLID (Less than DL)
132	S_TL	Char	12	1578	12.	Flag for TL (Less than DL)
201	s_Toc	Char	12	2406	12.	Flag for TOC (Less than DL)
202	S_TPH	Char	12	2418	12.	Flag for TPH (Less than DL)
203	S_T_18	Char	12	2430	12.	Flag for T_18 (Less than DL)
204	S_T_28	Char	12	2442	12.	Flag for T_28 (Less than DL)
205	S_T_37	Char	12	2454	12.	Flag for T_37 (Less than DL)
206	S_T_44	Char	12	2466	12.	Flag for T_44 (Less than DL)
207	S_T_47	Char	12	2478	12.	Flag for T_47 (Less than DL)
208	S T 49	Char	12	2490	12.	Flag for T_49 (Less than DL)

#	Variable	Туре	Len	Pos	Format	Label
209	S_T_52	Char	12	2502	12.	Flag for T_52 (Less than DL)
210	S_T_60	Char	12	2514	12.	Flag for T_60 (Less than DL)
211	S_T_66	Char	12	2526	12.	Flag for T_66 (Less than DL)
212	S_T_70	Char	12	2538	12.	Flag for T_70 (Less than DL)
213	S_T_74	Char	12	2550	12.	Flag for T_74 (Less than DL)
214	S_T_77	Char	12	2562	12.	Flag for T_77 (Less than DL)
215	S_T_80	Char	12	2574	12.	Flag for T_80 (Less than DL)
216	S_T_81	Char	12	2586	12.	Flag for T_81 (Less than DL)
133	S_ZN	Char	12	1590	12.	Flag for ZN (Less than DL)
341	TL	Num	8	3590		Thallium (mg/kg)
410	TOC	Num	8	4142		Total Organic Carbon (mg/kg)
411	TPH	Num	8	4150		Total Petroleum Hydrocarbons (mg/kg)
5	TRIB	Char	12	40	12.	CR=Christina River,DR=Delaware River
2	TYPE	Char	12	8	12.	B=Backgrnd,M=Mixing Z.,O=Outfall,W=Weir
412	T_18	Num	8	4158		18 Tri (ng/g)
413	T_28	Num	8	4166		28 Tri (ng/g)
414	T_37	Num	8	4174		37 Tri (ng/g)
415	T_44	Num	8	4182		44 Tetra (ng/g)
416	T_47	Num	8	4190		47 Tetra (ng/g)
417	T_49	Num	8	4198		49 Tetra (ng/g)
418	T_52	Num	8	4206		52 Tetra (ng/g)
419	T_60	Num	8	4214		60 Tetra (ng/g)
420	T_66	Num	8	4222		66 Tetra (ng/g)
421	T_70	Num	8	4230		70 Tetra (ng/g)
422	T_74	Num	8	4238		74 Tetra (ng/g)
423	T_77	Num	8	4246		77 Tetra (pg/g)
424	T_80	Num	8	4254		80 Tetra (ng/g)
425	T_81	Num	8	4262		81 Tetra (pg/g)
342	ZN	Num	8	3598		Zinc (mg/kg)

Varia	able	Label	N	Nmiss	Mean	Minimum	Maximum
PAGE		Report Page Number	8	0	714.0000000	669,0000000	849.0000000
DATE		Sampling Date	8	0	12193.75	12122.00	12409.00
AG		Silver (mg/kg)	8	0	1.6350000	1.0000000	4.1000000
AS		Arsenic (mg/kg)	8	0	2.8837500	1.6100000	4.2400000
] BE		Beryllium (mg/kg)	6	2	0.3300000	0.2600000	0.4200000
CD		Cadmium (mg/kg)	8	0	0.9625000	0.5000000	1.2000000
CR		Chromium (mg/kg)	8	0	17.2875000	12.2000000	25.2000000
CU		Copper (mg/kg)	8	0	15.3250000	9.5000000	24.8000000
CY		Cyanide (mg/kg)	6	2	0.0716667	0.0400000	0.1000000
" HG		Mercury (mg/kg)	8	0	0.1100000	0.0700000	0.3300000
NI		Nickel (mg/kg)	8	0	11.3375000	8.0000000	16.3000000
ORG_	10	1,2-Dichloroethene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_	11	1,2-Dichloropropane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		1,2-Diphenyl Hydrazine (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		1,2,4-Trichlorobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		1,3-Dichlorobenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		1,4 & 1,2-Dichlorobenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		1,4-Dichlorobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2-Chloronaphthalene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2-Chlorophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2-Nitrophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4-Dichlorophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4-Dimethylphenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4-Dinitrophenol (ug/kg)	6	2	1700.00	1700.00	1700.00
FORG_		2,4-Dinitrotoluene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,4,6-Trichlorophenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_		2,6-Dinitrotoluene (ug/kg)	6 6	2 2	330.0000000 25.0000000	330.0000000 25.0000000	330.0000000 25.0000000
ORG_		<pre>1,1-Dichloroethane (ug/kg) 3,3'-Dichlorobenzidine (ug/kg)</pre>	6	2	660.0000000	660.0000000	660,0000000
ORG_ ORG_		4-Bromophenyl-phenylether (ug/kg)	6	2	330.0000000	330,0000000	330.0000000
ORG_		4-Chlorophenyl-phenylether (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	•	4-Nitrophenol (ug/kg)	6	2	1700.00	1700.00	1700.00
ONG_		4,6-Dinitro-2-methylphenol (ug/kg)	6	2	1700.00	1700.00	1700.00
ORG_	-	4,-Chloro-3-methylphenol (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	-	Acenaphthene (ug/kg)	8	0	330.0000000	330.0000000	330.0000000
ORG_	_	Acenaphthylene (ug/kg)	8	0	330.0000000	330.0000000	330.0000000
ORG_	-	Acrolein (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_		Acrylonitrile (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_		1,1-Dichloroethene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG	-	Anthracene (ug/kg)	8	0	277.5000000	110.0000000	330.0000000
ORG_	•	Benzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_		Benzidine (ug/kg)	6	2	2700.00	2700.00	2700.00
ORG_	_	Benzo(a)anthracene (ug/kg)	8	0	161.1250000	72.0000000	330.0000000
ORG		Benzo(a)pyrene (ug/kg)	8	0	175.3750000	68.0000000	330,0000000
ORG_	_	Benzo(b)fluoranthene (ug/kg)	8	0	177.2500000	78.0000000	330.0000000
ORG_	_	Benzo(g,h,i)perylene (ug/kg)	8	0	266.7500000	68.0000000	330,0000000
ORG	-	Benzo(k)fluoranthene (ug/kg)	8	0	167.0000000	50.0000000	330.0000000
ORG	•	1,1,1-Trichloroethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_	_	Bis(2-chloroethoxy)methane (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG	_	Bis(2-chloroethyl)ether (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	_	Bis(2-chloroisopropyl)ether (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_	_	Bis(2-ethylhexyl)phthalate (ug/kg)	6	2	340.0000000	220.0000000	530.0000000
ORG_		Bromodichloromethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
		··					

Variable	Label	N	Nmiss	Mean	Minimum	Maximum -
ORG_55	Bromoform (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_56	Bromomethane (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_57	Butlybenzylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_58	Carbon Tetrachloride (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_59	Chlorobenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_6	1,1,2-Trichloroethane (ug/kg)	6	2	25.0000000	25.0000000	25,0000000
ORG_60	Chloroethane (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_61	Chloroform (ug/kg)	6	2	25,0000000	25.0000000	25.0000000
ORG_62	Chloromethane (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_63	Chrysene (ug/kg)	8	0	192.3750000	89.0000000	330.0000000
ORG_64	Cis-1,3-Dichloropropene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_66	Dibenzo(a,h)anthracene (ug/kg)	8	0	330.0000000	330.0000000	330.0000000
ORG_67	Dibromochloromethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_68	Diethylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_69	Dimethylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_7	1,1,2,2-Tetrachloroethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_70	Di-n-butylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330,0000000
ORG_71	Di-n-octylphthalate (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_72	Ethylbenzene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_73	Fluoranthene (ug/kg)	8	0	257.1250000	82.0000000	835.0000000
ORG_74	Fluorene (ug/kg)	8	0	272.1250000	87.0000000	330.0000000
ORG_75	Hexachlorobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_76	Hexachlorobutadiene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_77	Hexachlorocyclopentadiene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_78	Hexachloroethane (ug/kg)	6	2	330.0000000	330,0000000	330.0000000
ORG_79	Indeno(1,2,3-c,d)pyrene (ug/kg)	8	0	259.1250000	43.0000000	330.0000000
ORG_8	1,2-Dichlorobenzene (ug/kg)	6	2	330.0000000	330,0000000	330.0000000
ORG_80	Isophorone (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_81	Methylene Chloride (ug/kg)	6	2	30.8333333	29.0000000	33.0000000
ORG_82	Naphthalene (ug/kg)	8	0	330.0000000	330,0000000	330.0000000
ORG_83	Nitrobenzene (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_84	N-nitrosodimethylamine (ug/kg)	6	2	330.0000000	330.0000000	330,0000000
ORG_85	N-nitroso-Di-n-propylamine (ug/kg)	6	2	330.0000000	330.0000000	330.0000000
ORG_86	N-nitrosodiphenylamine (ug/kg)	6	2	265.0000000	110.0000000	330.0000000
ORG_87	Pentachlorophenol (ug/kg)	6	2	1700.00	1700.00	1700.00
ORG_89	Phenanthrene (ug/kg)	8	0	294.7500000	98.0000000	640.0000000
ORG_9	1,2-Dichloroethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_90	Phenol (mg/kg)	6	2	1.5016667	0.1800000	7.8000000
ORG_91	Pyrene (ug/kg)	8	0	184.2500000	74.0000000	320.0000000
ORG_92	Tetrachloroethene (ug/kg)	6	2	23.1666667	14.0000000	25.0000000
ORG_93	Toluene (ug/kg)	6	2	25,0000000	25.0000000	25,0000000
ORG_94	Trans-1,3-Dichloropropene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_95	Trichloroethene (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
ORG_96	Trichlorofluoromethane (ug/kg)	6	2	25.0000000	25.0000000	25.0000000
_	Vinyl Chloride (ug/kg)	6	2	50.0000000	50.0000000	50.0000000
ORG_97		8	0	320.0000000	80.0000000	400.0000000
P1016	PCB-1016 (ug/kg)	8	0	320.0000000	80.0000000	400.0000000
P1221	PCB-1221 (ug/kg)	8	0	320.0000000	80.0000000	400.0000000
P1232	PCB-1232 (ug/kg)		0			400.0000000
P1242	PCB-1242 (ug/kg)	8		320.0000000	80.0000000	400.0000000
P1248	PCB-1248 (ug/kg)	8	0	320.0000000	80.0000000	
P1254	PCB-1254 (ug/kg)	8	0	640.0000000	160.0000000	800.0000000
P1260	PCB-1260 (ug/kg)	8	0	640.0000000	160.0000000	800.0000000
PB	Lead (mg/kg)	8		28.4000000	13.8000000	42.1000000

Maringan Casalini Land	Variable	Label	N	Nmiss	Mean	Minimum	Maximum
_	PES_10	Chlordane (ug/kg)	6	2	400.0000000	400.0000000	400.0000000
projectowich	PES_13	D-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
Section 2	PES_15	Dieldrin (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
	PES_16	Endosulfan I (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
- Paritiment	PES_17	Endosulfan II (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
SANSSAN	PES_18	Endosulfan sulfate (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
	PES_19	Endrin (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
N. Spiroto	PES_20	Endrin aldehyde (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
Application of the state of the	PES_21	G-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
,3	PES_22	Heptachlor (ug/kg)	8	0	32,0000000	8.0000000	40.0000000
T g	PES_23	Heptachlor epoxide (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
SECTION SECTIONS	PES_27	Toxaphene (ug/kg)	8	0	640.0000000	160.0000000	800.0000000
.3	PES_4	4,4'-DDD (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
4	PES_5	4,4'-DDE (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
Secure	PES_6	4,4'-DDT (ug/kg)	8	0	64.0000000	16.0000000	80.0000000
À	PES_7	A-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
4	PES_8	Aldrin (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
accessions:	PES_9	B-BHC (ug/kg)	8	0	32.0000000	8.0000000	40.0000000
	SB	Antimony (mg/kg)	6	2	0.2000000	0.2000000	0.2000000
	SE	Selenium (mg/kg)	8	0	0.2480000	0.2000000	0.3510000
aparonties.	TL	Thallium (mg/kg)	6	2	0.2000000	0.2000000	0.2000000
Popular Programme Programm	ZN	Zinc (mg/kg)	8	. 0	91.3000000	52.3000000	150.0000000
	D_209	209 Deca (ng/g)	2	6	3.1300000	3.1300000	3,1300000
Sales Andreas	D_8	8 Di (ng/g)	2	6	1.5600000	1.5600000	1.5600000
Augustan A	H38_58	138,158 Hexa (ng/g)	2	6	5.2750000	4.7500000	5.8000000
	H70_90	170,190 Hepta (ng/g)	2	6	3.1300000	3.1300000	3.1300000
S. S. S. Gand	H_128	128 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
and my and	H_137	137 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
,	H_149	149 Hexa (ng/g)	2	6	1.0000000	1.0000000	1.0000000
Sitting	H_151	151 Hexa (ng/g)	2	6	1.5600000	1.5600000	1.5600000
monopole (con	H_153	153 Hexa (ng/g)	2	6	3.3100000	2.9400000	3.6800000
3	H_156	156 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
3	H_157	157 Hexa (ng/g)	2	6	1.2000000	1.2000000	1.2000000
Constitution	H_166	166 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
	H_167	167 Hexa (ng/g)	2	6	1.2500000	1.2500000	1.2500000
**	H_168	168 Hexa (ng/g)	2	6	1.0900000	1.0900000	1.0900000
Age Manage	H_169	169 Hexa (pg/g)	2	6	1.6650000	1.4900000	1.8400000
2	H_177	177 Hepta (ng/g)	2	6	1.5000000	1.5000000	1.5000000
	H_179	179 Hepta (ng/g)	2	6	1.5000000	1.5000000	1.5000000
a Sile Constinue	H_180	180 Hepta (ng/g)	2	6	2.0150000	1.7700000	2.2600000
No.	H_183	183 Hepta (ng/g)	2	6	1.8800000	1.8800000	1.8800000
	H_185	185 Hepta (ng/g)	2	6	1.8800000	1.8800000	1.8800000
ettrasion.	H_187	187 Hepta (ng/g)	2	6	1.0380000	0.9560000	1.1200000
	H_189	189 Hepta (ng/g)	2	6	1.8800000	1.8800000	1.8800000
	_ H_191	191 Hepta (ng/g)	2	6	1.3700000	1.3700000	1.3700000
, and the same	N_206	206 Nona (ng/g)	2	6	3.1000000	3.1000000	3.1000000
Asyconomic	N_207	207 Nona (ng/g)	2	6	1.8800000	1.8800000	1.8800000
	N_208	208 Nona (ng/g)	2	6	2.0000000	2.0000000	2.0000000
Accessor.	ORG_1	1-Methylnaphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
Newsons of the second	ORG_2	1-Methylphenanthrene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
Ar.	ORG_20	2-Methylnaphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
contract	ORG_22	2,3,5-Trimethyl-naphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
Andreas parameters	ORG_28	2,6-Dimethylnaphthalene (ug/kg)	2	6	330.0000000	330.0000000	330.0000000

Variable	Label	N	Nmiss	Mean	Minimum	Maximum
ORG_46	Benzo(e)pyrene (ug/kg)	2	6	54.0000000	51.0000000	57.000000
ORG_49	Biphenyl (ug/kg)	2	6	330.0000000	330.0000000	330.0000000
ORG_88	Perylene (ug/kg)	2	6	330.0000000	330.0000000	330,0000000
0_194	194 Octa (ng/g)	2	6	1.8800000	1.8800000	1.8800000
0_195	195 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_196	196 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_200	200 Octa (ng/g)	2	6	1.8800000	1.8800000	1.8800000
0_201	201 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_203	203 Octa (ng/g)	2	6	1.5000000	1.5000000	1.5000000
0_205	205 Octa (ng/g)	2	6	1.8800000	1.8800000	1.8800000
PCB	PCB's (ng/g)	2	6	27.4000000	25.6000000	29.2000000
PES_1	2,4'-DDD (ug/kg)	2	6	16.0000000	16.0000000	16.0000000
PES_11	Cis-chlordane (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_12	Cis-nonachlor (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_14	Dicofol (ug/kg)	2	6	0.0800000	0.0800000	0.0800000
PES_2	2,4'-DDE (ug/kg)	2	6	16.0000000	16,0000000	16.0000000
PES_24	Hexychlorobenzene (ug/kg)	2	6	16.0000000	16.0000000	16.0000000
PES_25	Mirex (ug/kg)	2	6	0.0200000	0.0200000	0.0200000
PES_26	Oxychlordane (ug/kg)	2	6	2.3550000	2.3500000	2.3600000
PES_28	Trans-chlordane (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_29	Trans-nonachlor (ug/kg)	2	6	80.0000000	80.0000000	80.0000000
PES_3	2,4'-DDT (ug/kg)	2	´ 6	16.0000000	16.0000000	16.0000000
P_101	101 Penta (ng/g)	2	6	3.4900000	3.3000000	3.6800000
P_105	105 Penta (ng/g)	2	6	1.2500000	1.2500000	1,2500000
P_110	110 Penta (ng/g)	2	6	2.8500000	1.5600000	4.1400000
P_114	114 Penta (ng/g)	2	6	1.2500000	1.2500000	1.2500000
P_118	118 Penta (ng/g)	2	6	4.1100000	3.5900000	4.6300000
P_119	119 Penta (ng/g)	2	6	1.5600000	1.5600000	1.5600000
P_123	123 Penta (ng/g)	2	6	1.0400000	1.0400000	1.0400000
P_126	126 Penta (pg/g)	2	6	11.2500000	11.1000000	11.4000000
P_127	127 Penta (ng/g)	2	6	1.0000000	1.0000000	1.0000000
P_82	82 Penta (ng/g)	2	6	1.5600000	1.5600000	1.5600000
P_87	87 Penta (ng/g)	2	6	1.2500000	1.2500000	1.2500000
P_95	95 Penta (ng/g)	2	6	1.5600000	1.5600000	1.5600000 0.7000000
P_99	99 Penta (ng/g)	2	6 6	0.7000000 27.0000000	0.7000000 27.0000000	27.000000
SOLID	% Solids (%)	2	6	8500.00	8000.00	9000.00
TOC	Total Organic Carbon (mg/kg) Total Petroleum Hydrocarbons (mg/kg)	2	6	242.5000000	228.0000000	257.0000000
TPH	18 Tri (ng/g)	2	6	0.6300000	0.6300000	0.6300000
T_18 T_28	28 Tri (ng/g)	2	6	1.6700000	1.4800000	1.8600000
T_37	37 Tri (ng/g)	2	6	1.5600000	1,5600000	1.5600000
T_44	44 Tetra (ng/g)	2	6	1.2500000	1.2500000	1.2500000
T_47	47 Tetra (ng/g)	2	6	1.4100000	1,4100000	1,4100000
T_49	49 Tetra (ng/g)	2	6	1.5600000	1.5600000	1.5600000
T_52	52 Tetra (ng/g)	2	6	1.2500000	1.2500000	1.2500000
T_60	60 Tetra (ng/g)	2	6	1.5600000	1.5600000	1.5600000
T_66	66 Tetra (ng/g)	2	6	1,6300000	1.6300000	1.6300000
T_70	70 Tetra (ng/g)	2	6	1.4200000	1.4200000	1.4200000
T_74	74 Tetra (ng/g)	2	6	1.2500000	1.2500000	1.2500000
1_7 <del>-</del> 1_77	77 Tetra (ng/g)	2	6	102.0500000	73,1000000	131.0000000 👡
T_80	80 Tetra (ng/g)	2	6	1.5600000	1.5600000	1.5600000
T_81	81 Tetra (pg/g)	2	6	2.6600000	2.0300000	3.2900000
	' (618)			_,		

#### CONTENTS PROCEDURE

Data Set Name: WORK.SED Observations: 8 Variables: 425 Member Type: DATA Engine: V611 Indexes: 0 4270 10:36 Wednesday, February 19, 1997 Observation Length: Created: Deleted Observations: 0 Last Modified: 10:36 Wednesday, February 19, 1997 Protection: Compressed: NO Sorted: NO Data Set Type:

Label:

-----Engine/Host Dependent Information----

Data Set Page Size: 13312

Number of Data Set Pages: 7

File Format: 607

First Data Page: 5

Max Obs per Page: 3

Obs in First Data Page: 3

-----Alphabetic List of Variables and Attributes-----

#	Variable	Туре	Len	Pos	Format	Label
217	AG	Num	8	2598		Silver (mg/kg)
218	AS	Num	8	2606		Arsenic (mg/kg)
219	BE	Num	8	2614		Beryllium (mg/kg)
220	CD	Num	8	2622		Cadmium (mg/kg)
7	COMMENT	Char	26	64	26.	Sample Comment
221	CR	Num	8	2630		Chromium (mg/kg)
222	CU	Num	8	2638		Copper (mg/kg)
223	CY	Num	8	2646		Cyanide (mg/kg)
4	DATE	Num	8	32	MMDDYY8.	Sampling Date
344	D_8	Num	8	3614		8 Di (ng/g)
343	D_209	Num	8	3606		209 Deca (ng/g)
345	H38_58	Num	8	3622		138,158 Hexa (ng/g)
346	H70_90	Num	8	3630		170,190 Hepta (ng/g)
224	HG	Num	8	2654		Mercury (mg/kg)
347	H_128	Num	8	3638		128 Hexa (ng/g)
348	H_137	Num	8	3646		137 Hexa (ng/g)
349	H_149	Num	8	3654		149 Hexa (ng/g)
350	H_151	Num	8	3662		151 Hexa (ng/g)
351	H_153	Num	8	3670		153 Hexa (ng/g)
352	H_156	Num	8	3678		156 Hexa (ng/g)
353	H_157	Num	8	3686		157 Hexa (ng/g)
354	H_166	Num	8	3694		166 Hexa (ng/g)
355	H_167	Num	8	3702		167 Hexa (ng/g)
356	H_168	Num	8	3710		168 Hexa (ng/g)
357	H_169	Num	8	3718		169 Hexa (pg/g)
358	H_177	Num	8	3726		177 Hepta (ng/g)
359	H_179	Num	8	3734		179 Hepta (ng/g)
360	H_180	Num	8	3742		180 Hepta (ng/g)
361	H_183	Num	8	3750		183 Hepta (ng/g)
362	H_185	Num	8	3758		185 Hepta (ng/g)
363	H_187	Num	8	3766		187 Hepta (ng/g)
364	H 189	Num	8	3774		189 Hepta (ng/g)

#	Variable	Type	Len	Pos	Format	Label
365	H_191	Num	8	3782		191 Hepta (ng/g)
225	NI	Num	8	2662		Nickel (mg/kg)
366	N_206	Num	8	3790		206 Nona (ng/g)
367	N_207	Num	8	3798		207 Nona (ng/g)
368	N_208	Num	8	3806		208 Nona (ng/g)
369	ORG_1	Num	8	3814		1-Methylnaphthalene (ug/kg)
370	ORG_2	Num	8	3822		1-Methylphenanthrene (ug/kg)
242	ORG_3	Num	8	2798		1,1-Dichloroethane (ug/kg)
253	ORG_4	Num	8	2886		1,1-Dichloroethene (ug/kg)
262	ORG_5	Num	8	2958		1,1,1-Trichloroethane (ug/kg)
273	ORG_6	Num	8	3046		1,1,2-Trichloroethane (ug/kg)
283	ORG_7	Num	8	3126		1,1,2,2-Tetrachloroethane (ug/kg)
294	ORG_8	Num	8	3214		1,2-Dichlorobenzene (ug/kg)
304	ORG_9	Num	8	3294		1,2-Dichloroethane (ug/kg)
226	ORG_10	Num	8	2670		1,2-Dichloroethene (ug/kg)
227	ORG_11	Num	8	2678		1,2-Dichloropropane (ug/kg)
228	ORG_12	Num	8	2686		1,2-Diphenyl Hydrazine (ug/kg)
229	ORG_13	Num	8	2694		1,2,4-Trichlorobenzene (ug/kg)
230	ORG_14	Num	8	2702	,	1,3-Dichlorobenzene (ug/kg)
231	ORG_15	Num	8	2710		1,4 & 1,2-Dichlorobenzene (ug/kg)
232	ORG_16	Num	8	2718		1,4-Dichlorobenzene (ug/kg)
233	ORG_18	Num	8	2726		2-Chloronaphthalene (ug/kg)
234	ORG_19	Num	8	2734		2-Chlorophenol (ug/kg)
371	ORG_20	Num	8	3830		2-Methylnaphthalene (ug/kg)
235	ORG_21	Num	8	2742		2-Nitrophenol (ug/kg)
372	ORG_22	Num	8	3838		2,3,5-Trimethyl-naphthalene (ug/kg)
236	ORG_23	Num	8	2750		2,4-Dichlorophenol (ug/kg)
237	ORG_24	Num	8	2758		2,4-Dimethylphenol (ug/kg)
238	ORG_25	Num	8	2766		2,4-Dinitrophenol (ug/kg)
239	ORG_26	Num	8	2774		2,4-Dinitrotoluene (ug/kg)
240	ORG_27	Num	8	2782		2,4,6-Trichlorophenol (ug/kg)
373	ORG_28	Num	8	3846		2,6-Dimethylnaphthalene (ug/kg)
241	ORG_29	Num	8	2790		2,6-Dinitrotoluene (ug/kg)
243	ORG_30	Num	8	2806		3,3'-Dichlorobenzidine (ug/kg)
244	ORG_31	Num	8	2814		4-Bromophenyl-phenylether (ug/kg)
245	ORG_32	Num	8	2822		4-Chlorophenyl-phenylether (ug/kg)
246	ORG_33	Num	8	2830		4-Nitrophenol (ug/kg)
247	ORG_34	Num	8	2838		4,6-Dinitro-2-methylphenol (ug/kg)
248	ORG_35	Num	8	2846		4,-Chloro-3-methylphenol (ug/kg)
249	ORG_36	Num	8	2854		Acenaphthene (ug/kg)
250	ORG_37	Num	8	2862		Acenaphthylene (ug/kg)
251	ORG_38	Num	8	2870		Acrolein (ug/kg)
252	ORG_39	Num	8	2878		Acrylonitrile (ug/kg)
254	ORG_40	Num	8	2894		Anthracene (ug/kg)
255	ORG_41	Num	8	2902		Benzene (ug/kg)
256	ORG_42	Num	8	2910		Benzidine (ug/kg)
257	ORG_43	Num	8	2918		Benzo(a)anthracene (ug/kg)
258	ORG_44	Num	8	2926		Benzo(a)pyrene (ug/kg)
259	ORG_45	Num	8	2934		Benzo(b)fluoranthene (ug/kg)
374	ORG_46	Num	8	3854		Benzo(e)pyrene (ug/kg)
260	ORG_47	Num	8	2942		Benzo(g,h,i)perylene (ug/kg)

#	Variable	Туре	Len	Pos	Format	Label
375	ORG_49	Num	8	3862	•	Biphenyl (ug/kg)
263	ORG_50	Num	8	2966		Bis(2-chloroethoxy)methane (ug/kg)
264	ORG_51	Num	8	2974		Bis(2-chloroethyl)ether (ug/kg)
265	ORG_52	Num	8	2982		Bis(2-chloroisopropyl)ether (ug/kg)
266	ORG_53	Num	8	2990		Bis(2-ethylhexyl)phthalate (ug/kg)
267	ORG_54	Num	8	2998		Bromodichloromethane (ug/kg)
268	ORG_55	Num	8	3006		Bromoform (ug/kg)
269	ORG_56	Num	8	3014		Bromomethane (ug/kg)
270	ORG_57	Num	8	3022		Butlybenzylphthalate (ug/kg)
271	ORG_58	Num	8	3030		Carbon Tetrachloride (ug/kg)
272	ORG_59	Num	8	3038		Chlorobenzene (ug/kg)
274	ORG_60	Num	8	3054		Chloroethane (ug/kg)
275	ORG_61	Num	8	3062		Chloroform (ug/kg)
276	ORG_62	Num	8	3070		Chloromethane (ug/kg)
277	ORG_63	Num	8	3078		Chrysene (ug/kg)
278	ORG_64	Num	8	3086		Cis-1,3-Dichloropropene (ug/kg)
279	ORG_66	Num	8	3094		Dibenzo(a,h)anthracene (ug/kg)
280	ORG_67	Num	8	3102		Dibromochloromethane (ug/kg)
281	ORG_68	Num	8	3110		Diethylphthalate (ug/kg)
282	ORG_69	Num	8	3118	•	Dimethylphthalate (ug/kg)
284	ORG_70	Num	8	3134		Di-n-butylphthalate (ug/kg)
285	ORG_71	Num	8	3142		Di-n-octylphthalate (ug/kg)
286	ORG_72	Num	8	3150		Ethylbenzene (ug/kg)
287	ORG_73	Num	8	3158		Fluoranthene (ug/kg)
288	ORG_74	Num	8	3166		Fluorene (ug/kg)
289	ORG_75	Num	8	3174		Hexachlorobenzene (ug/kg)
290	ORG_76	Num	8	3182		Hexachlorobutadiene (ug/kg)
291	ORG_77	Num	8	3190		Hexachlorocyclopentadiene (ug/kg)
292	ORG_78	Num	8	3198		Hexachloroethane (ug/kg)
293	ORG_79	Num	8	3206		Indeno(1,2,3-c,d)pyrene (ug/kg)
295	ORG_80	Num	8	3222		Isophorone (ug/kg)
296	ORG_81	Num	8	3230		Methylene Chloride (ug/kg)
297	ORG_82	Num	8	3238		Naphthalene (ug/kg)
298	ORG_83	Num	8	3246		Nitrobenzene (ug/kg)
299	ORG_84	Num	8	3254	•	N-nitrosodimethylamine (ug/kg)
300	ORG_85	Num	8	3262		N-nitroso-Di-n-propylamine (ug/kg)
301	ORG_86	Num	8	3270		N-nitrosodiphenylamine (ug/kg)
302	ORG_87	Num	8	3278		Pentachlorophenol (ug/kg)
376	ORG_88	Num	8	3870		Perylene (ug/kg)
303	ORG_89	Num	8	3286		Phenanthrene (ug/kg)
305	ORG_90	Num	8	3302		Phenol (mg/kg)
306	ORG_91	Num	8	3310		Pyrene (ug/kg)
307	ORG_92	Num	8	3318		Tetrachloroethene (ug/kg)
308	ORG_93	Num	8	3326		Toluene (ug/kg)
309	ORG_94	Num	8	3334		Trans-1,3-Dichloropropene (ug/kg)
310	ORG_95	Num	8	3342		Trichloroethene (ug/kg)
311	ORG_96	Num	8	3350		Trichlorofluoromethane (ug/kg)
312	ORG_97	Num	8	3358		Vinyl Chloride (ug/kg)
377	O_194	Num	8	3878		194 Octa (ng/g)
378	0_195	Num	8	3886		195 Octa (ng/g)
379	0 196	Num	8	3894		196 Octa (ng/g)
380	0 200	Num	8	3902		200 Octa (ng/g)

#	Variable	Туре	Len	Pos	Format	Label
381	0_201	Num	8	3910		201 Octa (ng/g)
382	0_203	Num	8	3918		203 Octa (ng/g)
383	0_205	Num	8	3926		205 Octa (ng/g)
313	P1016	Num	8	3366		PCB-1016 (ug/kg)
314	P1221	Num	8	3374		PCB-1221 (ug/kg)
315	P1232	Num	8	3382		PCB-1232 (ug/kg)
316	P1242	Num	8	3390		PCB-1242 (ug/kg)
317	P1248	Num	8	3398		PCB-1248 (ug/kg)
318	P1254	Num	8	3406		PCB-1254 (ug/kg)
319	P1260	Num	8	3414		PCB-1260 (ug/kg)
1	PAGE	Num	8	0		Report Page Number
320	PB	Num	8	3422		Lead (mg/kg)
384	PCB	Num	8	3934		PCB's (ng/g)
6	PERIOD	Char	12	52	12.	Dredging (PRE,D=During,POST,Drawdown)
385	PES_1	Num	8	3942		2,4'-DDD (ug/kg)
389	PES_2	Num	8	3974		2,4'-DDE (ug/kg)
395	PES_3	Num	8	4022		2,4'-DDT (ug/kg)
333	PES_4	Num	8	3526		4,4'-DDD (ug/kg)
334	PES_5	Num	8	3534		4,4'-DDE (ug/kg)
335	PES_6	Num	8	3542	•	4,4'-DDT (ug/kg)
336	PES_7	Num	8	3550		A-BHC (ug/kg)
337	PES_8	Num	8	3558		Aldrin (ug/kg)
338	PES_9	Num	8	3566		B-BHC (ug/kg)
321	PES_10	Num	8	3430		Chlordane (ug/kg)
386	PES_11	Num	8	3950		Cis-chlordane (ug/kg)
387	PES_12	Num	8	3958		Cis-nonachlor (ug/kg)
322	PES_13	Num	8	3438 3966		D-BHC (ug/kg)
388	PES_14	Num	8	3446		Dicofol (ug/kg)
323	PES_15	Num	8 8	3454		Dieldrin (ug/kg)
324	PES_16	Num		3462		Endosulfan I (ug/kg) Endosulfan II (ug/kg)
325 326	PES_17	Num Num	8 8	3470		Endosulfan sulfate (ug/kg)
327	PES_18 PES_19	Num	8	3478		Endrin (ug/kg)
328	PES_20	Num	8	3486		Endrin (dg/kg) Endrin aldehyde (ug/kg)
329	PES_21	Num	8	3494		G-BHC (ug/kg)
330	PES_22	Num	8	3502		Heptachlor (ug/kg)
331	PES_23	Num	8	3510		Heptachlor epoxide (ug/kg)
390	PES_24	Num	8	3982		Hexychlorobenzene (ug/kg)
391	PES_25	Num	8	3990		Mirex (ug/kg)
. 392	PES_26	Num	8	3998		Oxychlordane (ug/kg)
332	PES_27	Num	8	3518		Toxaphene (ug/kg)
393	PES_28	Num	8	4006		Trans-chlordane (ug/kg)
394	PES_29	Num	8	4014		Trans-nonachlor (ug/kg)
405	P_82	Num	8	4102		82 Penta (ng/g)
406	P_87	Num	8	4110		87 Penta (ng/g)
407	P_95	Num	8	4118		95 Penta (ng/g)
408	P_99	Num	8	4126		99 Penta (ng/g)
396	P_101	Num	8	4030		101 Penta (ng/g)
397	P_105	Num	8	4038		105 Penta (ng/g)
398	P_110	Num	8	4046		110 Penta (ng/g)
399	P_114	Num	8	4054		114 Penta (ng/g)
400	P 118	Num	8	4062		118 Penta (ng/g)

#	Variable	Туре	Len	Pos	Format	Label
401	P_119	Num	8	4070		119 Penta (ng/g)
402	P_123	Num	8	4078		123 Penta (ng/g)
403	P_126	Num	8	4086		126 Penta (pg/g)
404	P_127	Num	8	4094		127 Penta (ng/g)
339	SB	Num	8	3574		Antimony (mg/kg)
340	SE	Num	8	3582		Selenium (mg/kg)
409	SOLID	Num	8	4134		% Solids (%)
3	STATION	Char	12	20	12.	Sampling Station
8	S_AG	Char	12	90	12.	Flag for AG (Less than DL)
9	s_As	Char	12	102	12.	Flag for AS (Less than DL)
10	S_BE	Char	12	114	12.	Flag for BE (Less than DL)
11	s_cd	Char	12	126	12.	Flag for CD (Less than DL)
12	s_cr	Char	12	138	12.	Flag for CR (Less than DL)
13	s_cu	Char	12	150	12.	Flag for CU (Less than DL)
14	s_cy	Char	12	162	12.	Flag for CY (Less than DL)
135	s_D_8	Char	12	1614	12.	Flag for D_8 (Less than DL)
134	S_D_209	Char	12	1602	12.	Flag for D_209 (Less than DL)
136	S H38_58	Char	12	1626	12.	Flag for H38 58 (Less than DL)
137	S_H70_90	Char	12	1638	12.	Flag for H70_90 (Less than DL)
15	S_HG	Char	12	174	12.	Flag for HG (Less than DL)
138	S_H_128	Char	12	1650	12.	Flag for H_128 (Less than DL)
139	S_H_137	Char	12	1662	12.	Flag for H_137 (Less than DL)
140	S_H_149	Char	12	1674	12.	Flag for H_149 (Less than DL)
141	S_H_151	Char	12	1686	12.	Flag for H_151 (Less than DL)
142	S_H_153	Char	12	1698	12.	Flag for H_153 (Less than DL)
143	S_H_156	Char	12	1710	12.	Flag for H_156 (Less than DL)
144	S_H_157	Char	12	1722	12.	Flag for H_157 (Less than DL)
145	S_H_166	Char	12	1734	12.	Flag for H_166 (Less than DL)
146	S_H_167	Char	12	1746	12.	Flag for H_167 (Less than DL)
147	S_H_168	Char	12	1758	12.	Flag for H_168 (Less than DL)
148		Char	12	1770	12.	Flag for H_169 (Less than DL)
149	S_H_169	Char	12	1782	12.	Flag for H_177 (Less than DL)
	S_H_177	Char	12	1794	12.	Flag for H_179 (Less than DL)
150	S_H_179		12	1806	12.	Flag for H_180 (Less than DL)
151	S_H_180	Char				——————————————————————————————————————
152	S_H_183	Char	12	1818	12.	Flag for H_183 (Less than DL)
153	S_H_185	Char	12	1830	12.	Flag for H_185 (Less than DL)
154	S_H_187	Char	12	1842	12.	Flag for H_187 (Less than DL)
155	S_H_189	Char	12	1854	12.	Flag for H_189 (Less than DL)
156	S_H_191	Char	12	1866	12.	Flag for H_191 (Less than DL)
16	S_NI	Char	12	186	12.	Flag for NI (Less than DL)
157	S_N_206	Char	12	1878	12.	Flag for N_206 (Less than DL)
158	S_N_207	Char	12	1890	12.	Flag for N_207 (Less than DL)
159	S_N_208	Char	12	1902	12.	Flag for N_208 (Less than DL)
160	S_ORG_1	Char	12	1914	12.	Flag for ORG_1 (Less than DL)
161	S_ORG_2	Char	12	1926	12.	Flag for ORG_2 (Less than DL)
33	s_org_3	Char	12	390	12.	Flag for ORG_3 (Less than DL)
44	S_ORG_4	Char	12	522	12.	Flag for ORG_4 (Less than DL)
53	S_ORG_5	Char	12	630	12.	Flag for ORG_5 (Less than DL)
64	S_ORG_6	Char	12	762	12.	Flag for ORG_6 (Less than DL)
74	S_ORG_7	Char	12	882	12.	Flag for ORG_7 (Less than DL)
85	S_ORG_8	Char	12	1014	12.	Flag for ORG_8 (Less than DL)
95	S ORG 9	Char	12	1134	12.	Flag for ORG 9 (Less than DL)
	_ 0		-			<u>.</u>

WATER QUALITY AND
SEDIMENT CHEMICAL TESTING
WILMINGTON HARBOR DREDGED
MATERIAL MANAGEMENT PLAN



# WATER QUALITY AND SEDIMENT CHEMICAL TESTING WILMINGTON HARBOR DREDGED MATERIAL MANAGEMENT PLAN

# Prepared for

U.S. Army Corps of Engineers Philadelphia District Philadelphia, PA 19107-3390

Prepared by

Katherine Dillow

Versar, Inc. 9200 Rumsey Road Columbia, MD 21045

Prepared Under the Supervision of Principal Investigator

William H. Burton

November 2008



# TABLE OF CONTENTS

		Page
STU.	DY OVERVIEW AND ORGANIZATION OF DATA REPORT	1
STIM	IMARY/CONCLUSIONS	2
5011	Christina River Sediments	3
	Wilmington Harbor South CDF Soils	
	Beneficial Use of Material	4
APP:	PENDICES	
A	SEVERN TRENT LABORATORY ANALYSIS CERTIFICATES	A-1
В	GRAIN SIZE AND TOC RESULTS	B-1
Č	CORE LOGS	



# LIST OF TABLES

Tabl	le No.	Page
1	Sampling coordinates for the Wilmington Harbor stations	7
2	Sampling coordinates for the Wilmington Harbor CDF stations	7
3	Testing results for sediment samples collected from Wilmington Harbor	9
4	Dissolved modified elutriate testing results for samples collected from Wilmington Harbor	14
5	Background and site water testing results for samples collected from Wilmington Harbor	19
6	Dissolved PCB congener testing results for samples collected from Wilmington Harbor	20
7	Dissolved PCB congeners totals results for samples collected from Wilmington Harbor	24
8	TCLP testing results for samples collected from Wilmington Harbor	28
9	Testing results for samples collected from Wilmington Harbor CDF	32
10	PCB congener testing results for samples collected from Wilmington Harbor CDF	33
11	PCB congener totals testing results for samples collected from Wilmington Harbor CDF	36
12	TCLP testing results for samples collected from Wilmington Harbor CDF	40



# STUDY OVERVIEW AND ORGANIZATION OF DATA REPORT

The U.S. Army Corps of Engineers, Philadelphia District is completing a Dredged Material Management Plan (DMMP) for Wilmington Harbor, New Castle County, Delaware. The proposed study is investigating the possibility of beneficial use of dredged material from the federal channel, as well as, from the Wilmington South upland disposal area. The current channel has an authorized depth of 38 from the Delaware River to a point 4,237 feet upstream.

This chemical data report provides baseline conditions of the dredged material at Wilmington Harbor and its potential use in beneficial projects. The data was collected using vibracore sediment samples from eight stations within the federal channel in the Wilmington Harbor and soil cores samples from six locations within the Wilmington Harbor South disposal area (Figures 1 and 2). Soil and sediment coring locations were recorded with differential GPS (Tables 1 and 2) and the sampling was conducted in June 2008.

Vibracoring services were provided by Energy & Environmental Analysts, Inc., from Garden City, New York using a Rossfelder P-1 Electric Vibracorer with a 10' 304 stainless 3" core barrel. The barrel was lined with a 6 mil soft plastic liner that retained in place with a stainless core cutter/catcher. After retrieving the core, the plastic liners were cut longitudinally to remove VOC sub-samples. Sufficient amount of sediment cores were then transferred into 5 gallon bucket (lined with a decontaminated food quality plastic bag) and homogenized. After homogenizing, the sample was put into the appropriate container to conduct bulk sediment analysis. The remainder of the sample was retained in the bucket for modified elutriate and TCLP analysis. Grain size and TOC analysis were also conducted.

Soil sampling was conducted by Versar personnel with a 4-foot soil auger. Cores of approximately 4 feet were collected and put into a stainless steel bowls. All of the stainless steel handling equipment was decontaminated using an alconox detergent wash, DI water rinse, nitric acid rinse, DI water rinse, ethanol rinse, and DI water rinse. Prior to homogenizing, the VOC sub-sample was placed into the appropriate container. The homogenized sample was then placed into appropriate containers for bulk sedimentary chemistry, PCBs, TOC and grain size.

An equipment blank was prepared half way through the field collections by filling a lined 5 gallon bucket with laboratory grade DI water, stirring the field decontaminated stainless steel spoons in the water (the spoons used to composite and transfer sediment to sample jars). The water was then transferred to appropriate jars for later analysis. Site water was collected for testing by filling sample jars opened a few inches under the surface of the Delaware River.



#### SUMMARY/CONCLUSIONS

The testing for this study was done for two primary reasons: 1) to evaluate the potential environmental impacts on aquatic biota of the next scheduled maintenance dredging operating at Wilmington Harbor, Delaware and 2) to provide data on the contaminant levels within Wilmington Harbor and the Wilmington Harbor South CDF to assess whether the existing material is suitable for beneficial use such as land reclamation, road fill, land fill caps, and other non-residential uses.

Contaminant levels in bulk sediment from the river and CDF soil auger samples were compared to Delaware Natural Resources and Environmental Control (DNREC) Site Investigation and Restoration Branch Uniform Risk Based levels (URS) for soils in non critical drinking water resource protection areas. River sediments were also compared to NOAA concentrations known to cause adverse biological effects to marine organisms as summarized by Long et al. (1995). NOAA guidelines are divided into Effects Range-Low (ER-L) concentrations (where 10% of all the toxicity studies reviewed showed an adverse effect) and Effects Range-Medium (ER-M) concentrations (where 50% of all the toxicity studies showed an adverse effect). The guidelines are listed in the summary tables to provide a measure of the relative toxicity of the Christina River sediments prior to dredging. Assessments of the existing CDF's soils suitability for beneficial use and the new sediments that will be placed in the CDF was based on non-residential contaminant guidelines since it is not anticipated that the material will be used in residential settings. Residential (non-restricted) guidelines were also compared to the observed contaminant concentrations to show a range of potential human health issues. Restricted soil contaminant guidelines are typically higher than un-restricted (residential use) since human exposure to soils used in a residential setting would be higher that in an industrial use like brown field or land fill capping,

Modified elutriated testing was conducted to help assess whether aquatic biota will encounter toxic levels in the surface water during dredging operations. The dissolved contaminant results were compared to DNREC acute and chronic water quality aquatic life criteria for marine waters. Only the dissolved component was measured since water quality criteria are based on dissolved concentrations. Since dredging is a short term activity, potential toxic releases to aquatic biota were weighed against the acute criteria.

In addition, since the river sediment may leach contaminants into the groundwater once it is placed in the CDF and is also subject to acidic rainfall, the Toxicity Characteristic Leaching Procedure (TCLP) was performed on the material. TCLP tests simulate the effects of acid rain (by mixing material with acidified laboratory grade water) and measuring contaminant levels that leach out. TCLP tests were conducted on the river sediments and the existing soils in the Wilmington Harbor South soil auger samples.



#### **Christina River Sediments**

Bulk sediment testing revealed that with the exception of arsenic the contaminant levels were all below DNREC restricted URS (Table 3). Residential projects are not recommended for use of the material since a number of inorganics (aluminum, arsenic, iron and manganese) were over criteria as well as a few semivolatile organics (primarily pyrenes or coal tars) particularly from station WH1. Total PCB levels in the sediment samples were mostly below DNREC's restricted criterion of 1000 ng/kg with the exception of sediments from WH1 near the mouth of Lobell Canal (Table 5). Total PCB concentration at sediment sampling stations WH1 and WH8 were also over ER-M sediment guidelines of 180 ng/g while all other stations were over the ER-L levels. Dredging theses sediments will have a net benefit with respect to PCB toxicity since the material will be removed from the aquatic habitat. In addition, previous USACE funded studies on CDF retention rates indicated that over 99% of the PCB in dredged sediment is retained by the CDF1.

Organic and inorganic contaminant levels relative to ER-L and ER-M sediment guidelines indicate that when exceedances occurred, they were mostly below ER-M suggesting that while toxicity exists, the levels would be considered moderate, but not high. Only zinc concentrations at station WH1 were above ER-M guideline values (Table 3).

Modified elutriate testing revealed that with the exception of copper at station WH 7 no water quality exceedances are anticipated during the maintenance dredging (Table 4). The sum of dissolved PCB congeners in the elutriate tests showed that levels were above levels listed for chronic criteria for total PCBs (Table 9). No acute criterion for total PCBs is listed by DNREC. Total dissolved PCBs in the elutriate tests for station WH7 at the mouth of the Christina River had about an order of magnitude higher PCB elutriate concentration than all other river stations.

TCLP testing for potential contaminant leaching into ground water once the material is placed in a CDF and subject to rainfall suggests that no leaching above the regulatory limits is likely (Table 10).

#### Wilmington Harbor South CDF Soils

Similar to the bulk sediment results for the Christina River sediments, soil testing in the CDF revealed that with the exception of arsenic all contaminant levels were below DNREC's non-residential URS criteria (Table 11). Several inorganics were over the residential criteria in the existing CDF soils (aluminum, arsenic, iron, vanadium, and manganese). In addition, some organics (e.g., Benzo(a)pyrene) were over the criteria. High resolution PBC congener

¹ Burton, W.H., J. Farrar, and J. Pasquale. Contaminant Sequestering and Water Quality Discharges At Confined Disposal Facilities. In: M. Pellei and A. Porta (Eds.), *Remediation of Contaminated Sediments—2003*. Proceedings of the Second International Conference on Remediation of Contaminated Sediments (Venice, Italy; 30 Sep-3 Oct 2003). ISBN 1-57477-143-4, published by Battelle Press, Columbus, OH,



concentrations were below the 1000  $\mu$ g/kg PCB URS criteria listed by DNREC (Table 13). TCPL testing of the exiting soils in the CDF resulted in no parameter concentrations above the regulatory limits (Table 14).

#### Beneficial Use of Material

In conclusion, based on the above discussion, material from Wilmington Harbor and Wilmington Harbor South CDF would be suitable for use in non-residential situations (i.e., brownfields). However, prior to any beneficial use of the material, contaminant testing of the proposed recipient site should be completed. Once that analysis is completed, a comparison of the contaminant levels between the Wilmington Harbor material and the recipient location can then be performed to determine if the two sites are compatible.

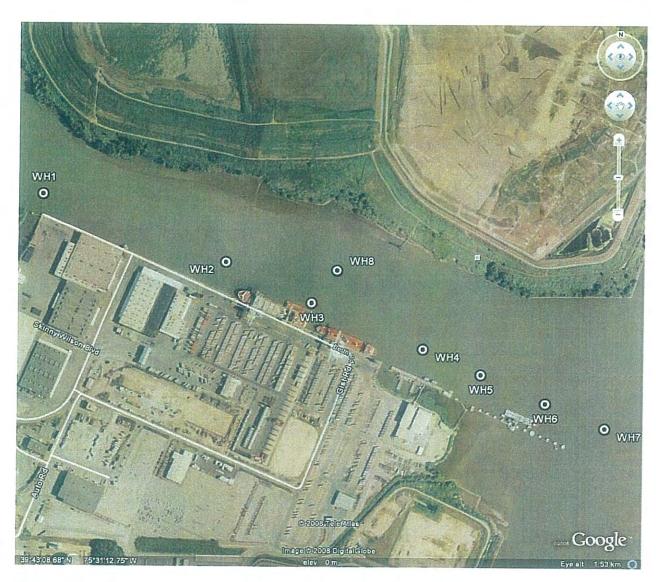



Figure 1. Vibracore station locations for sediment samples taken in June 2008

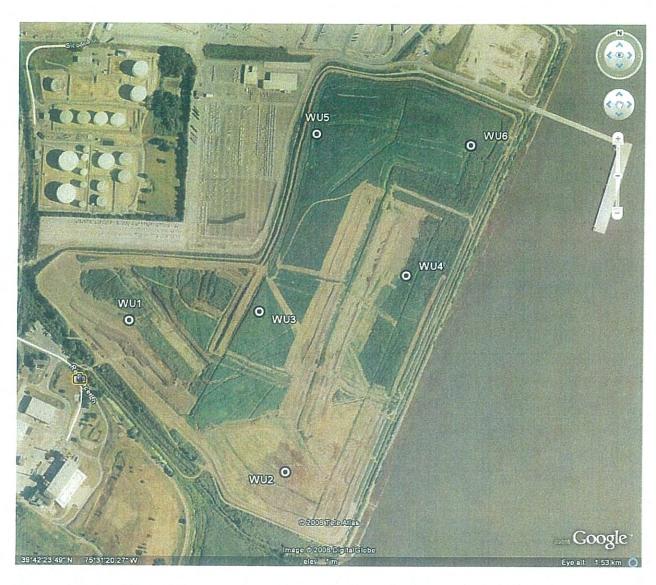



Figure 2. Soil hand auger sampling locations in the Wilmington South CDF collected in June 2008



Table 1. Sampling coordinates for the Wilmington Harbor stations											
Station	Date	Time	I	_atitude	L	ongitude					
WH1	6/6/2008	13:12:25	39	43.300	-75	31.783					
WH2	6/6/2008	12:15:10	39	43.197	-75	31.421					
WH3	6/6/2008	11:22:56	39	43.135	-75	31.251					
WH4	6/6/2008	10:54:43	39	43.065	-75	31.029					
WH5	6/6/2008	14:18:36	39	43.026	-75	30.913					
WH6	6/6/2008	14:53:48	39	42.982	-75	30.784					
WH7	6/6/2008	15:24:25	39	42.944	-75	30.666					
WH8	6/6/2008	16:11:11	39	43.185	-75	31.201					

Station	Date	Time	I	Latitude	Longitude		
WU1	6/12/08	8:37	39	42.354	-75	31.734	
WU2	6/12/08	9:35	39	42.122	-75	31.425	
WU3	6/12/08	10:16	39	42.368	-75	31.479	
WU4	6/12/08	12:35	39	42.424	-75	31.188	
WU5	6/12/08	11:15	39	42.64	-75	31.368	
WU6	6/12/08	11:53	39	42.623	-75	31.062	



# CHRISTINA RIVER SEDIMENT SAMPLING RESULTS

Table 3. Testing results for sediment samples collected from Wilmington Harbor. Values highlighted in yellow are over DNREC unrestricted criteria, while values in green are over restricted levels. Bolded concentrations are over ER-L sediment guidelines while underlined values are over ER-M levels.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted		ER-L	ER-M
PCBs													
Aroclor 1016	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	5000	82000		
Aroclor 1221	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	300	3000		
Aroclor 1232	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	300	3000		
Aroclor 1242	μg/kg	<22	<21	<19	<23	<27	<22	<16	<21	300	3000		
Aroclor 1248	μg/kg	<22	<21	<19	<23	<27	<22	310	<21	300	3000		
Aroclor 1254	μg/kg	150	78	76	<23	<27	<22	310	<21	300	3000		
Aroclor 1260	μg/kg	52	29	27	42	33	49	64	32	300	3000		
Pesticides	17.0												
4,4-DDD	μg/kg	18	11	11	15	20	13	23	11	3,000	24,000		
4,4-DDE	μg/kg	15	7.5	11	16	8.7	16	56	11	2,000	17,000		
4,4-DDT	μg/kg	<11	<11	<9.9	<12	12	<11	<8.2	<10	2,000	17,000	1.58	46.1
Aldrin	μg/kg	<11	1.8	<9.9	<12	<14	<11	<8.2	<10	40	300		
alpha-BHC	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	100	900		
alpha-Chlordane	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10				
beta-BHC	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	400	3,000		
delta-BHC	μg/kg	<11	<11	<9.9	<12	<14	<11	1.7	<10				
Dieldrin	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	40	400		
Endosulfan I	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	47,000	1,200,000		
Endosulfan II	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	47,000	1,200,000		
Endosulfan sulfate	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	47,000	1,200,000		
Endrin	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	2,000	61,000		
Endrin aldehyde	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	2,000	61,000		
Endrin ketone	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10				
gamma-BHC (Lindane)	μg/kg	3.3	1.5	<9.9	<12	<14	<11	<8.2	2	500	4,000		
gamma-Chlordane	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10				
Heptachlor	μg/kg	<11	<11	<9.9	<12	<14	<11	<8.2	<10	100	1,000		
Heptachlor epoxide	μg/kg	<11	<11	<9.9	<12	<14	<11	3	<10	70	600		
Methoxychlor	μg/kg	<22	<20	<19	<22	<26	<22	<16	<20	39,000	1,000,000		
Toxaphene	μg/kg			<390	<450	<530	<440	<320	<410	600	5,000	-	
Inorganics	MEINE	1,100	120	.570	.130	.550		-520	1110	300	2,000		
Aluminum	mg/kg	14.800	15,600	15,600	15,600	16,600	16,800	14,300	15,700	7,800	200,000		
Antimony	mg/kg			<1.2	<1.4	<1.6	0.3	0.44	<1.2	3	82		
Arsenic	mg/kg		10.6	11.4	11.9	13.4	12.7	13.6	11.8	0.4	4	8.2	70
Barium	mg/kg		110	109	111	110	90.2	66.6	97.7	550	14,000		
Beryllium	mg/kg		1.3	1.3	1.3	1.4	1.4	1.1	1.3	16	410		

1			
A	ζ	_	

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	And the property of the party o	ER-L	ER-M
Inorganics (Continued)													
Cadmium	mg/kg	1.2	0.22	0.27	0.21	< 0.80	< 0.66	< 0.48	0.19	4	100	1.2	9.6
Calcium	mg/kg	2,990	3,260	3,120	3,800	4,110	3,220	2,890	3,310				318
Chromium	mg/kg	64.6	47.6	48.5	48.3	53	53.3	61.3	49.3	270	610	81	370
Cobalt	mg/kg	13.6	13.1	13.6	13.7	14.6	14.5	12.2	13.7	470	12,000		
Copper	mg/kg	44	33.4	35.2	34.5	34.7	33.7	34.4	33	310	8,200	34	270
Iron	mg/kg	28,300		29,300	30,100	32,500	32,100	31,600	30,200	2,300	61,000		
Lead	mg/kg	78.8	46.4	49.5	47.2	49	47.3	89	46.5	400	1,000	47	218
Magnesium	mg/kg	5,250	5,780	5,730	5,840	6,580	6,790	5,730	6,170				
Manganese	mg/kg	908	1,290	1,250	1,430	1,580	1,470	1,020	1,430	160	4,100		
Mercury	mg/kg	0.37	0.34	0.37	0.35	0.36	0.37	0.37	0.32	10	610	0.15	0.71
Nickel	mg/kg	27.5	26.4	27.3	27.3	29.3	29.2	28.4	27.3	160	4,100	20.9	51.6
Potassium	mg/kg		2,160	2,130	2,190	2,420	2,530	2,130	2,260				
Selenium	mg/kg	< 0.69	< 0.62	< 0.58	< 0.68	< 0.80	< 0.66	< 0.48	< 0.62	39	1,000		
Silver	mg/kg	0.43	0.55	0.58	0.58	0.71	0.59	0.56	0.62	39	1,000	1	3.7
Sodium	mg/kg	942	1,030	885	586	751	1,310	512	1,040				
Thallium	mg/kg	<1.4	<1.2	<1.2	<1.4	<1.6	<1.3	< 0.97	<1.2	18	220		
Vanadium	mg/kg	45.9	42.9	45.1	43.6	48	49.1	48.9	44.1	55	1,400		
Zinc	mg/kg	445	221	231	219	223	209	157	214	2,300	61,000	150	410
Semivolatiles													
1,2,4-Trichlorobenzene	μg/kg	<90	<83	<78	<91	<100	<88>	<65	<83				
1,2-Dichlorobenzene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
1,3-Dichlorobenzene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
1,4-Dichlorobenzene	μg/kg	41	<83	<78	<91	<100	<88	20	<83				
2,2-oxybis(1-Chloropropane)	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
2,4,5-Trichlorophenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2,4,6-Trichlorophenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2,4-Dichlorophenol	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
2,4-Dimethylphenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2,4-Dinitrophenol	μg/kg	<2300	<2100	<2000			<2200	<1600	<2100				
2,4-Dinitrotoluene	μg/kg	<440	<410	<390	<450	<510	230	<320	<410				
2,6-Dinitrotoluene	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
2-Chloronaphthalene	μg/kg		<83	<78	<91	<100	<88	<65	<83				
2-Chlorophenol	μg/kg		<410	<390	<450		<430	<320	<410				
2-Methylnaphthalene	μg/kg		47	62	57	44	24	27	47				
2-Methylphenol	μg/kg		<410	<390	<450		<430	38	<410				
2-Nitroaniline		<2300						<1600	<2100				
2-Nitrophenol	μg/kg			<390			<430	<320	<410				
3,3-Dichlorobenzidine		<440		<390			<430	<320	<410				

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	A STATE OF THE PARTY OF THE PAR	ER-L	ER-M
Semivolatiles (Continued)											Traditional Property of the Pr	DIC ID	Dicin
3-Nitroaniline	μg/kg	<2300	<2100	<2000	<2300	<2700	<2200	<1600	<2100				
4,6-Dinitro-2-methylphenol	μg/kg					<2700	<2200	<1600	<2100				
4-Bromophenyl phenyl ether	μg/kg		<410	<390	<450	<510	<430	<320	<410				
4-Chloro-3-methylphenol	µ/kg	<440	<410	<390	<450	<510	<430	<320	<410				
4-Chloroaniline	μg/kg		<410	49	45	<510	<430	55	<410				
4-Chlorophenyl phenyl ether	μg/kg		<410	<390	<450	<510	<430	<320	<410				
4-Methylphenol	µg/kg		430	120	680	520	56	37	90				
4-Nitroaniline	μg/kg		<2100	<2000			<2200	<1600	<2100				
4-Nitrophenol	μg/kg		<2100	<2000			<2200	<1600	<2100				
Acenaphthene	μg/kg		21	34	<91	<100	<88	<65	30	470,000	5,000,000	16	500
Acenaphthylene	μg/kg		42	60	53	42	<88	<65	46	170,000	3,000,000	44	640
Anthracene	μg/kg		80	79	68	73	30	21	99	1,000,000	5,000,000	85.3	1,100
Benzo(a)anthracene	μg/kg	1100	220	230	180	140	92	59	190	900	8,000	261	1,600
Benzo(a)pyrene	μg/kg		220	240	180	170	69	35	180	90	800	430	1,600
Benzo(b)fluoranthene	μg/kg		380	430	330	290	130	51	310	900	8,000	730	1,000
Benzo(ghi)perylene	μg/kg	680	230	230	200	170	94	33	190	200	0,000		
Benzo(k)fluoranthene	μg/kg		<83	<78	<91	<100	<88	<65	<83	9,000	78,000		
bis(2-Chloroethoxy)methane	μg/kg		<410	<390	<450	<510	<430	<320	<410	2,000	70,000		
bis(2-Chloroethyl) ether	μg/kg		<83	<78	<91	<100	<88	<65	<83				
bis(2-Ethylhexyl) phthalate	μg/kg	590	420	440	440	390	140	140	290				
Butyl benzyl phthalate	μg/kg	78	<410	48	53	55	37	<320	42				7-
Carbazole	μg/kg	74	39	41	48	<100	<88	16	23				
Chrysene	μg/kg		290	300	230	210	95	48	270	87,000	780,000	384	2,800
Di-n-butyl phthalate	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410	07,000	700,000	304	2,000
Di-n-octyl phthalate	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Dibenz(a,h)anthracene	μg/kg		51	50	44	44	<88	<65	42	90	800	63	260
Dibenzofuran	μg/kg	89	29	41	32	33	<430	<320	28	3.0	900	05	200
Diethyl phthalate	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Dimethyl phthalate	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Fluoranthene	μg/kg		420	470	390	330	140	71	370	310,000	5,000,000	600	5,100
Fluorene	μg/kg	180	47	72	33	<100	74	<65	53	310,000	5,000,000	19	540
Hexachlorobenzene	μg/kg		<83	<78	<91	<100	<88	<65	<83	510,000	2,000,000	1)	340
Hexachlorobutadiene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
Hexachlorocyclopentadiene	μg/kg		<410	<390	<450	<510	<430	<320	<410				
Hexachloroethane	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
Indeno(1,2,3-cd)pyrene	μg/kg	570	170	220	160	130	61	33	160	900	8,000		
Isophorone	µg/kg		<410	<390	<450	<510	<430	<320	<410	700	3,000		-

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	DNREC Non-critical Restricted	ER-L	ER-M
Semivolatiles (Continued)												DAY IS	DIC IVI
N-Nitrosodi-n-propylamine	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83				
N-Nitrosodiphenylamine	μg/kg	53	<83	<78	<91	<100	<88	<65	<83				
Naphthalene	μg/kg	1100	76	97	94	75	<88	54	79	160,000	4,100,000	160	2,100
Nitrobenzene	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83	,	1,100,000	100	2,100
Pentachlorophenol	μg/kg	<440	<410	<390	<450	<510	<430	<320	<410				
Phenanthrene	μg/kg	980	220	220	190	180	87	56	220	1,000,000	5,000,000	240	1,500
Phenol	μg/kg	<90	<83	<78	<91	<100	<88	<65	<83	2,000,000	2,000,000	210	1,500
Pyrene	μg/kg	1300	330	360	290	240	120	56	290			665	2,600
VOCs	1.00											003	2,000
1,1,1-Trichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	160,000	4,100,000		
1,1,2,2-Tetrachloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	600	29,000		
1,1,2-Trichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	1,000	100,000		
1,1-Dichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	780,000	5,000,000		
1,1-Dichloroethene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	700,000	2,000,000		
1,2-Dichloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12				
1,2-Dichloroethene (total)	μg/kg	<27	<25	<23	<27	<32	<26	<19	<25	400	63,000		
1,2-Dichloropropane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	9,000	84,000		
2-Butanone	μg/kg	<14	<12	<12	<14	<16	<13	11	<12	3,000	01,000		
2-Hexanone	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	310,000	5,000,000		
4-Methyl-2-pentanone	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	220,000	2,000,000		
Acetone	μg/kg	15	<50	<47	<54	<64	<53	55	<49	780,000	5,000,000		
Benzene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	800	200,000		
Bromodichloromethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	10,000	92,000		
Bromoform	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	53,000	720,000		
Bromomethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	11,000	290,000		
Carbon disulfide	μg/kg	<14	<12	<12	<14	<16	<1.3	<9.7	<12	780,000	5,000,000		7
Carbon tetrachloride	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	300	44,000		
Chlorobenzene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	130,000	4,100,000		
Chloroethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	220,000	2,000,000		
Chloroform	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	300	940,000		
Chloromethane	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	49,000	440,000		
cis-1,3-Dichloropropene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	100	32,000		
Dibromochloromethane	μg/kg		<12	<12	<14	<16	<13	<9.7	<12	8,000	68,000		
Ethylbenzene	μg/kg		<12	<12	<14	<16	<13	<9.7	<12	400,000	5,000,000		
Methylene chloride	μg/kg	16	6	4.5	6.5	5.7	5.8	82	6	13,000	760,000		
Styrene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	1,000,000	5,000,000		
Tetrachloroethene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12		, , , , , , ,		
Toluene	μg/kg		180	2.5	67	77	34	<9.7	21	650,000	5,000,000		

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Unrestricted	DNREC Non-critical Restricted	ER-L	ER-M
VOCs (Continued)													2000
trans-1,3-Dichloropropene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	100	32,000		
Trichloroethene	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12				
Vinyl chloride	μg/kg	<14	<12	<12	<14	<16	<13	<9.7	<12	30	3,000		
Xylenes (total)	μg/kg	<41	<37	<35	<41	<48	<40	<29	<37	420,000	5,000,000		
Cyanide, Total	mg/kg	0.27	<1.2	0.61	0.36	0.4	0.28	< 0.97	0.33				
Total Sulfide	mg/kg	110	59.5	<70.2	<81.2	<95.5	<79.1	<58.2	39.5			-	



Table 4. PCB congener testing results for samples collected from Wilmington Harbor sediments											
Scamio	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8		
PCB 1 (BZ)	ng/g	0.34	<0.99	0.11	< 0.14	0.047	0.035	<0.78	0.036		
PCB 2 (BZ)	ng/g	0.13	<0.99	0.053	0.054	0.066	0.063	0.15	0.046		
PCB 3 (BZ)	ng/g	0.69	<0.99	0.09	0.082	0.081	0.065	0.33	0.066		
PCB 4 (BZ)	ng/g	4.4	0.086	0.14	0.18	0.14	0.087	1.5	0.14		
PCB 5 (BZ)	ng/g	<1.1	<0.99	0.0075	0.0074	0.012	0.0053	<0.78	0.0094		
PCB 6 (BZ)	ng/g	3.5	<0.99	0.088	0.09	0.1	0.07	0.68	0.079		
PCB 7 (BZ)	ng/g	0.14	<0.99	0.018	0.016	0.016	0.011	0.13	0.016		
PCB 8 (BZ)	ng/g	4.3	0.27	0.24	0.26	0.23	0.17	1.5	0.24		
PCB 9 (BZ)	ng/g	0.27	<0.99	0.018	0.017	0.011	0.015	0.19	0.014		
PCB 10 (BZ)	ng/g	0.18	<0.99	0.0096	0.01	0.011	<0.026	0.11	0.0082		
PCB 11 (BZ)	ng/g	0.93	0.47	0.29	0.43	0.63	0.39	0.58	0.42		
PCB 12 (BZ)	ng/g	51	<0.99	0.11	0.078	0.13	0.12	0.56	0.13		
PCB 13 (BZ)	ng/g	51	<0.99	0.11	0.078	0.13	0.12	0.56	0.13		
PCB 14 (BZ)	ng/g	<1.1	<0.99	0.0027	0.0045	0.0059	0.0055	<0.78	<0.025		
PCB 15 (BZ)	ng/g	23	0.49	0.45	0.46	0.55	0.44	2.2	0.47		
PCB 16 (BZ)	ng/g	3.5	<0.99	0.13	0.17	0.18	0.1	4.8	0.16		
PCB 17 (BZ)	ng/g	38	0.18	0.25	0.3	0.33	0.16	6.3	0.26		
PCB 18 (BZ)	ng/g	28	0.32	0.35	0.45	0.6	0.26	15	0.39		
PCB 19 (BZ)	ng/g	12	<0.99	0.089	0.11	0.13	0.051	1.3	0.092		
PCB 20 (BZ)	ng/g	17	0.89	1	1.2	1.4	0.85	18	1.1		
PCB 21 (BZ)	ng/g	4.5	0.16	0.24	0.27	0.27	0.19	5	0.27		
PCB 22 (BZ)	ng/g	2.9	0.16	0.19	0.23	0.26	0.15	3.8	0.23		
PCB 23 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	<0.026	<0.78	<0.025		
PCB 24 (BZ)	ng/g	<1.1	<0.99	0.0076	< 0.027	<0.032	0.0043	0.11	0.0037		
PCB 25 (BZ)	ng/g	19	0.13	0.17	0.18	0.28	0.12	1.3	0.16		
PCB 26 (BZ)	ng/g	47	0.19	0.24	0.25	0.46	0.17	2.5	0.23		
PCB 27 (BZ)	ng/g	38	<0.99	0.11	0.053	0.12	0.061	0.76	0.098		
PCB 28 (BZ)	ng/g	17	0.89	1	1.2	1.4	0.85	18	1.1		
PCB 29 (BZ)	ng/g	47	0.19	0.24	0.25	0.46	0.17	2.5	0.23		
PCB 30 (BZ)	ng/g	28	0.32	0.35	0.45	0.6	0.26	15	0.39		
PCB 31 (BZ)	ng/g	27	0.51	0.68	0.81	0.96	0.55	17	0.7		
PCB 32 (BZ)	ng/g	67	0.2	0.22	0.28	0.37	0.16	4.7	0.25		
PCB 33 (BZ)	ng/g	4.5	0.16	0.24	0.27	0.27	0.19	5	0.27		
PCB 34 (BZ)	ng/g	0.64	< 0.99	0.0091	0.01	0.012	0.0068	0.2	0.011		
PCB 35 (BZ)	ng/g	0.33	< 0.99	0.056	0.086	0.068	0.061	0.33	0.057		
PCB 36 (BZ)	ng/g	0.16	<0.99	0.0073	0.012	0.012	0.012	<0.78	0.0097		
PCB 37 (BZ)	ng/g	2.2	0.3	0.35	0.42	0.47	0.37	3_	0.4		
PCB 38 (BZ)	ng/g	<1.1	< 0.99	<0.023	<0.027	< 0.032	<0.026	<0.78	<0.025		
PCB 39 (BZ)	ng/g	0.25	<0.99	0.0092	0.013	0.014	0.0071	0.13	0.011		
PCB 40 (BZ)	ng/g	12	0.61	0.72	0.82	1.2	0.52	13	0.73		
PCB 41 (BZ)	ng/g	12	0.61	0.72	0.82	1.2	0.52	13	0.73		
PCB 42 (BZ)	ng/g	9.5	0.4	0.34	0.41	0.54	0.27	8.4	0.37		
PCB 43 (BZ)	ng/g	<1.1	<0.99	0.041	0.05	0.086	0.019	0.89	0.044		
PCB 44 (BZ)	ng/g	90	1.4	1.5	1.6	2.2	0.99	31	1.4		
PCB 45 (BZ)	ng/g	55	<0.99	0.34	0.34	0.45	0.19	5.5	0.31		
PCB 46 (BZ)	ng/g	10	<0.99	0.086	0.093	0.13	0.052	2	0.09		
0 ()			1.4	1.5	1.6	2.2	0.99	31	1.4		
PCB 47 (BZ)	ng/o	90	1.4	1.5	1.0		, ,,,,		1		
PCB 47 (BZ) PCB 48 (BZ)	ng/g ng/g	90 3.1	< 0.99	0.14	0.17	0.23	0.097	4.9	0.18		

# **WCI-2311**1HC.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 50 (BZ)	ng/g	63	0.15	0.27	0.27	0.33	0.16	4.4	0.23
PCB 51 (BZ)	ng/g	55	<0.99	0.34	0.34	0.45	0.19	5.5	0.31
PCB 52 (BZ)	ng/g	88	1.4	1.8	1.9	2.6	1.1	40	1.7
PCB 53 (BZ)	ng/g	63	0.15	0.27	0.27	0.33	0.16	4.4	0.23
PCB 54 (BZ)	ng/g	6.5	<0.99	0.023	<0.027	0.024	0.015	<0.78	0.015
PCB 55 (BZ)	ng/g	0.13	<0.99	0.028	0.032	0.025	0.015	0.27	0.012
PCB 56 (BZ)	ng/g	3.8	0.43	0.5	0.59	0.64	0.38	9.6	0.50
PCB 57 (BZ)	ng/g	0.55	< 0.99	0.011	0.013	0.026	0.0082	<0.78	0.013
PCB 58 (BZ)	ng/g	0.2	<0.99	<0.023	0.011	0.015	< 0.026	0.29	0.0
PCB 59 (BZ)	ng/g	2.8	<0.99	0.13	0.15	0.19	0.092	2.7	0.1
PCB 60 (BZ)	ng/g	0.97	<0.99	0.16	0.2	0.22	0.13	0.54	0.2
PCB 61 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 62 (BZ)	ng/g	2.8	<0.99	0.13	0.15	0.19	0.092	2.7	0.1
PCB 63 (BZ)	ng/g	0.92	< 0.99	0.05	0.059	0.081	0.037	0.88	0.05
PCB 64 (BZ)	ng/g	4.9	, 0.4	0.49	0.57	0.71	0.37	11	0.5
PCB 65 (BZ)	ng/g	90	1.4	1.5	1.6	2.2	0.99	31	1.
PCB 66 (BZ)	ng/g	11	1.3	1.3	1.5	1.7	1.1	25	1.
PCB 67 (BZ)	ng/g	0.52	<0.99	0.048	0.059	0.076	0.037	0.49	< 0.02
PCB 68 (BZ)	ng/g	2.8	<0.99	0.039	0.033	0.041	0.025	0.4	0.03
PCB 69 (BZ)	ng/g	150	0.92	1.1	1.2	1.6	0.71	23	1.
PCB 70 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 71 (BZ)	ng/g	12	0.61	0.72	0.82	1.2	0.52	13	0.7
PCB 72 (BZ)	ng/g	3.4	< 0.99	0.044	0.051	0.067	0.027	0.76	0.04
PCB 73 (BZ)	ng/g	<1.1	<0.99	0.041	0.05	0.086	0.019	0.89	0.04
PCB 74 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 75 (BZ)	ng/g	2.8	<0.99	0.13	0.15	0.19	0.092	2.7	0.1
PCB 76 (BZ)	ng/g	17	1.8	1.9	2.2	2.4	1.4	41	
PCB 77 (BZ)	ng/g	0.71	0.15	0.22	0.28	0.27	0.19	1.8	0.2
PCB 78 (BZ)	ng/g	<1.1	<0.99	<0.023	< 0.027	< 0.032	<0.026	<0.78	< 0.02
PCB 79 (BZ)	ng/g	0.24	<0.99	0.025	0.024	0.027	0.019	0.26	0.0
PCB 80 (BZ)	ng/g	<1.1	<0.99	0.016	< 0.027	<0.032	<0.026	< 0.78	< 0.02
PCB 81 (BZ)	ng/g	<1.1	< 0.99	0.0046	0.0055	< 0.032	0.0072	< 0.78	< 0.02
PCB 82 (BZ)	ng/g	2.4	0.34	0.25	0.37	0.35	0.17	3	0.3
PCB 83 (BZ)	ng/g	14	1.3	1.8	2.1	2.1	1.3	26	1
PCB 84 (BZ)	ng/g	6.7	0.63	0.66	0.75	0.88	0.43	10	0
PCB 85 (BZ)	ng/g	3.6	0.51	0.4	0.47	0.5	0.26	4.5	0.3
PCB 86 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1
PCB 87 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1
PCB 88 (BZ)	ng/g	5.3	0.36	0.48	0.55	0.62	0.35	5.8	0.4
PCB 89 (BZ)	ng/g	<1.1	<0.99	0.019	0.037	0.032	0.016	0.52	0.02
PCB 90 (BZ)	ng/g	23	2.5	2.6	3	3.2	1.7	38	2
PCB 91 (BZ)	ng/g	5.3	0.36	0.48	0.55	0.62	0.35	5.8	0.4
PCB 92 (BZ)	ng/g	6.1	0.46	0.55	0.66	0.69	0.37	7.9	0.5
PCB 93 (BZ)	ng/g	2.6	<0.99	0.12	0.15	0.12	0.066	0.92	0.1
PCB 94 (BZ)	ng/g	0.87	<0.99	0.029	0.041	0.038	0.021	<0.78	0.03
PCB 95 (BZ)	ng/g	19	2	2	2.3	2.6	1.3	32	
PCB 96 (BZ)	ng/g	0.38	<0.99	0.026	0.031	0.039	0.015	0.51	0.02
PCB 97 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1
PCB 98 (BZ)	ng/g	1.8	<0.99	0.13	0.15	0.16	0.088	1.5	0.1
~ ~~ ~ ~ ( <del>1/2)</del>	1 498	1.0	3.77	1.8	2.1	2.1	1.3	26	1

# WCI-SOI INC.

Table 4. (Contin	nued)	· · · · · · · · · · · · · · · · · · ·					<u> </u>		
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 100 (BZ)	ng/g	2.6	<0.99	0.12	0.15	0.12	0.066	0.92	0.12
PCB 101 (BZ)	ng/g	23	2.5	2.6	3	3.2	1.7	38	2.8
PCB 102 (BZ)	ng/g	1.8	<0.99	0.13	0.15	0.16	0.088	1.5	0.14
PCB 103 (BZ)	ng/g	2.8	<0.99	0.077	0.075	0.093	0.054	0.89	0.067
PCB 104 (BZ)	ng/g	0.27	<0.99	0.0063	< 0.027	<0.032	< 0.026	<0.78	< 0.025
PCB 105 (BZ)	ng/g	4.3	0.69	0.77	0.91	0.94	0.54	5.2	0.89
PCB 106 (BZ)	ng/g	<1.1	<0.99	< 0.023	< 0.027	<0.032	<0.026	<0.78	< 0.02
PCB 107 (BZ)	ng/g	1.4	0.16	0.21	0.25	0.25	0.17	3.2	0.2
PCB 108 (BZ)	ng/g	0.49	<0.99	0.075	0.1	0.099	0.06	0.54	0.
PCB 109 (BZ)	ng/g	13	1.1	1.5	1.8	1.9	0.93	19	1.
PCB 110 (BZ)	ng/g	25	2.6	3.1	3.6	3.8	2	39	3.
PCB 111 (BZ)	ng/g	<1.1	<0.99	<0.023	0.012	< 0.032	0.009	0.1	<0.02
PCB 112 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	<0.026	<0.78	< 0.02
PCB 113 (BZ)	ng/g	23	2.5	2.6	3	3.2	1.7	38	2.
PCB 114 (BZ)	ng/g	0.19	<0.99	0.043	0.055	0.063	0.023	0.26	0.04
PCB 115 (BZ)	ng/g	25	2.6	3.1	3.6	3.8	2	39	3.
PCB 116 (BZ)	ng/g	3.6	0.51	0.4	0.47	0.5	0.26	4.5	0.3
PCB 117 (BZ)	ng/g	3.6	0.51	0.4	0.47	0.5	0.26	4.5	0.3
PCB 118 (BZ)	ng/g	15	2	2.3	2.4	2.5	1.5	30	2.
PCB 118 (BZ)		13	1.1	1.5	1.8	1.9	0.93	19	1.
PCB 119 (BZ)	ng/g	0.27	<0.99	0.026	0.035	0.022	0.018	0.27	0.02
<del></del>	ng/g		<0.99	<0.023	<0.027	<0.032	< 0.016	<0.78	< 0.02
PCB 121 (BZ)	ng/g	<1.1	~		0.027	0.032	0.020	0.78	0.04
PCB 122 (BZ)	ng/g	<1.1	<0.99	0.042			0.019	0.24	0.04
PCB 123 (BZ)	ng/g	0.2	<0.99	0.053	0.05	0.041		0.13	0.03
PCB 124 (BZ)	ng/g	0.49	<0.99	0.075	0,1	0.099	0.06 0.93	19	1.
PCB 125 (BZ)	ng/g	13	1.1	1.5	1.8	1.9			
PCB 126 (BZ)	ng/g	<1.1	<0.99	0.016	0.02	0.019	0.012	<0.78	0.01
PCB 127 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	<0.026	<0.78	<0.02
PCB 128 (BZ)	ng/g	2.7	0.5	0.52	0.58	0.63	0.36	3.7	0.5
PCB 129 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3.
PCB 130 (BZ)	ng/g	1.4	<0.99	0.21	0.26	0.25	0.18	2.2	0.2
PCB 131 (BZ)	ng/g	<1.1	<0.99	0.031	0.05	0.053	0.025	0.18	0.04
PCB 132 (BZ)	ng/g	6.7	0.97	1.1	1.2	1.3	0.76	11	1.
PCB 133 (BZ)	ng/g	0.46	<0.99	0.1	0.12	0.14	0.08	0.56	0.08
PCB 134 (BZ)	ng/g	1.5	<0.99	0.21	0.25	0.23	0.14	2.2	0.2
PCB 135 (BZ)	ng/g	7.9	1	1.3	1.6	1.7	0.92	11	1.
PCB 136 (BZ)	ng/g	3.1	0.32	0.48	0.58	0.62	0.35	4.2	0.
PCB 137 (BZ)	ng/g	0.68	< 0.99	0.11	0.12	0.12	0.082	0.9	0.1
PCB 138 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3
PCB 139 (BZ)	ng/g	0.3	<0.99	0.06	0.061	0.08	0.037	0.59	0.07
PCB 140 (BZ)	ng/g	0.3	<0.99	0.06	0.061	0.08	0.037	0.59	0.07
PCB 141 (BZ)	ng/g	3.3	0.34	0.52	0.64	0.67	0.35	3.6	0.5
PCB 142 (BZ)	ng/g	<1.1	<0.99	<0.023	< 0.027	< 0.032	<0.026	< 0.78	< 0.02
PCB 143 (BZ)	ng/g	1.5	< 0.99	0.21	0.25	0.23	0.14	2.2	0.2
PCB 144 (BZ)	ng/g	0.78	<0.99	0.13	0.17	0.19	0.11	0.81	0.1
PCB 145 (BZ)	ng/g	<1.1	<0.99	<0.023	< 0.027	< 0.032	<0.026	<0.78	< 0.02
PCB 146 (BZ)	ng/g	3.5	0.61	0.71	0.8	0.86	0.57	6.4	0.7
PCB 147 (BZ)	ng/g	15	2.6	2.9	3.4	3.6	2.3	24	2.
<del></del>		<1.1	<0.99	0.026	0.029	0.028	0.022	<0.78	0.02
PCB 148 (BZ)	ng/g						2.3	24	2.
PCB 149 (BZ)	ng/g	15	2.6	2.9	3.4	3.6	2.5	24	-

# Wel-Sale

Table 4. (Contin	ued)								
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 150 (BZ)	ng/g	<1.1	<0.99	0.025	0.032	0.036	0.021	<0.78	0.029
PCB 151 (BZ)	ng/g	7.9	1	1.3	1.6	1.7	0.92	11	1.4
PCB 152 (BZ)	ng/g	<1.1	<0.99	0.0027	<0.027	< 0.032	<0.026	<0.78	<0.025
PCB 153 (BZ)	ng/g	15	2.8	3.1	3.6	3.8	2.4	24	3.2
PCB 154 (BZ)	ng/g	0.6	<0.99	0.16	0.19	0.22	0.16	0.72	0.15
PCB 155 (BZ)	ng/g	<1.1	<0.99	0.012	<0.027	< 0.032	0.013	<0.78	0.015
PCB 156 (BZ)	ng/g	1.5	0.23	0.3	0.37	0.37	0.22	2.6	0.34
PCB 157 (BZ)	ng/g	1.5	0.23	0.3	0.37	0.37	0.22	2.6	0.34
PCB 158 (BZ)	ng/g	1.6	0.28	0.28	0.34	0.37	0.19	2.1	0.3
PCB 159 (BZ)	ng/g	<1.1	<0.99	0.026	0.026	0.045	0.018	0.14	0.033
PCB 160 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3.7
PCB 161 (BZ)	ng/g	<1.1	<0.99	0.0043	< 0.027	<0.032	<0.026	<0.78	<0.025
PCB 162 (BZ)	ng/g	<1.1	<0.99	0.018	0.018	0.027	0.017	< 0.78	0.027
PCB 163 (BZ)	ng/g	19	2.9	3.5	4	4.2	2.5	26	3.7
PCB 164 (BZ)	ng/g	1.4	0.11	0.28	0.31	0.33	0.2	2.1	0.3
PCB 165 (BZ)	ng/g	<1.1	< 0.99	0.0041	< 0.027	< 0.032	<0.026	< 0.78	<0.025
PCB 166 (BZ)	ng/g	2.7	0.5	0.52	0.58	0.63	0.36	3.7	0.55
PCB 167 (BZ)	ng/g	0.58	<0.99	0.13	0.15	0.17	0.096	0.89	0.13
PCB 168 (BZ)	ng/g	15	2.8	3.1	3.6	3.8	2.4	24	3.2
PCB 169 (BZ)	ng/g	<1.1	<0.99	<0.023	0.0037	< 0.032	<0.026	<0.78	0.0058
PCB 170 (BZ)	ng/g	3.4	0.58	0.86	1	1.1	0.59	4.7	0.94
PCB 171 (BZ)	ng/g	1.1	0.16	0.27	0.32	0.33	0.2	1.5	0.3
PCB 172 (BZ)	ng/g	0.53	0.2	0.17	0.18	0.22	0.12	0.8	0.17
PCB 173 (BZ)	ng/g	1.1	0.16	0.27	0.32	0.33	0.2	1.5	0.3
PCB 174 (BZ)	ng/g	3.6	0.69	0.89	1.1	1.1	0.66	5.5	0.97
PCB 175 (BZ)	ng/g	0.17	<0.99	0.044	0.058	0.062	0.035	0.16	0.048
PCB 176 (BZ)	ng/g	0.53	<0.99	0.12	0.13	0.16	0.097	0.68	0.13
PCB 177 (BZ)	ng/g	2.5	0.35	0.61	0.74	0.77	0.44	3.4	0.63
PCB 178 (BZ)	ng/g	1.1	0.17	0.26	0.33	0.37	0.21	1.3	0.28
PCB 179 (BZ)	ng/g	1.7	0.4	0.48	0.56	0.59	0.36	2.6	0.5
PCB 180 (BZ)	ng/g	7.2	1.8	1.9	2.3	2.4	1.3	10	2
PCB 181 (BZ)	ng/g	<1.1	<0.99	0.0089	<0.027	<0.032	<0.026	<0.78	0.01
PCB 182 (BZ)	ng/g	<1.1	<0.99	0.021	0.037	0.032	0.02	0.11	<0.025
PCB 183 (BZ)	ng/g	2.5	0.39	0.64	0.79	0.81	0.51	3.3	0.74
PCB 184 (BZ)	ng/g	<1.1	<0.99	0.0089	0.019	0.015	0.009	<0.78 3.3	0.0091 0.74
PCB 185 (BZ)	ng/g	2.5	0.39	0.64	0.79	0.81	0.51		<0.025
PCB 186 (BZ)	ng/g	<1.1	<0.99	<0.023	<0.027	<0.032	<0.026	<0.78 7.5	1.5
PCB 187 (BZ)	ng/g	4.7	1.6	1.5	0.032	0.037	0.037	<0.78	0.025
PCB 188 (BZ)	ng/g	<1.1	<0.99	0.023		0.037		0.17	0.023
PCB 189 (BZ)	ng/g	0.13	<0.99	0.039	0.046	0.043	0.03 0.11	0.17	0.047
PCB 190 (BZ)	ng/g	0.48	<0.99	0.17	0.2	0.22	0.11	0.91	0.18
PCB 191 (BZ)	ng/g	0.18	<0.99	0.038	0.043 <0.027	<0.033	<0.024	<0.78	<0.025
PCB 192 (BZ)	ng/g	<1.1	<0.99	<0.023		<0.032 2.4	1.3	10	2
PCB 193 (BZ)	ng/g	7.2	0.69	1.9	2.3 0.73	0.81	0.51	3.2	0.66
PCB 194 (BZ)	ng/g	0.67	< 0.99	0.61	0.73	0.81	0.31	0.95	0.00
PCB 195 (BZ)	ng/g	1.2	0.49	<del></del>	0.26		0.19	1.3	0.22
PCB 196 (BZ)	ng/g	<1.1	< 0.49	0.47	0.36	0.61 0.073	0.069	0.21	0.06
PCB 197 (BZ)	ng/g		<0.99 1.5			2.2	1.6	5.9	1.7
PCB 198 (BZ)	ng/g	3.7		1.6	1.9			0.3	0.081
PCB 199 (BZ)	ng/g	0.31	0.088	0.074	0.1	0.11	0.061	U.3	160.0

# **WCI-SSII** INC.

Table 4. (Contin	Table 4. (Continued)													
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8					
PCB 200 (BZ)	ng/g	0.31	0.14	0.2	0.25	0.27	0.22	0.57	0.2					
PCB 201 (BZ)	ng/g	3.7	1.5	1.6	1.9	2.2	1.6	5.9	1.7					
PCB 202 (BZ)	ng/g	1	0.54	0.54	0.65	0.75	0.61	1.6	0.55					
PCB 203 (BZ)	ng/g	1.5	0.8	0.7	0.8	0.85	0.6	2.1	0.74					
PCB 204 (BZ)	ng/g	<1.1	<0.99	0.0087	< 0.027	<0.032	< 0.026	<0.78	<0.025					
PCB 205 (BZ)	ng/g	<1.1	<0.99	0.037	0.043	0.058	0.027	<0.78	0.04					
PCB 206 (BZ)	ng/g	7.2	5.6	5.9	6.1	7.7	7.4	14	5.5					
PCB 207 (BZ)	ng/g	0.83	0.64	0.48	0.55	0.7	0.64	1.2	0.47					
PCB 208 (BZ)	ng/g	3	2.4	2.5	2.8	3.5	3.4	6.1	2.4					
PCB 209 (BZ)	ng/g	21	11	10	11	13	11	88	9.2					

Table 5. PCB congener totals testing results for samples collected from Wilmington Harbor sediments. Values highlighted in yellow are over DNREC unrestricted criteria while values in green are over restricted levels. Bolded concentrations are over ER-L sediment guidelines while underlined values are over ER-M levels

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Non-critical Un-restricted	DNREC Non-critical Restricted	ER-L	ER-M
Monochlorobiphenyl	ng/g	1.2	< 0.99	0.25	0.14	0.19	0.16	0.47	0.15				
Dichlorobiphenyl	ng/g	88	1.3	1.4	1.5	1.8	1.3	7.5	1.5				
Trichlorobiphenyl	ng/g	310	3	4.1	4.9	5.9	3.3	84	4.4				
Tetrachlorobiphenyl	ng/g	530	8.9	11	13	16	8	230	11	11-11-11			
Pentachlorobiphenyl	ng/g	150	15	17	20	21	12	230	18				
Hexachlorobiphenyl	ng/g	87	13	16	19	20	12	130	17				
Heptachlorobiphenyl	ng/g	30	6.4	8	9.6	10	5.9	43	8.6				
Octachlorobiphenyl	ng/g	11	4.2	4.6	5.4	6	4.3	16	4.7				
Nonachlorobiphenyl	ng/g	11	8.6	8.9	9.5	12	11	21	8.3				
Decachlorobiphenyl	ng/g	21	11	10	11	13	11	88	9.2				
Total		1239.2	71.4	81.3	94.0	105.9	69.0	850.0	82.9	1000	1000	22.7	180

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
PCBs											
Aroclor 1016	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38		
Aroclor 1221	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	<0.38		
Aroclor 1232	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38		
Aroclor 1242	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	< 0.38		
Aroclor 1248	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	0.8	<0.38		
Aroclor 1254	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	1.9	< 0.38		
Aroclor 1260	μg/L	< 0.40	< 0.40	< 0.40	< 0.38	< 0.39	< 0.38	< 0.39	<0.38		
Pesticides				7					7.00		
4,4-DDD	μg/L	< 0.050	< 0.050	< 0.050	0.0075	< 0.048	< 0.048	0.021	< 0.048	0.13	0.001
4,4-DDE	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	0.045	< 0.048	0.13	0.001
4,4-DDT	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.13	0.001
Aldrin	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		0.001
alpha-BHC	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
alpha-Chlordane	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
beta-BHC	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	<0.048	< 0.048	< 0.048	< 0.048		
delta-BHC	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
Dieldrin	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.71	0.0019
Endosulfan I	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.034	0.0087
Endosulfan II	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		010007
Endosulfan sulfate	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
Endrin	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	0.037	0.0023
Endrin aldehyde	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
Endrin ketone	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
gamma-BHC (Lindane)	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
gamma-Chlordane	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	0.037	< 0.048		
Heptachlor	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	0.01	< 0.048	0.053	0.0036
Heptachlor epoxide	μg/L	< 0.050	< 0.050	< 0.050	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048		
Methoxychlor	μg/L	< 0.099	< 0.099	<0.099	< 0.096	< 0.097	< 0.096	< 0.097	< 0.096		0.03
Toxaphene	μg/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	0.21	0.002

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Inorganics											
Aluminum	μg/L	336	105	973	119	95.7	62.3	51.5	52.7		
Antimony	μg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	6.1	<10.0		
Arsenic	μg/L	13.6	32.3	30.3	27	23.7	35.4	29.1	29.6	69	36
Barium	μg/L	66.9	112	71	104	115	48	13.1	78.9	0,	
Beryllium	μg/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0		
Cadmium	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	40	8.8
Calcium	μg/L	17,900	44,700	26,100	43,800	54,600	22,400	6,010	32,800	40	0.0
Chromium	μg/L	2.9	2.2	4.2	2.4	3.8	2.1	2.9	1.6	1100	50
Cobalt	μg/L	2	2.3	2.3	2.6	2.5	2.2	1.9	2.3	1100	30
Copper	μg/L	1.1	1.1	2.5	<25.0	1.4	2.4	6.2	1.1	4.8	3.1
Iron	μg/L	929	197	1190	639	85.5	<100	47.9	<100	4.0	5.1
Lead	μg/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	210	8.1
Magnesium	μg/L	16,200	39,700	29,300	27,900	32,500	27,300	7,380	33,100	210	0.1
Manganese	μg/L	1590	3810	1980	4470	6740	1740	86.6	2530		
Mercury	μg/L	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1.8	0.94
Nickel	μg/L	9.3	10	9.4	8	9.7	7.9	7.1	7.8	74	8.2
Potassium	μg/L	13,800	16,700	15,300	11,300	10,900	16,500	8,380	15,400	13	0.2
Selenium	μg/L	3.1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	290	71
Silver	μg/L	0.77	<5.0	0.76	1	1.7	<5.0	<5.0	0.81	1.9	71
Sodium	μg/L	142,000	175,000	161,000	94,200	96,300	165,000	71,800	161,000	1.7	
Thallium	μg/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0		
Vanadium	μg/L	4.7	4.5	9.2	4.7	4.8	10.2	20.2	5.5		
Zinc	μg/L	14.2	11	25.8	7.5	6.8	10.6	26.7	6.7	90	81
Semivolatiles	1 0			20.0	7.0	0.0	10.0	20.7	0.7	70	01
1,2,4-Trichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
1,2-Dichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
1,3-Dichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
1,4-Dichlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2,2-oxybis(1-Chloropropane)	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2,4,5-Trichlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2,4,6-Trichlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2,4-Dichlorophenol	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2,4-Dimethylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Semivolatiles (Continued)						.,,	1122	11.221	11110	Criteria	Citteria
2,4-Dinitrophenol	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
2,4-Dinitrotoluene	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2,6-Dinitrotoluene	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2-Chloronaphthalene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2-Chlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2-Methylnaphthalene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
2-Methylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
2-Nitroaniline	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
2-Nitrophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
3,3-Dichlorobenzidine	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
3-Nitroaniline	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
4,6-Dinitro-2-methylphenol	μg/L	<48	<48	<48	<48	<48	<49	<48	<47	-	
4-Bromophenyl phenyl ether	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Chloro-3-methylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Chloroaniline	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Chlorophenyl phenyl ether	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Methylphenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
4-Nitroaniline	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
4-Nitrophenol	μg/L	<48	<48	<48	<48	<48	<49	<48	<47		
Acenaphthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Acenaphthylene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Anthracene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(a)anthracene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(a)pyrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(b)fluoranthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(ghi)perylene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Benzo(k)fluoranthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
bis(2-Chloroethoxy)methane	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
bis(2-Chloroethyl) ether	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
bis(2-Ethylhexyl) phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Butyl benzyl phthalate	μg/L	<9.5	<9.6	<9.7	2.1	<9.6	<9.8	<9.5	<9.4		
Carbazole	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Chrysene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Semivolatiles (Continued)											
Di-n-butyl phthalate	μg/L	<9.5	<9.6	<9.7	0.56	<9.6	<9.8	<9.5	<9.4		
Di-n-octyl phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Dibenz(a,h)anthracene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Dibenzofuran	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4	7	
Diethyl phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Dimethyl phthalate	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Fluoranthene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Fluorene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Hexachlorobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Hexachlorobutadiene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Hexachlorocyclopentadiene	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Hexachloroethane	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Indeno(1,2,3-cd)pyrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Isophorone	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
N-Nitrosodi-n-propylamine	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
N-Nitrosodiphenylamine	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Naphthalene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Nitrobenzene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Pentachlorophenol	μg/L	<9.5	<9.6	<9.7	<9.6	<9.6	<9.8	<9.5	<9.4		
Phenanthrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Phenol	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
Pyrene	μg/L	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9		
VET											
Dissolved Cyanide	μg/L	2.4	5.4	2.8	3	4.9	4.8	3.8	3.7		
Dissolved Sulfide	mg/L	<3.0	<3.0	<3.0	1.6	<3.0	<3.0	<3.0	<3.0		
Total Suspended Solids	mg/L	16	102	13	62	46	218	7	20		



	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
PCBs					
Aroclor 1016	μg/L	< 0.39	< 0.38		
Aroclor 1221	μg/L	< 0.39	< 0.38		
Aroclor 1232	μg/L	< 0.39	< 0.38		
Aroclor 1242	$\mu$ g/L	< 0.39	< 0.38		
Aroclor 1248	$\mu$ g/L	< 0.39	< 0.38		
Aroclor 1254	μg/L	< 0.39	< 0.38		
Aroclor 1260	g/L	< 0.39	< 0.38		
Pesticides					
4,4-DDD	$\mu$ g/L	< 0.048	< 0.048	0.13	0.001
4,4-DDE	$\mu$ g/L	< 0.048	< 0.048	0.13	0.001
4,4-DDT .	μg/L	< 0.048	< 0.048	0.13	0.001
Aldrin	μg/L	< 0.048	< 0.048		
alpha-BHC	μg/L	< 0.048	< 0.048		
alpha-Chlordane	μg/L	< 0.048	< 0.048		
beta-BHC	μg/L	< 0.048	< 0.048		
delta-BHC	μg/L	< 0.048	< 0.048		
Dieldrin	μg/L	< 0.048	< 0.048	0.71	0.0019
Endosulfan I	μg/L	< 0.048	< 0.048	0.034	0.0087
Endosulfan II	μg/L	< 0.048	< 0.048		
Endosulfan sulfate	μg/L	< 0.048	< 0.048		
Endrin	μg/L	< 0.048	< 0.048	0.037	0.0023
Endrin aldehyde	μg/L	< 0.048	< 0.048		
Endrin ketone	μg/L	< 0.048	< 0.048		
gamma-BHC (Lindane)	μg/L	< 0.048	< 0.048	2	
gamma-Chlordane	μg/L	< 0.048	< 0.048		
Heptachlor	μg/L	< 0.048	< 0.048	0.053	0.0036
Heptachlor epoxide	μg/L	< 0.048	< 0.048		
Methoxychlor	μg/L	< 0.097	< 0.095		0.03
Toxaphene	μg/L	<1.9	<1.9	0.21	0.002
Dissolved Inorganics	I MS D	1.5	1.5	0.21	0.002
Aluminum	μg/L	436	34.6		
Antimony	μg/L	<10.0	<10.0		
Arsenic	μg/L	2.2	<10.0	69	36
Barium	μg/L	31	<200		
Beryllium	μg/L	0.77	0.97	-	
Cadmium	μg/L	<5.0	<5.0	40	8.8
Calcium	μg/L	20400	<5000		0.0
Chromium	μg/L	1.3	<5.0	1100	50
Cobalt	μg/L	0.78	<50.0	1100	50
Copper	μg/L μg/L	<25.0	<25.0	4.8	3.1
Iron	μg/L	630	<100	1.0	J.1
Lead		<3.0	<3.0	210	0 1
	μg/L			210	8.1
Magnesium	μg/L	9070	<5000		
Manganese Mercury	μg/L μg/L	56.2 <0.20	<15.0 <0.20	1.8	0.94



	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Dissolved Inorganics (Continue					
Nickel	μg/L	2.3	<40.0	75	8.2
Potassium	μg/L	2950	< 5000		
Selenium	μg/L	<5.0	<5.0	290	71
Silver	μg/L	<5.0	<5.0	1.9	
Sodium	μg/L	32800	< 5000		
Thallium	μg/L	<10.0	<10.0		
Vanadium	μg/L	2.6	< 50.0		
Zinc	μg/L	11.7	1.4	90	81
Semivolatiles					
1,2,4-Trichlorobenzene	μg/L	<1.9	<1.9		
1,2-Dichlorobenzene	μg/L	<1.9	<1.9		
1,3-Dichlorobenzene	μg/L	<1.9	<1.9		
1,4-Dichlorobenzene	μg/L	<1.9	<1.9		
2,2-oxybis(1-Chloropropane)	μg/L	<1.9	<1.9		
2,4,5-Trichlorophenol	μg/L	<9.6	<9.4		
2,4,6-Trichlorophenol	μg/L	<9.6	<9.4		
2,4-Dichlorophenol	μg/L	<1.9	<1.9		
2,4-Dimethylphenol	μg/L	<9.6	<9.4		
2,4-Dinitrophenol	μg/L	<48	<47		
2,4-Dinitrotoluene	μg/L	<9.6	<9.4		
2,6-Dinitrotoluene	μg/L	<9.6	<9.4		
2-Chloronaphthalene	μg/L	<1.9	<1.9		
2-Chlorophenol	μg/L	<9.6	<9.4	3	
2-Methylnaphthalene	μg/L	<1.9	<1.9		
2-Methylphenol	$\mu g/L$	<9.6	<9.4		
2-Nitroaniline	μg/L	<48	<47		
2-Nitrophenol	μg/L μg/L	<9.6	<9.4		
3,3-Dichlorobenzidine		<9.6	<9.4		
3-Nitroaniline	μg/L	<48	<47		
	μg/L				
4,6-Dinitro-2-methylphenol	μg/L	<48	<47		
4-Bromophenyl phenyl ether	μg/L	<9.6	<9.4		
4-Chloro-3-methylphenol	μg/L	<9.6	<9.4		
4-Chloroaniline	μg/L	<9.6	<9.4		
4-Chlorophenyl phenyl ether	μg/L	<9.6	<9.4		
4-Methylphenol	μg/L	<9.6	<9.4		-
4-Nitroaniline	μg/L	<48	<47		
4-Nitrophenol	μg/L	<48	<47		
Acenaphthene	μg/L	<1.9	<1.9		
Acenaphthylene	μg/L	<1.9	<1.9		
Anthracene	$\mu$ g/L	<1.9	<1.9		
Benzo(a)anthracene	$\mu$ g/L	<1.9	<1.9		
Benzo(a)pyrene	$\mu$ g/L	<1.9	<1.9		
Benzo(b)fluoranthene	$\mu$ g/L	<1.9	<1.9		
Benzo(ghi)perylene	$\mu$ g/L	<1.9	<1.9		
Benzo(k)fluoranthene	$\mu$ g/L	<1.9	<1.9		
bis(2-Chloroethoxy)methane	$\mu$ g/L	<9.6	<9.4		
bis(2-Chloroethyl) ether	$\mu$ g/L	<1.9	<1.9		



	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Semivolatiles (Continued)					
bis(2-Ethylhexyl) phthalate	μg/L	<9.6	<9.4		
Butyl benzyl phthalate	μg/L	<9.6	<9.4		
Carbazole	μg/L	<1.9	<1.9		
Chrysene	μg/L	<1.9	<1.9		
Di-n-butyl phthalate	μg/L	<9.6	<9.4		
Di-n-octyl phthalate	μg/L	<9.6	<9.4		
Dibenz(a,h)anthracene	μg/L	<1.9	<1.9		
Dibenzofuran	μg/L	<9.6	<9.4		
Diethyl phthalate	μg/L	<9.6	<9.4		
Dimethyl phthalate	μg/L	<9.6	<9.4		
Fluoranthene	μg/L	<1.9	<1.9		
Fluorene	μg/L	<1.9	<1.9		
Hexachlorobenzene	μg/L	<1.9	<1.9		
Hexachlorobutadiene	μg/L	<1.9	<1.9	9	
Hexachlorocyclopentadiene	μg/L	<9.6	<9.4		
Hexachloroethane	μg/L	<9.6	<9.4		
Indeno(1,2,3-cd)pyrene	μg/L	<1.9	<1.9		
Isophorone	μg/L	<9.6	<9.4		
N-Nitrosodi-n-propylamine	μg/L	<1.9	<1.9		
N-Nitrosodiphenylamine	μg/L	<1.9	<1.9		
Naphthalene	μg/L	<1.9	<1.9		
Nitrobenzene	μg/L	<1.9	<1.9		
Pentachlorophenol	μg/L	<9.6	<9.4		
Phenanthrene	μg/L	<1.9	<1.9		
Phenol	μg/L	<1.9	<1.9		
Pyrene	μg/L	<1.9	<1.9		
VOCs					
1,1,1-Trichloroethane	μg/L	< 5.0	<5.0		
1,1,2,2-Tetrachloroethane	μg/L	<5.0	< 5.0		
1,1,2-Trichloroethane	μg/L	<5.0	<5.0		
1,1-Dichloroethane	μg/L	<5.0	<5.0		
1,1-Dichloroethene	μg/L	<5.0	<5.0		
1,2-Dichloroethane	μg/L	<5.0	1.7		
1,2-Dichloroethene (total)	μg/L	<10	<10		
1,2-Dichloropropane	μg/L	<5.0	<5.0		
2-Butanone	μg/L	<5.0	<5.0		
2-Hexanone	μg/L	<5.0	<5.0		
4-Methyl-2-pentanone	μg/L	<5.0	<5.0		
Acetone	μg/L	<20	<20		
Benzene	μg/L	<5.0	<5.0		
Bromodichloromethane	μg/L	<5.0	<5.0		
Bromoform	μg/L	<5.0	<5.0		
Bromomethane	μg/L	<5.0	<5.0		
Carbon disulfide	μg/L	<5.0	<5.0		
Carbon tetrachloride	μg/L	<5.0	<5.0		
Chlorobenzene	μg/L	<5.0	<5.0		
Chloroethane	μg/L	<5.0	< 5.0		



	Units	Site Water	Equipment Blank	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
VOCs (Continued)					
Chloroform	μg/L	<5.0	< 5.0		
Chloromethane	μg/L	<5.0	<5.0		
cis-1,3-Dichloropropene	μg/L	<5.0	<5.0		
Dibromochloromethane	μg/L	<5.0	<5.0		
Ethylbenzene	μg/L	<5.0	<5.0		
Methylene chloride	μg/L	<5.0	3.7		
Styrene	μg/L	<5.0	<5.0		
Tetrachloroethene	μg/L	<5.0	<5.0		
Toluene	μg/L	<5.0	<5.0		
trans-1,3-Dichloropropene	μg/L	<5.0	<5.0		
Trichloroethene	μg/L	<5.0	3.1		
Vinyl chloride	μg/L	<5.0	<5.0		
Xylenes (total)	μg/L	<15	<15		
WET					
Cyanide, Total	μg/L	<10.0	<10.0	1.0	
Total Sulfide	mg/L	<3.0	<3.0		

Table 8. Elutriate res from Wilmin			l PCB c	ongener	testing	results	for samp	oles coll	ected
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
Congener Elutriates					<del>,</del>				
PCB 1 (BZ)	ng/L	0.26	0.019	0.012	0.013	0.011	<0.038	0.23	<0.038
PCB 2 (BZ)	ng/L	0.027	0.016	0.018	0.0087	0.0072	0.013	0.068	0.0059
PCB 3 (BZ)	ng/L	0.041	0.018	0.019	0.011	0.0086	0.012	0.091	<0.038
PCB 4 (BZ)	ng/L	2	0.12	0.1	0.12	0.099	0.062	1.9	0.045
PCB 5 (BZ)	ng/L	0.0095	0.0059	0.0042	0.0025	0.003	<0.038	0.071	0.0031
PCB 6 (BZ)	ng/L	0.53	0.042	0.056	0.027	0.024	0.064	0.92	0.015
PCB 7 (BZ)	ng/L	0.037	0.0072	0.017	0.0044	0.0069	0.0097	0.11	0.0033
PCB 8 (BZ)	ng/L	0.77	0.1	0.11	0.067	0.061	0.091	2.1	0.038
PCB 9 (BZ)	ng/L	0.048	0.0051	0.012	0.0056	0.011	0.0075	0.21	0.0062
PCB 10 (BZ)	ng/L	0.059	0.0084	<0.038	0.0074	0.0068	<0.038	0.15	0.0028
PCB 11 (BZ)	ng/L	0.14	0.14	0.13	0.1	0.086	0.16	0.33	0.077
PCB 12 (BZ)	ng/L	0.19	0.038	0.034	0.026	0.016	0.04	0.36	0.016
PCB 13 (BZ)	ng/L	0.19	0.038	0.034	0.026	0.016	0.04	0.36	0.016
PCB 14 (BZ)	ng/L	0.0024	0.0039	<0.038	0.0019	<0.038	0.0035	0.036	0.0022
PCB 15 (BZ)	ng/L	0.35	0.13	0.12	0.086	0.071	0.1	1.2	0.059
PCB 16 (BZ)	ng/L	0.4	0.076	0.11	0.072	0.062	0.088	5.8	0.042
PCB 17 (BZ)	ng/L	1.4	0.16	0.2	0.14	0.11	0.16	7.4	0.073
PCB 18 (BZ)	ng/L	1.4	0.21	0.3	0.19	0.15	0.23	16	0.12
PCB 19 (BZ)	ng/L	0.63	0.073	0.086	0.06	0.057	0.047	1.8	0.037
PCB 20 (BZ)	ng/L	1.5	0.39	0.45	0.31	0.29	0.4	19	0.22
PCB 21 (BZ)	ng/L	0.36	0.095	0.12	0.076	0.062	0.11	5.8	0.057
				f		1		4.1	0.039
PCB 22 (BZ)	ng/L	0.25	0.073	0.076	0.057	0.055	0.069		
PCB 23 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.038
PCB 24 (BZ)	ng/L	0.014	0.0067	<0.038	0.0059	<0.038	<0.038	0.23	<0.038
PCB 25 (BZ)	ng/L	0.55	0.077	0.1	0.062	0.048	0.11	1.5	0.038
PCB 26 (BZ)	ng/L	0.85	0.12	0.14	0.083	0.068	0.15	2.9	0.055
PCB 27 (BZ)	ng/L	0.6	0.064	0.081	0.053	0.037	0.051	1	0.031
PCB 28 (BZ)	ng/L	1.5	0.39	0.45	0.31	0.29	0.4	19	0.22
PCB 29 (BZ)	ng/L	0.85	0.12	0.14	0.083	0.068	0.15	2.9	0.055
PCB 30 (BZ)	ng/L	1.4	0.21	0.3	0.19	0.15	0.23	16	0.12
PCB 31 (BZ)	ng/L	1.3	0.28	0.32	0.22	0.2	0.3	17	0.15
PCB 32 (BZ)	ng/L	0.89	0.13	0.16	0.11	0.09	0.13	5	0.063
PCB 33 (BZ)	ng/L	0.36	0.095	0.12	0.076	0.062	0.11	5.8	0.057
PCB 34 (BZ)	ng/L	0.033	0.0049	0.0063	0.0043	<0.038	0.007	0.33	<0.038
PCB 35 (BZ)	ng/L	0.025	0.016	0.013	0.0093	0.0079	0.02	0.33	0.01
PCB 36 (BZ)	ng/L	<0.038	0.0036	<0.038	0.0035	<0.038	0.0068	<0.19	0.0034
PCB 37 (BZ)	ng/L	0.18	0.11	0.095	0.075	0.067	0.088	2.3	0.051
PCB 38 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	0.029	<0.038
PCB 39 (BZ)	ng/L	0.013	0.01	0.0097	0.0041	0.0053	0.0067	0.23	0.0036
PCB 40 (BZ)	ng/L	1.4	0.45	0.56	0.38	0.36	0.57	16	0.24
PCB 41 (BZ)	ng/L	1.4	0.45	0.56	0.38	0.36	0.57	16	0.24
PCB 42 (BZ)	ng/L	0.63	0.19	0.25	0.19	0.16	0.26	10	0.12
PCB 43 (BZ)	ng/L	0.068	0.022	0.019	0.02	0.019	0.017	1.1	0.01
PCB 44 (BZ)	ng/L	3.2	0.022	1.1	0.82	0.71	0.96	38	0.5
PCB 45 (BZ)	ng/L	0.96	0.21	0.27	0.21	0.18	0.19	7.1	0.12
PCB 46 (BZ)	ng/L	0.24	0.063	0.075	0.052	0.046	0.057	2.5	0.034
PCB 47 (BZ)	ng/L	3.2	0.003	1.1	0.82	0.040	0.057	38	0.5
1.000	<del></del>	0.27	0.087	0.092	0.078	0.71	0.069	6.4	0.038
PCB 48 (BZ)	ng/L		<del></del>	0.092	0.61	0.072	0.83	29	0.35
PCB 49 (BZ)	ng/L	2.7	0.67	U.J.L	V.O.I	U.47	U.03	47	1 0.00

Table 8. (Continued)											
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8		
PCB 50 (BZ)	ng/L	0.83	0.19	0.22	0.16	0.14	0.17	5.7	0.094		
PCB 51 (BZ)	ng/L	0.96	0.21	0.27	0.21	0.18	0.19	7.1	0.12		
PCB 52 (BZ)	ng/L	3.7	1.1	1.4	0.93	0.81	1.2	49	0.56		
PCB 53 (BZ)	ng/L	0.83	0.19	0.22	0.16	0.14	0.17	5.7	0.094		
PCB 54 (BZ)	ng/L	0.076	0.019	0.016	0.011	<0.038	<0.038	<0.19	<0.03		
PCB 55 (BZ)	ng/L	0.028	0.017	0.0081	<0.038	0.0066	<0.038	0.35	0.012		
PCB 56 (BZ)	ng/L	0.47	0.23	0.24	0.19	0.18	0.2	11	0.14		
PCB 57 (BZ)	ng/L	0.03	0.009	0.012	0.0057	0.0058	0.0064	0.14	< 0.03		
PCB 58 (BZ)	ng/L	<0.038	0.0083	<0.038	0.0051	0.0052	0.0095	0.34	<0.03		
PCB 59 (BZ)	ng/L	0.24	0.078	0.098	0.071	0.063	0.087	3.3	0.04		
PCB 60 (BZ)	ng/L	0.12	0.077	0.062	0.057	0.057	0.044	0.71	0.04		
PCB 61 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48		
PCB 62 (BZ)	ng/L	0.24	0.078	0.098	0.071	0.063	0.087	3.3	0.04		
PCB 63 (BZ)	ng/L	0.079	0.026	0.034	0.023	0.024	0.024	1.1	0.013		
PCB 64 (BZ)	ng/L	0.69	0.27	0.32	0.25	0.23	0.28	14	0.16		
PCB 65 (BZ)	ng/L	3.2	0.91	1.1	0.82	0.71	0.96	38	0.5		
PCB 66 (BZ)	ng/L	1.4	0.62	0.69	0.52	0.45	0.56	28	0.34		
PCB 67 (BZ)	ng/L	0.063	0.025	0.028	0.025	0.02	0.021	0.67	0.013		
PCB 68 (BZ)	ng/L	0.079	0.023	0.034	0.022	0.016	0.027	0.6	0.018		
PCB 69 (BZ)	ng/L	2.7	0.67	0.91	0.61	0.49	0.83	29	0.35		
PCB 70 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48		
PCB 71 (BZ)	ng/L	1.4	0.45	0.56	0.38	0.36	0.57	16	0.24		
PCB 72 (BZ)	ng/L	0.11	0.027	0.046	0.028	0.016	0.035	0.95	0.01		
PCB 73 (BZ)	ng/L	0.068	0.022	0.019	0.02	0.019	0.017	1.1	0.01		
PCB 74 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48		
PCB 75 (BZ)	ng/L	0.24	0.078	0.098	0.071	0.063	0.087	3.3	0.04		
PCB 76 (BZ)	ng/L	2.2	0.87	0.98	0.73	0.69	0.77	44	0.48		
PCB 77 (BZ)	ng/L	0.097	0.071	0.067	0.047	0.044	0.058	1.6	0.04		
PCB 78 (BZ)	ng/L	<0.038	< 0.038	<0.038	<0.038	<0.038	<0.038	0.032	<0.03		
PCB 79 (BZ)	ng/L	0.031	0.018	0.016	0.014	0.0097	0.0068	0.38	0.008		
PCB 80 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03		
PCB 81 (BZ)	ng/L	<0.038	0.0066	< 0.038	<0.038	<0.038	<0.038	<0.19	<0.02		
PCB 82 (BZ)	ng/L	0.26	0.16	0.17	0.1	0.13	0.11	3.1	0.1		
PCB 83 (BZ)	ng/L	2.2	1.1	1.4	0.98	0.88	1.1	30	0.74		
PCB 84 (BZ)	ng/L	0.83	0.37	0.44	0.32		0.36	11	<0.03		
PCB 85 (BZ)	ng/L	0.42	0.23	0.25	0.21	0.19	0.17	4.6	0.16		
PCB 86 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.50		
PCB 87 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.50		
PCB 88 (BZ)	ng/L	0.66	0.3	0.4	0.26	0.22	0.4	6.7	<0.0		
PCB 89 (BZ)	ng/L	0.025	<0.038	<0.038	<0.038	0.017	<0.038	0.6	0.01		
PCB 99 (BZ)		3.3	1.6	1.9	1.4	1.3	1.4	42	1.1		
PCB 91 (BZ)	ng/L	0.66	0.3	0.4	0.26	0.22	0.4	6.7	<0.03		
	ng/L			0.45	0.20	0.22	0.4	9.2	0.24		
PCB 92 (BZ)	ng/L	0.73	0.36	<u> </u>	<del></del>	.	0.079	0.68	0.04		
PCB 93 (BZ)	ng/L	0.21	0.076	0.08	0.061	0.041	0.079	0.38	0.04		
PCB 94 (BZ)	ng/L	0.064	0.024	0.026			1.2	36	0.01		
PCB 95 (BZ)	ng/L	2.8	1.2	1.5	1 0.012	0.95			0.7		
PCB 96 (BZ)	ng/L	0.042	0.012	0.014	0.012	0.0096	0.013	0.59			
PCB 97 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56		
0730 00 /1531	ng/L	0.19	0.081	0.11	0.077	0.063	0.076	2	0.05		
PCB 98 (BZ)	<del></del>	<del></del>	<del></del>					\$	0.7		
PCB 98 (BZ) PCB 99 (BZ) PCB 100 (BZ)	ng/L ng/L	2.2 0.21	1.1 0.076	1.4	0.98	0.88	1.1	30 0.68	0.74		

Table 8. (Continued)	······································							-1	
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 102 (BZ)	ng/L	0.19	0.081	0.11	0.077	0.063	0.076	2	0.058
PCB 103 (BZ)	ng/L	0.13	0.043	0.062	0.048	0.039	0.081	1.1	0.027
PCB 104 (BZ)	ng/L	0.016	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.038
PCB 105 (BZ)	ng/L	0.57	0.37	0.35	0.28	0.29	0.22	4.7	0.23
PCB 106 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.038
PCB 107 (BZ)	ng/L	0.23	0.11	0.14	0.11	0.088	0.11	3.2	0.072
PCB 108 (BZ)	ng/L	0.067	0.038	0.046	0.034	0.037	0.027	0.64	0.021
PCB 109 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 110 (BZ)	ng/L	3.2	1.7	2	1.4	1.3	1.4	42	1.2
PCB 111 (BZ)	ng/L	0.013	<0.038	<0.038	0.0068	<0.038	0.0063	0.14	0.0052
PCB 112 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.038
PCB 113 (BZ)	ng/L	3.3	1.6	1.9	1.4	1.3	1.4	42	1.1
PCB 114 (BZ)	ng/L	0.036	0.022	0.021	0.017	0.025	<0.038	0.32	0.016
PCB 115 (BZ)	ng/L	3.2	1.7	2	1.4	1.3	1.4	42	1.2
PCB 116 (BZ)	ng/L	0.42	0.23	0.25	0.21	0.19	0.17	4.6	0.16
PCB 117 (BZ)	ng/L	0.42	0.23	0.25	0.21	0.19	0.17	4.6	0.16
PCB 118 (BZ)	ng/L	2.1	1.1	1.2	0.91	0.86	0.78	28	0.65
PCB 119 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 120 (BZ)	ng/L	0.037	0.019	0.021	0.017	0.012	0.016	0.48	0.013
PCB 121 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.033
PCB 122 (BZ)	ng/L	0.028	0.016	0.013	0.014	0.019	0.014	0.26	0.014
PCB 123 (BZ)	ng/L	0.033	0.027	0.017	0.012	0.011	0.015	0.29	0.015
PCB 124 (BZ)	ng/L	0.067	0.038	0.046	0.034	0.037	0.027	0.64	0.021
PCB 125 (BZ)	ng/L	1.6	0.84	0.96	0.68	0.68	0.65	20	0.56
PCB 126 (BZ)	ng/L	0.0095	0.0054	<0.038	0.004	0.0032	0.0076	0.034	<0.03
PCB 127 (BZ)	ng/L	0.0036	<0.038	< 0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 128 (BZ)	ng/L	0.46	0.32	0.34	0.26	0.27	0.2	3.9	0.2
PCB 129 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 130 (BZ)	ng/L	0.27	0.17	0.18	0.15	0.16	0.14	2.3	0.1
PCB 131 (BZ)	ng/L	0.04	0.028	0.026	0.026	0.025	0.016	0.42	0.015
PCB 132 (BZ)	ng/L	1.1	0.68	0.72	0.58	0.6	0.5	11	0.4
PCB 133 (BZ)	ng/L	0.11	0.074	0.095	0.073	0.076	0.071	0.98	0.053
PCB 134 (BZ)	ng/L	0.21	0.13	0.14	0.12	0.12	0.082	2.1	0.072
PCB 135 (BZ)	ng/L	1.3	0.84	0.94	0.74	0.7	0.73	13	0.57
PCB 136 (BZ)	ng/L	0.5	0.29	0.34	0.25	0.25	0.3	5.1	0.19
PCB 137 (BZ)	ng/L	0.14	0.082	0.093	0.077	0.073	0.043	1.1	0.047
PCB 138 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 139 (BZ)	ng/L	0.073	0.05	0.049	0.05	0.044	0.047	0.77	0.023
PCB 140 (BZ)	ng/L	0.073	0.05	0.049	0.05	0.044	0.047	0.77	0.028
PCB 141 (BZ)	ng/L	0.52	0.34	0.37	0.32	0.32	0.21	3.9	0.19
PCB 141 (BZ)	ng/L	< 0.038	<0.038	< 0.038	<0.038	<0.038	<0.038	< 0.19	<0.03
PCB 142 (BZ)	ng/L	0.038	0.036	0.14	0.12	0.12	0.082	2.1	0.072
PCB 143 (BZ)	ng/L	0.14	0.11	0.098	0.077	0.081	0.12	1	0.06
PCB 144 (BZ) PCB 145 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 145 (BZ)	ng/L	0.038	0.038	0.62	0.038	0.48	0.51	7.6	0.31
		3.1	1.9	2.3	1.9	1.8	1.9	28	1.2
PCB 147 (BZ)	ng/L	<0.038	<0.038	0.028	0.016	0.019	0.024	0.22	0.009
PCB 148 (BZ)	ng/L	3.1	1.9	2.3	1.9	1.8	1.9	28	1.2
PCB 149 (BZ)	ng/L			0.022	0.018	0.013	0.039	0.12	0.01
PCB 150 (BZ)	ng/L	0.02	0.012		0.018	0.013	0.039	13	0.57
PCB 151 (BZ)	ng/L	1.3	0.84	0.94			<0.038	<0.19	<0.03
PCB 152 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	1 <0.038	<u> </u>	<u>  ~0.03</u>

able 8. (Continued)	<del></del>	<del></del>				1			
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 153 (BZ)	ng/L	3.4	2.1	2.7	2.1	2	1.9	29	1.3
PCB 154 (BZ)	ng/L	0.14	0.11	0.14	0.095	0.086	0.17	1.2	$0.07\epsilon$
PCB 155 (BZ)	ng/L	0.016	0.011	0.017	0.0086	<0.038	0.021	0.042	<0.03
PCB 156 (BZ)	ng/L	0.29	0.19	0.21	0.17	0.17	0.13	2.5	0.11
PCB 157 (BZ)	ng/L	0.29	0.19	0.21	0.17	0.17	0.13	2.5	0.11
PCB 158 (BZ)	ng/L	0.29	0.19	0.2	0.17	0.17	0.11	2.4	0.11
PCB 159 (BZ)	ng/L	0.035	0.02	0.029	0.019	0.018	0.017	0.24	0.01:
PCB 160 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 161 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 162 (BZ)	ng/L	0.019	0.019	0.016	0.018	0.015	0.012	0.14	0.013
PCB 163 (BZ)	ng/L	3.4	2.2	2.5	2	2.1	0.89	28	1.4
PCB 164 (BZ)	ng/L	0.26	0.16	0.19	0.15	0.16	0.1	2.4	0.11
PCB 165 (BZ)	ng/L	< 0.038	<0.038	<0.038	0.0049	<0.038	<0.038	< 0.19	<0.03
PCB 166 (BZ)	ng/L	0.46	0.32	0.34	0.26	0.27	0.2	3.9	0.2
PCB 167 (BZ)	ng/L	0.13	0.086	0.09	0.08	0.074	0.058	0.93	0.05
PCB 167 (BZ)	ng/L	3.4	2.1	2.7	2.1	2	1.9	29	1.3
PCB 169 (BZ)	ng/L	0.0057	<0.038	< 0.038	<0.038	0.0061	<0.038	<0.19	<0.03
PCB 170 (BZ)	ng/L	0.84	0.59	0.67	0.55	0.54	0.5	5.4	0.35
PCB 170 (BZ)	ng/L	0.28	0.2	0.25	0.19	0.18	0.2	1.9	0.12
	ng/L	0.28	0.13	0.25	0.12	0.13	0.13	1.2	0.08
PCB 172 (BZ) PCB 173 (BZ)	ng/L	0.18	0.13	0.15	0.12	0.12	0.13	1.9	0.12
		0.28	0.62	0.79	0.62	0.18	0.61	6.5	0.12
PCB 174 (BZ)	ng/L		0.02	0.048	0.02	0.033	0.033	0.28	0.02
PCB 175 (BZ)	ng/L	0.046	1	0.048	0.037	0.033	0.094	0.28	0.02
PCB 176 (BZ)	ng/L	0.13	0.098			0.087	0.034	3.9	0.03
PCB 177 (BZ)	ng/L	0.59	0.43	0.51	0.41	0.38	0.33	1.8	0.23
PCB 178 (BZ)	ng/L	0.29	0.21	0.26	0.22	0.2	0.29	3.2	0.12
PCB 179 (BZ)	ng/L	0.46	0.36	0.41		1.2	1.3	13	0.87
PCB 180 (BZ)	ng/L	2.1	1.3	1.7	1.4		<0.038	0.071	<0.03
PCB 181 (BZ)	ng/L	0.0077	<0.038	<0.038	0.0088	<0.038			0.009
PCB 182 (BZ)	ng/L	0.014	0.016	0.026	0.012	0.018	0.021	0.13 4.4	0.009
PCB 183 (BZ)	ng/L	0.72	0.5	0.61	0.51	0.51	0.54		0.006
PCB 184 (BZ)	ng/L	0.0063	<0.038	0.01	0.0059	0.0089	0.016	<0.19	
PCB 185 (BZ)	ng/L	0.72	0.5	0.61	0.51	0.51	0.54	4.4	0.33
PCB 186 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 187 (BZ)	ng/L	1.5	1.1	1.4	1.1	1 0.006	0.9	9.5	0.68
PCB 188 (BZ)	ng/L	0.018	0.022	0.033	0.026	0.026	0.04	0.048	0.01
PCB 189 (BZ)	ng/L	0.04	0.027	0.029	0.022	0.023	0.026	0.24	0.01
PCB 190 (BZ)	ng/L	0.17	0.12	0.15	0.12	0.12	0.11	1	0.07
PCB 191 (BZ)	ng/L	0.04	0.025	0.025	0.026	0.025	0.024	0.3	0.01
PCB 192 (BZ)	ng/L	<0.038	<0.038	<0.038	<0.038	<0.038	<0.038	<0.19	<0.03
PCB 193 (BZ)	ng/L	2.1	1.3	1.7	1.4	1.2	1.3	13	0.87
PCB 194 (BZ)	ng/L	0.64	0.48	0.58	0.49	0.46	0.48	3.2	0.3
PCB 195 (BZ)	ng/L	0.19	0.15	0.19	0.16	0.15	0.15	1	0.1
PCB 196 (BZ)	ng/L	0.43	0.36	0.48	0.42	0.36	0.49	2	0.29
PCB 197 (BZ)	ng/L	0.045	0.048	0.058	0.041	0.039	0.074	0.16	0.03
PCB 198 (BZ)	ng/L	1.4	1.2	1.6	1.4	1.2	1.5	6.4	0.98
PCB 199 (BZ)	ng/L	0.071	0.061	0.071	0.071	0.048	0.079	0.39	0.04
PCB 200 (BZ)	ng/L	0.14	0.16	0.19	0.16	0.15	0.24	0.63	0.12
PCB 201 (BZ)	ng/L	1.4	1.2	1.6	1.4	1.2	1.5	6.4	0.98
PCB 202 (BZ)	ng/L	0.44	0.49	0.57	0.51	0.47	0.55	2	0.30
PCB 203 (BZ)	ng/L	0.59	0.51	0.69	0.61	0.56	0.57	2.8	0.42
PCB 204 (BZ)	ng/L	<0.038	< 0.038	<0.038	<0.038	<0.038	0.011	< 0.19	<0.03



Table 8. (Continued)	)								
	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8
PCB 205 (BZ)	ng/L	0.035	0.038	0.047	0.042	0.041	0.034	0.18	0.018
PCB 206 (BZ)	ng/L	3.8	5	6.3	5.6	5	5.8	13	3.4
PCB 207 (BZ)	ng/L	0.34	0.42	0.5	0.43	0.39	0.45	1.1	0.28
PCB 208 (BZ)	ng/L	1.7	2.3	2.9	2.6	2.4	2.7	6.4	1.7
PCB 209 (BZ)	ng/L	8.5	8	9.5	7.5	6.6	7.9	32	5

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	DNREC Marine Acute Criteria	DNREC Marine Chronic Criteria
Congener Elutriates											
Monochlorobiphenyl	ng/L	0.33	0.052	0.049	0.032	0.027	0.025	0.39	0.0059		
Dichlorobiphenyl	ng/L	4.1	0.6	0.58	0.45	0.39	0.53	7.4	0.27		
Trichlorobiphenyl	ng/L	10	1.9	2.3	1.5	1.3	2	92	1		
Tetrachlorobiphenyl	ng/L	20	6.2	7.5	5.5	4.8	6.4	270	3.4		
Pentachlorobiphenyl	ng/L	20	9.8	12	8.3	7.8	8.5	250	6		
Hexachlorobiphenyl	ng/L	17	11	12	9.9	9.8	8.3	150	6.6		
Heptachlorobiphenyl	ng/L	8.3	5.8	7.2	5.7	5.4	5.3	54	3.7		
Octachlorobiphenyl	ng/L	4	3.5	4.5	3.9	3.5	4.1	19	2.7		
Nonachlorobiphenyl	ng/L	5.9	7.8	9.7	8.7	7.8	8.9	21	5.4		
Decachlorobiphenyl	ng/L	8.5	8	9.5	7.5	6.6	7.9	32	5		
Total	ng/L	98	55	65	51	47	52	896	34		30

Table 10. TCLP testing results for sediment samples collected from Wilmington Harbor. Values highlighted in yellow are over regulatory limits.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	TCLP Regulator Limit
Inorganics										
Arsenic	mg/L	0.16	0.16	0.14	0.11	0.12	0.13	0.16	0.12	5
Barium	mg/L	0.48	0.49	0.36	0.47	0.43	0.34	0.21	0.31	100
Cadmium	mg/L	0.0054	0.005	0.0056	0.0065	0.0057	0.005	< 0.10	0.0054	1
Chromium	mg/L	0.0053	0.0054	0.004	0.0062	0.0043	0.0052	0.0043	0.0041	5
Lead	mg/L	0.061	0.027	0.03	0.022	0.014	0.024	0.053	0.02	5
Mercury	mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.2
Selenium	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	<0.25	1
Silver	mg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5
Semi-volatile Organics										
1,4-Dichlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	7.5
2,4,5-TP (Silvex)	mg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	1
2,4,5-Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	400
2,4,6-Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
2,4-Dinitrotoluene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
2,4-D	mg/L	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	10
3-Methylphenol & 4-Methylphenol	mg/L	NA								
Chlordane (technical)	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.03
Cresols (total)	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	200
Endrin	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.02
Heptachlor epoxide	mg/L	< 0.00050	< 0.00050	0.0002	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Heptachlor	mg/L	< 0.00050	< 0.00050	0.00016	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Hexachlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
Hexachlorobutadiene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.5
Hexachloroethane	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	3
Lindane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.4
Methoxychlor	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	10
Nitrobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
Pentachlorophenol	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	100
Pyridine	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	5
Toxaphene	mg/L	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.5
Volatile Organics										
1,1-Dichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
1,2-Dichloroethane	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
2-Butanone	mg/L	< 0.20	< 0.20	< 0.20	1.6	< 0.20	< 0.20	< 0.20	< 0.20	200

Table 10. TCLP testing results for sediment samples collected from Wilmington Harbor. Values highlighted in yellow are over regulatory limits.

	Units	WH1	WH2	WH3	WH4	WH5	WH6	WH7	WH8	TCLP Regulator Limit
Volatile Onorganics (Continu	ied)									
Benzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Carbon tetrachloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Chlorobenzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	100
Chloroform	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	6
Tetrachloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
Trichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Vinyl chloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.2



## SOIL SAMPLING RESULTS FROM WILMINGTON HARBOR SOUTH CDF



	l in yellov	v are o						oor CDF. Va while values	in green
	Units	WU1	WU2	WU3	WU4	WU5	WU6	DNREC Non-critical Unrestricted	DNREC Non-critica Restricted
PCBs									
Aroclor 1016	μg/kg	<33	<35	<34	<36	<32	<31	5000	82000
Aroclor 1221	μg/kg	<33	<35	<34	<36	<32	<31	300	3000
Aroclor 1232	μg/kg	<33	<35	<34	<36	<32	<31	300	3000
Aroclor 1242	μg/kg	<33	<35	<34	<36	<32	<31	300	3000
Aroclor 1248	μg/kg	13	17	15	14	13	15	300	3000
Aroclor 1254	μg/kg	18	48	33	31	44	43	300	3000
Aroclor 1260	μg/kg	21	28	19	18	26	25	300	3000
Pesticides	1700	1., 5.0							
4,4-DDD	μg/kg	7.4	11	6.1	5.3	8.1	6.6	3,000	24,000
4,4-DDE	μg/kg	6.5	10	5.1	5	7.6	5.7	2,000	17,000
4,4-DDT	μg/kg	<3.4	9.1	<3.5	<3.6	<3.3	<3.2	2,000	17,000
Aldrin	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	40	300
alpha-BHC	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	100	900
alpha-Chlordane	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	200	
beta-BHC	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	400	3,000
delta-BHC	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2		2,000
Dieldrin	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	40	400
Endosulfan I	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	47,000	1,200,000
Endosulfan II	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	47,000	1,200,000
Endosulfan sulfate	μg/kg	<3.4	0.8	<3.5	<3.6	0.55	<3.2	47,000	1,200,000
Endrin	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	2,000	61,000
Endrin aldehyde	μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	2,000	61,000
Endrin ketone	μg/kg μg/kg	1.3	1.7	<3.5	0.73	1.6	0.9	2,000	01,000
gamma-BHC (Lindane)	μg/kg μg/kg	<3.4	<3.6	<3.5	0.75	<3.3	0.71	500	4,000
gamma-Chlordane	μg/kg μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	500	4,000
Heptachlor	μg/kg μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	100	1,000
Heptachlor epoxide	μg/kg μg/kg	<3.4	<3.6	<3.5	<3.6	<3.3	<3.2	70	600
								39,000	1,000,000
Methoxychlor	μg/kg	<6.6	<7.0	<6.7	<7.0	<6.4	<6.2		
Toxaphene	μg/kg	<130	<140	<140	<140	<130	<130	600	5,000
Inorganics									
Aluminum						20,100		7,800	200,000
Antimony	mg/kg	0.24	0.28	0.22	0.32	0.2	0.21	3	82
Arsenic	mg/kg	12.3	12.6	11.8	13	14.4	11.8	0.4	4
Barium	mg/kg	114	132	127	145	131	135	550	14,000
Beryllium	mg/kg	1.3	1.4	1.3	1.5	1.4	1.3	16	410
Cadmium	mg/kg	0.26	0.42	0.36	0.39	0.26	0.43	4	100
Calcium	mg/kg	3530	3750	3540	3580	3370	3320		
Chromium	mg/kg	51.6	55	53.2	60	61.4	53.6	270	610
Cobalt	mg/kg	15.4	16.4	15.6	16.7	17.3	15.8	470	12,000
Copper	mg/kg	36.9	41.3	39.8	45.2	42.7	41.4	310	8,200
Iron	mg/kg					37,000		2,300	61,000
Lead	mg/kg	52	57.1	55.8	63.3	59.6	57.9	400	1,000
Magnesium	mg/kg	6020	6240	5920	6430	6660	5780		
Manganese	mg/kg	1,520	1,540	1,390	1,380	1,500	1,270	160	4,100
Mercury	mg/kg	0.27	0.29	0.26	0.32	0.31	0.29	10	610



								DNREC	DNREC
		1						Non-critical	Non-critic
	Units	WU1	WU2	WU3	WU4	WU5	WU6	Unrestricted	Restricted
Inorganics (Continued)									
Nickel	mg/kg	29.8	31.9	30.6	33.3	33.4	30.4	160	4,100
Potassium	mg/kg		2380	2300	2520	2760	2050		
Selenium	mg/kg		< 0.53	< 0.51	< 0.53	< 0.49	< 0.47	39	1,000
Silver	mg/kg	0.72	0.73	0.7	0.74	0.79	0.66	39	1,000
Sodium	mg/kg	635	648	605	711	568	471		
Thallium	mg/kg	0.72	0.71	<1.0	<1.1	0.57	0.69	18	220
Vanadium	mg/kg	47.1	50.3	48.8	54.8	57.6	48.5	55	1,400
Zinc	mg/kg	237	275	270	302	271	278	2,300	61,000
Semivolatiles									
1,2,4-Trichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
1,2-Dichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
1,3-Dichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
1,4-Dichlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
2,2-oxybis(1-Chloropropane)	μg/kg	<67	<71	<68	<71	<65	<63		
2,4,5-Trichlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
2,4,6-Trichlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
2,4-Dichlorophenol	μg/kg	<67	<71	<68	<71	<65	<63		
2,4-Dimethylphenol	μg/kg	<330	<350	<340	<350	<320	<310		
2,4-Dinitrophenol	μg/kg		<1800	<1700	<1800	<1700	<1600		
2,4-Dinitrotoluene	μg/kg	<330	<350	<340	<350	<320	<310		
2,6-Dinitrotoluene	μg/kg	<330	<350	<340	<350	<320	<310		
2-Chloronaphthalene	μg/kg	<67	<71	<68	<71	<65	<63		
2-Chlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
2-Methylnaphthalene	μg/kg	47	43	44	24	30	21		
2-Methylphenol	μg/kg	<330	<350	<340	<350	<320	<310		
2-Nitroaniline	μg/kg	<1700	<1800	<1700	<1800	<1700	<1600		
2-Nitrophenol	μg/kg	<330	<350	<340	<350	<320	<310		
3,3-Dichlorobenzidine	μg/kg	<330	<350	<340	<350	<320	<310		
3-Nitroaniline	μg/kg	<1700	<1800	<1700	<1800	<1700	<1600		
4,6-Dinitro-2-methylphenol	μg/kg	<1700	<1800	<1700	<1800		<1600		
4-Bromophenyl phenyl ether	μg/kg	<330	<350	<340	<350	<320	<310		
4-Chloro-3-methylphenol		<330	<350		<350		<310		
4-Chloroaniline	μg/kg	<330	<350	<340	<350	<320	<310		
4-Chlorophenyl phenyl ether	μg/kg	<330	<350	<340	<350	<320	<310		
4-Methylphenol	μg/kg	45	<350	<340	<350	<320	<310		
4-Nitroaniline	μg/kg	<1700	<1800	<1700	<1800		<1600		
4-Nitrophenol		<1700	<1800	<1700	<1800	<1700	<1600		_
Acenaphthene	μg/kg	<67	<71	21	<71	<65	<63	470,000	5,000,000
Acenaphthylene	μg/kg	<67	<71	40	<71	<65	<63	470,000	3,000,000
	μg/kg		47		49		39	1,000,000	5,000,000
Anthracene Renzo(a)anthracene	μg/kg	52		57		36			
Benzo(a)anthracene	μg/kg	150	140	150	100	100	120	900	8,000
Benzo(a)pyrene	μg/kg	130	140	150	100	83	140	90	800
Benzo(b)fluoranthene	μg/kg	260	270	200	130	130	150	900	8,000
Benzo(ghi)perylene	μg/kg	270	130	120	100	71	110	0.000	-0.55
Benzo(k)fluoranthene	μg/kg	<67	<71	94	89	<65	95	9,000	78,000
bis(2-Chloroethoxy)methane	μg/kg	<330	<350	<340	<350	<320	<310		
bis(2-Chloroethyl) ether	μg/kg	<67	<71	<68	<71	<65	<63		
bis(2-Ethylhexyl) phthalate	μg/kg	680	270	230	170	140	160		



								DNREC	DNREC
	XT	*****	TTITIO	******	**!***	ANINIM	TAIRT	Non-critical	Non-critic
	Units	WU1	WU2	WU3	WU4	WU5	WU6	Unrestricted	Restricte
Semivolatiles (Continued)	1 7	-220	1 .0.50	210	2.50		1 242		
Butyl benzyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Carbazole	μg/kg	<67	<71	<68	<71	<65	<63		
Chrysene	μg/kg	150	180	220	150	110	170	87,000	780,00
Di-n-butyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Di-n-octyl phthalate	μg/kg	130	<350	<340	<350	<320	<310		
Dibenz(a,h)anthracene	μg/kg	<67	57	<68	<71	<65	32	90	80
Dibenzofuran	μg/kg	25	<350	25	<350	<320	<310		
Diethyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Dimethyl phthalate	μg/kg	<330	<350	<340	<350	<320	<310		
Fluoranthene	μg/kg	240	290	280	200	160	230	310,000	5,000,00
Fluorene	μg/kg	<67	<71	<68	<71	<65	<63	310,000	5,000,00
Hexachlorobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
Hexachlorobutadiene	μg/kg	<67	<71	<68	<71	<65	<63		
Hexachlorocyclopentadiene	μg/kg	<330	<350	<340	<350	<320	<310	1	
Hexachloroethane	μg/kg	<330	<350	<340	<350	<320	<310		
Indeno(1,2,3-cd)pyrene	μg/kg	130	130	120	87	79	110	900	8,00
Isophorone	μg/kg	<330	<350	<340	<350	<320	<310		
N-Nitrosodi-n-propylamine	μg/kg	<67	<71	<68	<71	<65	<63		
N-Nitrosodiphenylamine	μg/kg	<67	<71	<68	<71	<65	<63		
Naphthalene	μg/kg	85	<71	<68	<71	<65	59	160,000	4,100,00
Nitrobenzene	μg/kg	<67	<71	<68	<71	<65	<63		
Pentachlorophenol	μg/kg	<330	<350	<340	<350	<320	<310		
Phenanthrene	μg/kg	130	140	140	94	78	100	1,000,000	5,000,00
Phenol	μg/kg	250	210	180	180	96	140		
Pyrene	μg/kg	220	240	230	170	130	170		
'OCs									
1,1,1-Trichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	160,000	4,100,00
1,1,2,2-Tetrachloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	600	29,00
1,1,2-Trichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	1,000	100,00
1,1-Dichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	780,000	5,000,00
1,1-Dichloroethene	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
1,2-Dichloroethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
1,2-Dichloroethene (total)	μg/kg	<20	<21	<20	<21	<18	<19	400	63,00
1,2-Dichloropropane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	9,000	84,00
2-Butanone	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
2-Hexanone	μg/kg	<10	<11	<10	<11	<8.8	<9.3	310,000	5,000,00
4-Methyl-2-pentanone	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
Acetone	μg/kg	<40	<43	<41	<43	<35	<37	780,000	5,000,00
Benzene	μg/kg	<10	<11	<10	<11	<8.8	<9.3	800	200,00
Bromodichloromethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	10,000	92,00
Bromoform	μg/kg	<10	<11	<10	<11	<8.8	<9.3	53,000	720,00
Bromomethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	11,000	290,00
Carbon disulfide	μg/kg	<10	<11	<10	<11	<8.8	<9.3	780,000	5,000,00
Carbon tetrachloride	μg/kg μg/kg	<10	<11	<10	<11	<8.8	<9.3	300	44,00
Chlorobenzene	μg/kg μg/kg	<10	<11	<10	<11	<8.8	<9.3	130,000	4,100,00
Chloroethane	μg/kg μg/kg	<10	<11	<10	<11		<9.3		
Chloroform						<8.8		220,000	2,000,00
Chloromethane	μg/kg μg/kg	<10 <10	<11	<10	<11	<8.8 <8.8	<9.3 <9.3	300 49,000	940,000



	Units	WU1	WU2	WU3	WU4	WU5	WU6	DNREC Non-critical Unrestricted	DNREC Non-critical Restricted
VOCs (Continued)									
cis-1,3-Dichloropropene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	100	32,000
Dibromochloromethane	μg/kg	<10	<11	<10	<11	<8.8	<9.3	8,000	68,000
Ethylbenzene	μg/kg	<10	<11	<10	<11	<8.8	<9.3	400,000	5,000,000
Methylene chloride	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	13,000	760,000
Styrene	μg/kg	<10	<11	<10	<11	<8.8	<9.3	1,000,000	5,000,000
Tetrachloroethene	μg/kg	<10	<11	<10	<11	<8.8	<9.3		
Toluene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	650,000	5,000,000
trans-1,3-Dichloropropene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	100	32,000
Trichloroethene	μg/kg	<10	<11	<10	<11	<8.8>	<9.3		
Vinyl chloride	μg/kg	<10	<11	<10	<11	<8.8>	<9.3	30	3,000
Xylenes (total)	μg/kg	<30	<32	<31	<32	<27	<28	420,000	5,000,000
Cyanide, Total	mg/kg	0.32	0.42	0.34	0.5	0.88	0.61		
Total Sulfide	mg/kg	80.1	68.1	32.6	119	28.3	<56.0		

Table 12. PCB congener	testing re	esults for	samples co	ollected fr	om Wilmi	ington Harb	or CDF
	Units	WU1	WU2	WU3	WU4	WU5	WU6
PCB 1 (BZ)	ng/g	0.056	0.062	0.065	0.049	0.051	0.1
PCB 2 (BZ)	ng/g	0.059	0.06	0.12	0.059	0.066	0.063
PCB 3 (BZ)	ng/g	0.085	0.084	0.099	0.076	0.087	0.083
PCB 4 (BZ)	ng/g	0.16	0.19	0.21	0.14	0.2	0.22
PCB 5 (BZ)	ng/g	0.0098	0.013	< 0.020	0.0084	0.012	0.0044
PCB 6 (BZ)	ng/g	0.093	0.13	0.12	0.093	0.13	0.11
PCB 7 (BZ)	ng/g	0.015	0.02	0.022	0.011	0.017	0.014
PCB 8 (BZ)	ng/g	0.25	0.34	0.29	0.26	0.25	0.3
PCB 9 (BZ)	ng/g	0.023	0.02	0.026	0.017	0.022	0.018
PCB 10 (BZ)	ng/g	0.011	0.014	0.012	0.0072	0.011	0.012
PCB 11 (BZ)	ng/g	0.32	0.35	0.39	0.36	0.49	0.3
PCB 12 (BZ)	ng/g	0.15	0.17	0.16	0.15	0.16	0.16
PCB 13 (BZ)	ng/g	0.15	0.17	0.16	0.15	0.16	0.16
PCB 14 (BZ)	ng/g	0.0051	0.0049	< 0.020	0.0064	0.0099	<0.019
PCB 15 (BZ)	ng/g	0.6	0.64	0.57	0.6	0.54	0.58
PCB 16 (BZ)	ng/g	0.14	0.2	0.18	0.15	0.14	0.17
PCB 17 (BZ)	ng/g	0.27	0.37	0.33	0.27	0.29	0.36
PCB 18 (BZ)	ng/g	0.43	0.49	0.46	0.39	0.42	0.46
PCB 19 (BZ)	ng/g	0.13	0.17	0.11	0.14	0.13	0.18
PCB 20 (BZ)	ng/g	1.2	1.4	1.3	1.3	11	1.3
PCB 21 (BZ)	ng/g	0.26	0.32	0.3	0.28	0.21	0.28
PCB 22 (BZ)	ng/g	0.22	0.24	0.24	0.21	0.19	0.23
PCB 23 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	< 0.018	<0.019
PCB 24 (BZ)	ng/g	0.0075	0.0098	<0.020	0.01	<0.018	0.011
PCB 25 (BZ)	ng/g	0.18	0.24	0.21	0.19	0.16	0.22
PCB 26 (BZ)	ng/g	0.25	0.34	0.31	0.29	0.24	0.34
PCB 27 (BZ)	ng/g	0.12	0.19	0.13	0.13	0.16	0.21
PCB 28 (BZ)	ng/g	1.2	1.4	1.3	1.3	1	1.3
PCB 29 (BZ)	ng/g	0.25	0.34	0.31	0.29	0.24	0.34
PCB 30 (BZ)	ng/g	0.43	0.49	0.46	0.39	0.42	0.46
PCB 31 (BZ)	ng/g	0.77	0.89	0.81	0.82	0.68	0.84
PCB 32 (BZ)	ng/g	0.27	0.36	0.36	0.3	<0.018	0.36
PCB 33 (BZ)	ng/g	0.26	0.32	0.3	0.28	0.21	0.28
PCB 34 (BZ)	ng/g	0.012	0.014	<0.020	0.011	0.0073	0.01
PCB 35 (BZ)	ng/g	0.082	0.084	0.077	0.064	0.086	0.071
PCB 36 (BZ)	ng/g	0.017	0.013	0.011	0.006	0.0082	0.0062
PCB 37 (BZ)	ng/g	0.44	0.48	0.46	0.46	0.43	0.47
PCB 38 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	<0.018	<0.019
PCB 39 (BZ)	ng/g	0.016	0.014	<0.020	0.013	0.012	0.015
PCB 40 (BZ)	ng/g	0.9	1.1	0.96	0.92	0.83	11
PCB 41 (BZ)	ng/g	0.9	1.1	0.96	0.92	0.83	1
PCB 42 (BZ)	ng/g	0.43	0.5	0.41	0.44	0.4	0.45
PCB 43 (BZ)	ng/g	0.053	0.066	0.048	0.043	0.039	0.044
PCB 44 (BZ)	ng/g	1.7	2.2	1.9	1.8	1.6	2.2
PCB 45 (BZ)	ng/g	0.39	0.53	0.45	0.43	0.38	0.53
PCB 46 (BZ)	ng/g	0.11	0.15	0.11	0.12	0.11	0.13
PCB 47 (BZ)	ng/g	1.7	2.2	1.9	1.8	1.6	2.2
PCB 48 (BZ)	ng/g	0.17	0.2	0.17	0.16	0.16	0.16
PCB 49 (BZ)	ng/g	1.2	1.7	1.4	1.4	1.3	1.7
PCB 50 (BZ)	ng/g	0.31	0.44	0.35	0.35	0.31	0.42
PCB 51 (BZ)	ng/g	0.39	0.53	0.45	0.43	0.38	0.53
PCB 52 (BZ)	ng/g	2	2.7	2.2	2.3	2	2.7
PCB 53 (BZ)	ng/g	0.31	0.44	0.35	0.35	0.31	0.42

	Units	WU1	WU2	WU3	WU4	WU5	WU6
PCB 54 (BZ)	ng/g	0.033	0.043	0.03	0.033	0.021	0.038
PCB 55 (BZ)	ng/g	0.037	0.039	0.032	0.028	< 0.018	< 0.019
PCB 56 (BZ)	ng/g	0.59	0.67	0.63	0.61	0.56	0.63
PCB 57 (BZ)	ng/g	0.016	0.017	0.019	0.012	0.0092	0.033
PCB 58 (BZ)	ng/g	0.018	0.021	0.08	0.014	0.012	0.013
PCB 59 (BZ)	ng/g	0.15	0.2	0.18	0.16	0.13	0.17
PCB 60 (BZ)	ng/g	0.2	0.23	0.2	0.21	0.16	0.21
PCB 61 (BZ)	ng/g	2.2	2.6	2.4	2.3	2.1	2.5
PCB 62 (BZ)	ng/g	0.15	0.2	0.18	0.16	0.13	0.17
PCB 63 (BZ)	ng/g	0.056	0.073	0.071	0.059	0.054	0.06
PCB 64 (BZ)	ng/g	0.58	0.7	0.67	0.6	0.54	0.61
PCB 65 (BZ)	ng/g	1.7	2.2	1.9	1.8	1.6	2.2
PCB 66 (BZ)	ng/g	1.6	1.9	1.6	1.7	1.5	1.8
PCB 67 (BZ)	ng/g	0.058	0.065	0.049	0.054	0.05	0.058
PCB 68 (BZ)	ng/g	0.039	0.067	0.052	0.048	0.044	0.063
PCB 69 (BZ)	ng/g	1.2	1.7	1.4	1.4	1.3	1.7
PCB 70 (BZ)	ng/g	2.2	2.6	2.4	2.3	2.1	2.5
PCB 71 (BZ)	ng/g	0.9	1.1	0.96	0.92	0.83	1
PCB 72 (BZ)	ng/g	0.051	0.086	0.051	0.06	0.059	0.077
PCB 73 (BZ)	ng/g	0.053	0.066	0.048	0.043	0.039	0.044
PCB 74 (BZ)	ng/g	2.2	2.6	2.4	2,3	2.1	2.5
PCB 75 (BZ)	ng/g	0.15	0.2	0.18	0.16	0.13	0.17
PCB 76 (BZ)	ng/g	2.2	2.6	2.4	2.3	2.1	2.5
PCB 77 (BZ)	ng/g	0.26	0.27	0.24	0.26	0.26	0.24
PCB 78 (BZ)	ng/g	<0.020	<0.021	< 0.020	< 0.021	< 0.018	< 0.019
PCB 79 (BZ)	ng/g	0.029	0.031	0.036	0.034	0.031	0.035
PCB 80 (BZ)	ng/g	< 0.020	< 0.021	<0.020	< 0.021	<0.018	< 0.01
PCB 81 (BZ)	ng/g	0.0067	0.0066	<0.020	0.0066	0.0028	0.006
PCB 82 (BZ)	пд/д	0.36	0.42	0.33	0.4	0.33	0.43
PCB 83 (BZ)	ng/g	2.3	2.8	2.2	2.6	< 0.018	2.8
PCB 84 (BZ)	ng/g	0.78	1	0.84	0.95	0.81	1
PCB 85 (BZ)	ng/g	0.53	0.64	0.52	0.57	0.49	0.63
PCB 86 (BZ)	ng/g	1.9	2.3	1.9	2	1.9	2.3
PCB 87 (BZ)	ng/g	1.9	2.3	1.9	2	1.9	2.3
PCB 88 (BZ)	ng/g	0.57	0.74	0.59	0.64	0.59	0.72
PCB 89 (BZ)	ng/g	0.035	0.031	0.046	0.038	0.03	0.041
PCB 90 (BZ)	ng/g_	3.3	4	3.2	3.7	3.3	4.2
PCB 91 (BZ)	ng/g	0.57	0.74	0.59	0.64	0.59	0.72
PCB 92 (BZ)	ng/g	0.68	0.85	0.69	0.81	0.7	1.1
PCB 93 (BZ)	ng/g	0.15	0.17	0.16	0.19	0.13	0.24
PCB 94 (BZ)	ng/g	0.042	0.056	<0.020	0.048	0.037	0.076
PCB 95 (BZ)	ng/g	2.4	3.2	2.5	2.8	2.4	3
PCB 96 (BZ)	ng/g	0.034	0.033	<0.020	0.038	0.032	0.037
PCB 97 (BZ)	пд/д	1.9	2.3	1.9	2	1.9	2.3
PCB 98 (BZ)	ng/g	0.16	0.23	0.16	0.17	0.15	0.27
PCB 99 (BZ)	ng/g	2.3	2.8	2.2	2.6	<0.018	2.8
PCB 100 (BZ)	ng/g	0.15	0.17	0.16	0.19	0.13	0.24
PCB 101 (BZ)	ng/g	3.3	4	3.2	3.7	3.3	4.2
PCB 102 (BZ)	ng/g	0.16	0.23	0.16	0.17	0.15	0.27
PCB 103 (BZ)	ng/g	0.094	0.12	0.075	0.1	0.088	0.13
PCB 104 (BZ)	ng/g	<0.020	0.0068	<0.020	0.0088	<0.018	0.009
PCB 105 (BZ)	ng/g	0.96	1	0.9	1	0.88	1.1
PCB 106 (BZ)	ng/g	<0.020	< 0.021	<0.020	< 0.021	<0.018	<0.01
B 107 (BZ)/109 (TUPA	C) ng/g	0.28	0.32	0.3	0.3	0.28	0.33

	¥1-:40	WUI	WU2	WU3	WU4	WU5	WU6
	Units		W				*****
PCB 108 (BZ)/107 (IUPAC)	ng/g	0.11	0.12	0.11	0.1	0.088	0.12 2.3
PCB 109 (BZ)/108 (IUPAC)	ng/g	1.9	2.3	1.9	2	1.9	4.8
PCB 110 (BZ)	ng/g	3.9	4.8	3.8	4.4	0.013	0.012
PCB 111 (BZ)	ng/g	0.014	0.015	<0.020	0.0093 <0.021	1.7	< 0.012
PCB 112 (BZ)	ng/g	<0.020	<0.021	<0.020	3.7	3.3	4.2
PCB 113 (BZ)	ng/g	3.3	4	3.2		0.044	0.047
PCB 114 (BZ)	ng/g	0.049	0.065	0.044	0.053	4	4.8
PCB 115 (BZ)	ng/g	3.9	4.8	3.8	4.4	0.49	0.63
PCB 116 (BZ)	ng/g	0.53	0.64	0.52	0.57	0.49	0.63
PCB 117 (BZ)	ng/g	0.53	0.64	0.52	0.57	2.7	3.2
PCB 118 (BZ)	ng/g	2.8	3.2	2.6	2.9	1.9	2.3
PCB 119 (BZ)	ng/g	1.9	2.3	1.9		0.034	0.044
PCB 120 (BZ)	ng/g	0.039	0.04	0.041	0.04 <0.021	<0.034	< 0.019
PCB 121 (BZ)	ng/g	<0.020	<0.021	<0.020	0.044	0.04	0.019
PCB 122 (BZ)	ng/g	0.053	0.057	0.056	0.044	0.049	0.043
PCB 123 (BZ)	ng/g	0.029	0.05	0.044		0.049	0.032
PCB 124 (BZ)	ng/g	0.11	0.12	0.11	0.1	1.9	2.3
PCB 125 (BZ)	ng/g	1.9	2.3	1.9	0.02	0.014	0.016
PCB 126 (BZ)	ng/g	0.016	0.014	0.029	0.02	<0.014	< 0.010
PCB 127 (BZ)	ng/g	<0.020	0.0077	<0.020	0.65	0.63	0.019
PCB 128 (BZ)	ng/g	0.68	0.74	0.65	4.6	4.3	5.1
PCB 129 (BZ)	ng/g	4.5	5	4.5		0.3	0.36
PCB 130 (BZ)	ng/g	0.31	0.36	0.32	0.31		0.051
PCB 131 (BZ)	ng/g	0.054	0.054	0.074	0.045	0.04 1.3	1.6
PCB 132 (BZ)	ng/g	1.4	1.6	1.5	1.4 0.13	0.12	0.17
PCB 133 (BZ)	ng/g	0.15	0.16	0.16		0.12	0.17
PCB 134 (BZ)	ng/g	0.26	0.31	0.34	0.26	1.9	2.3
PCB 135 (BZ)	ng/g	1.9	2.2	1.7	1.9	0.67	0.77
PCB 136 (BZ)	ng/g	0.64	0.74	0.6	0.7	0.07	0.17
PCB 137 (BZ)	ng/g	0.18	0.14	0.13	0.14	4.3	5.1
PCB 138 (BZ)	ng/g	4.5	5	4.5	4.6	0.077	0.092
PCB 139 (BZ)	ng/g	0.082	0.11	0.079	0.084		0.092
PCB 140 (BZ)	ng/g	0.082	0.11	0.079	0.084	0.077 0.64	0.092
PCB 141 (BZ)	ng/g	0.67	0.76	0.59	0.67	<0.018	< 0.019
PCB 142 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021		0.29
PCB 143 (BZ)	ng/g	0.26	0.31	0.34	0.26	0.24	0.29
PCB 144 (BZ)	ng/g	0.19	0.25	0.17	0.2	0.18	< 0.019
PCB 145 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	<0.018	1.1
PCB 146 (BZ)	ng/g	0.91	1	1	0.92	0.9	4.2
PCB 147 (BZ)	ng/g	3.7	4.3	4	3.8	3.5	0.049
PCB 148 (BZ)	ng/g	0.043	0.028	0.031	0.027	0.032	4.2
PCB 149 (BZ)	ng/g	3.7	4.3	4	3.8	3.5	
PCB 150 (BZ)	ng/g	0.044	0.041	0.037	0.033	0.047	0.042 2.3
PCB 151 (BZ)	ng/g	1.9	2.2	1.7	1.9	1.9	
PCB 152 (BZ)	ng/g	<0.020	<0.021	<0.020	<0.021	<0.018	<0.019
PCB 153 (BZ)	ng/g	4	4.4	3.9	4.1	3.8	4.4
PCB 154 (BZ)	пд/д	0.23	0.25	0.17	0.2	0.22	0.29
PCB 155 (BZ)	ng/g	0.017	0.016	<0.020	0.015	0.014	0.0091
PCB 156 (BZ)	ng/g	0.44	0.45	0.36	0.43	0.39	0.47
PCB 157 (BZ)	ng/g	0.44	0.45	0.36	0.43	0.39	0.47
PCB 158 (BZ)	ng/g	0.39	0.39	0.35	0.38	0.34	0.4
PCB 159 (BZ)	ng/g	0.034	0.029	0.032	0.033	0.028	0.027
PCB 160 (BZ)	ng/g	4.5	5	4.5	4.6	4.3	5.1
PCB 161 (BZ)	ng/g_	<0.020	<0.021	<0.020	<0.021	<0.018	<0.019

Table 12. (Continued)							
	Units	WU1	WU2	WU3	WU4	WU5	WU6
PCB 162 (BZ)	ng/g	0.028	0.025	0.046	0.032	0.031	0.031
PCB 163 (BZ)	ng/g	4.5	5	4.5	4.6	4.3	5.1
PCB 164 (BZ)	ng/g	0.33	0.38	0.36	0.35	0.32	0.37
PCB 165 (BZ)	ng/g	< 0.020	0.017	<0.020	< 0.021	< 0.018	0.011
PCB 166 (BZ)	ng/g	0.68	0.74	0.65	0.65	0.63	0.71
PCB 167 (BZ)	ng/g	0.17	0.18	0.15	0.17	0.17	0.19
PCB 168 (BZ)	ng/g	4	4.4	3.9	4.1	3.8	4.4
PCB 169 (BZ)	ng/g	0.0053	0.003	<0.020	0.0041	0.0075	0.016
PCB 170 (BZ)	ng/g	1.1	1.2	1	1.2	1.1	1.2
PCB 171 (BZ)	ng/g	0.36	0.39	0.37	0.38	0.34	0.38
PCB 172 (BZ)	ng/g	0.21	0.25	0.27	0.24	0.22	0.24
PCB 173 (BZ)	ng/g	0.36	0.39	0.37	0.38	0.34	0.38
PCB 174 (BZ)	ng/g	1.2	1.4	1.1	1.3	1.2	1.3
PCB 175 (BZ)	ng/g	0.058	0.066	0.094	0.057	0.055	0.065
PCB 176 (BZ)	ng/g	0.17	0.18	0.16	0.16	0.15	0.17
PCB 177 (BZ)	ng/g	0.78	0.89	0.8	0.85	0.75	0.88
PCB 178 (BZ)	ng/g	0.35	0.39	0.44	0.38	0.35	0.4
PCB 179 (BZ)	ng/g	0.61	0.73	0.65	0.64	0.6	0.68
PCB 180 (BZ)	ng/g	2.4	2.7	2.2	2.8	2.5	2.8
PCB 181 (BZ)	ng/g	0.01	0.01	<0.020	0.014	0.0095	0.0088
PCB 182 (BZ)	ng/g	<0.020	< 0.021	0.047	< 0.021	0.035	< 0.019
PCB 183 (BZ)	ng/g	0.85	0.96	0.92	0.94	0.8	0.93
PCB 184 (BZ)	ng/g	0.013	0.013	< 0.020	0.013	0.015	0.0097
PCB 185 (BZ)	ng/g	0.85	0.96	0.92	0.94	0.8	0.93
PCB 186 (BZ)	ng/g	< 0.020	< 0.021	<0.020	< 0.021	< 0.018	< 0.019
PCB 187 (BZ)	ng/g	1.9	2.1	1.8	2	1.9	2
PCB 188 (BZ)	ng/g	0.041	0.04	0.046	0.037	0.041	0.031
PCB 189 (BZ)	ng/g	0.047	0.056	0.047	0.052	0.048	0.044
PCB 190 (BZ)	ng/g	0.22	0.24	0.14	0.25	0.21	0.25
PCB 191 (BZ)	ng/g	0.057	0.061	0.062	0.052	0.038	0.051
PCB 192 (BZ)	ng/g	< 0.020	<0.021	<0.020	< 0.021	< 0.018	< 0.019
PCB 193 (BZ)	ng/g	2.4	2.7	2.2	2.8	2.5	2.8
PCB 194 (BZ)	ng/g	0.79	0.87	1.3	0.89	0.78	0.87
PCB 195 (BZ)	ng/g	0.26	0.29	0.4	0.29	0.23	0.3
PCB 196 (BZ)	ng/g	0.63	0.65	1.1	0.69	0.66	0.63
PCB 197 (BZ)	ng/g	0.073	0.078	0.23	0.065	0.08	0.076
PCB 198 (BZ)	ng/g	2.2	2.1	2.4	2.4	2.2	2
PCB 199 (BZ)/200 (IUPAC)	ng/g	0.1	0.12	0.13	0.12	0.11	0.11
PCB 200 (BZ)/201 (IUPAC)	ng/g	0.25	0.26	0.76	0.28	0.26	0.22
PCB 201 (BZ)/199 (IUPAC)	ng/g	2.2	2.1	2,4	2.4	2.2	2
PCB 202 (BZ)	ng/g	0.71	0.75	1	0.8	0.76	0.67
PCB 203 (BZ)	ng/g	0.88	0.97	0.62	1	0.9	0.89
PCB 204 (BZ)	ng/g	0.011	0.01	<0.020	0.0088	0.0085	< 0.019
PCB 205 (BZ)	лg/g	0.055	0.054	<0.020	0.063	0.044	0.051
PCB 206 (BZ)	ng/g	7.4	7.7	8.1	8.5	7.7	6.3
PCB 207 (BZ)	ng/g	0.59	0.65	2	0.74	0.68	0.57
PCB 208 (BZ)	ng/g	3.3	3.4	4.5	3.9	3.5	2.7

Table 13. PCB congener totals testing results for samples collected from Wilmington Harbor CDF. Values highlighted in yellow are over DNREC unrestricted criteria while values in green are over restricted levels.

	Units	WU1	WU2	WU3	WU4	WU5	WU6	DNREC Non-critical Unrestricted	DNREC Non-critica Restricted
Monochlorobiphenyl	ng/g	0.2	0.21	0.28	0.18	0.2	0.25		
Dichlorobiphenyl	ng/g	1.6	1.9	1.8	1.7	1.9	1.7		
Trichlorobiphenyl	ng/g	4.8	5.8	5.3	5	4.2	5.6		
Tetrachlorobiphenyl	ng/g	13	17	14	14	13	16		
Pentachlorobiphenyl	ng/g	21	26	21	24	21	27		
Hexachlorobiphenyl	ng/g	21	24	21	22	20	24		
Heptachlorobiphenyl	ng/g	10	12	10	11	10	12		
Octachlorobiphenyl	ng/g	5.9	6.1	8	6.6	6.1	5.8		1
Nonachlorobiphenyl	ng/g	11	12	15	13	12	9.6		
Decachlorobiphenyl	ng/g	12	16	12	16	15	14		
Total		101	121	108	113	103	116	1000	1000

	Units	WU1	WU2	WU3	WU4	WU5	WU6	TCLP Regulatory Limit
Inorganics								
Arsenic	mg/L	0.17	0.15	0.18	0.18	0.17	< 0.50	5
Barium	mg/L	0.37	0.45	0.48	0.52	0.33	<10.0	100
Cadmium	mg/L	0.0047	0.0047	0.0074	0.0062	0.0028	< 0.10	1
Chromium	mg/L	0.0024	0.0034	0.004	0.0039	0.0036	< 0.50	5
Lead	mg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5
Mercury	mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		0.2
Selenium	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	1
Silver	mg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5
Semivolatile Organics								
1,4Dichlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	7.5
2,4,5TP (Silvex)	mg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	1
2,4,5Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	400
2,4,6Trichlorophenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
2,4Dinitrotoluene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
2,4D	mg/L	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	10
3Methylphenol & 4Methylphenol	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Chlordane (technical)	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.03
Cresols (total)	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	200
Endrin	mg/L		< 0.00050					
Heptachlor epoxide	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Heptachlor	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.008
Hexachlorobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.13
Hexachlorobutadiene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.5
Hexachloroethane	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	3
Lindane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.4
Methoxychlor	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	10
Nitrobenzene	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2
Pentachlorophenol	mg/L	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	100
Pyridine	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	5
Toxaphene	mg/L	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.5
Volatile Organics								
1,1Dichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
1,2Dichloroethane	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
2Butanone	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	200
Benzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Carbon tetrachloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Chlorobenzene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	100
Chloroform	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	6
Tetrachloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.7
Trichloroethene	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.5
Vinyl chloride	mg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.2

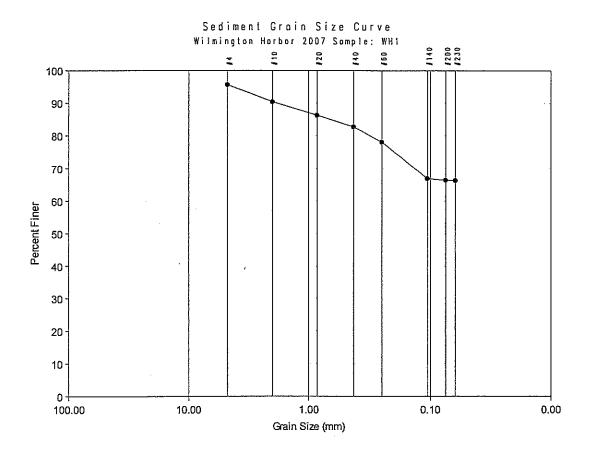


## APPENDIX A

Severn Trent Laboratory Analysis Certificates



## APPENDIX B


**Grain Size and TOC Results** 



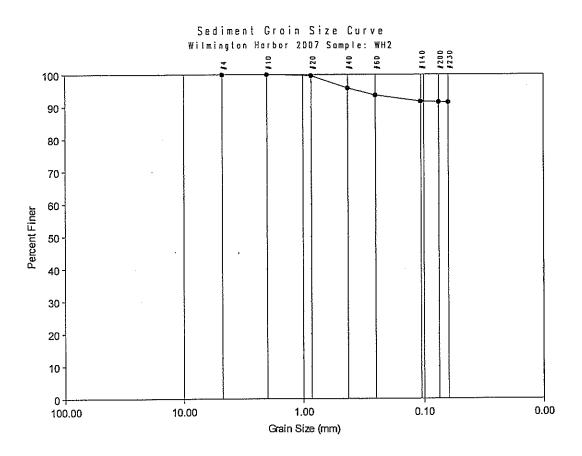
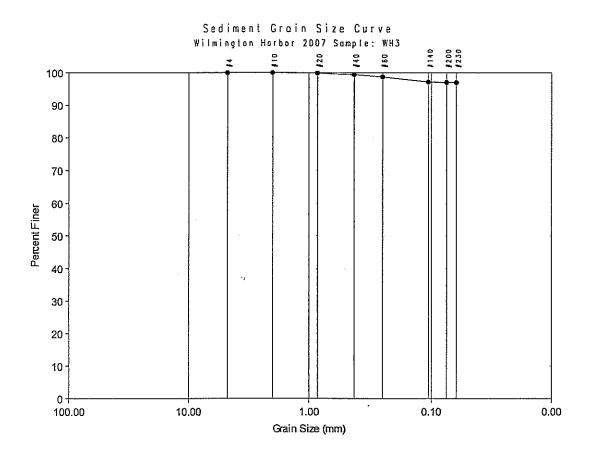
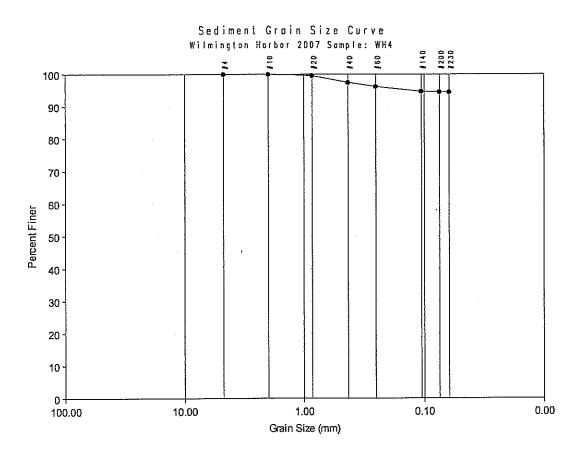

Table B-1. Total organic carbon and percent silt/clay for the eight cores collected at Wilmington Harbor					
Station	Gravel (%)	Sand (%)	Silt/clay (%)	TOC (%)	
WH1	9.6	24.0	66.45	13.7	
WH2	0.0	8.50	91.50	9.01	
WH3	0.0	2.98	97.02	8.35	
WH4	0.0	5.47	94.53	8.40	
WH5	0.03	2.44	97.53	8.70	
WH6	0.0	3.32	96.68	8.74	
WH7	5.5	9.62	84.85	5.39	
WH8	0.0	3.65	96.35	7.87	

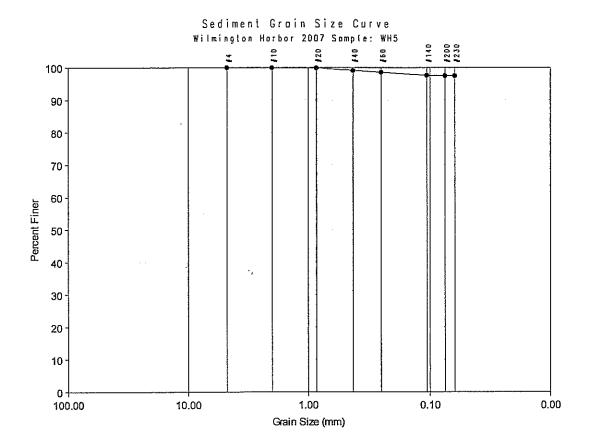
Table B-2. Total organic carbon and percent silt/clay for the six cores collected at Wilmington Harbor CDF					
Station	Gravel (%)	Sand (%)	Silt/clay (%)	TOC (%)	
WU1	0.0	2.53	97.47	7.94	
WU2	0.0	3.31	96.69	8.81	
WU3	0.15	3.13	96.73	8.22	
WU4	0.0	4.32	95.68	10.00	
WU5	0.0	3.05	96.95	7.33	
WU6	0.0	8.31	91.69	9.52	



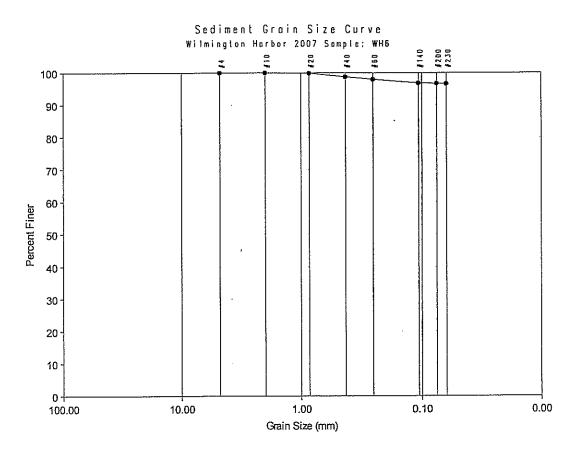


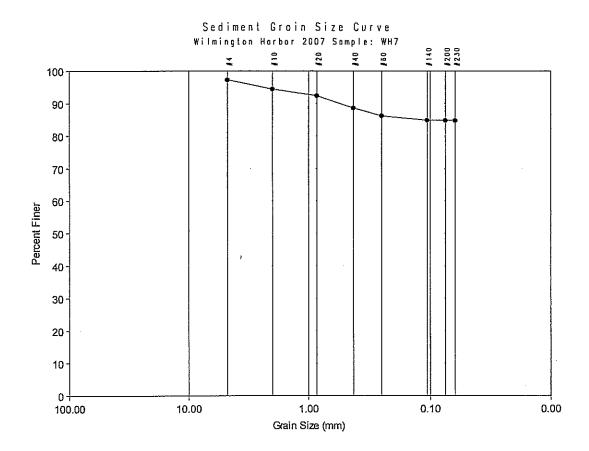


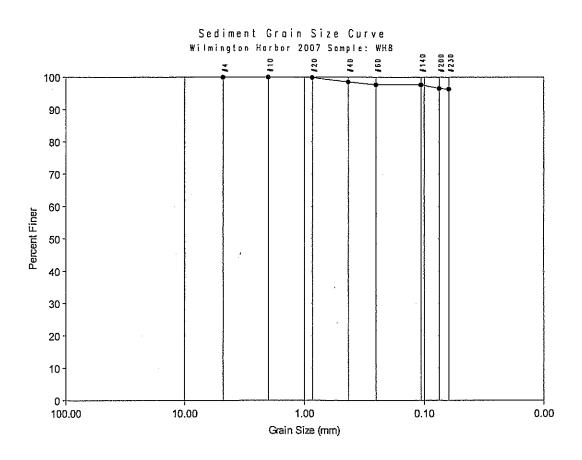


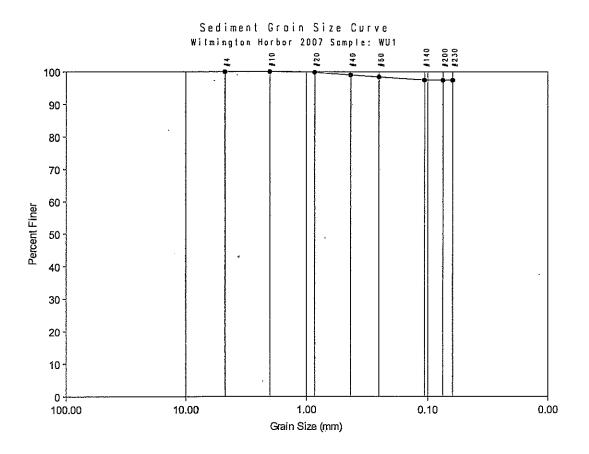




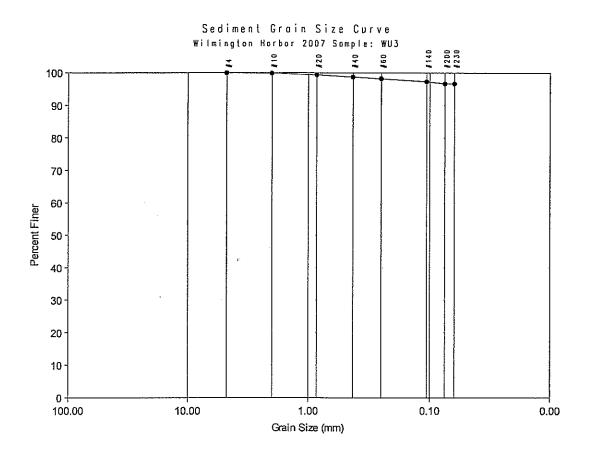


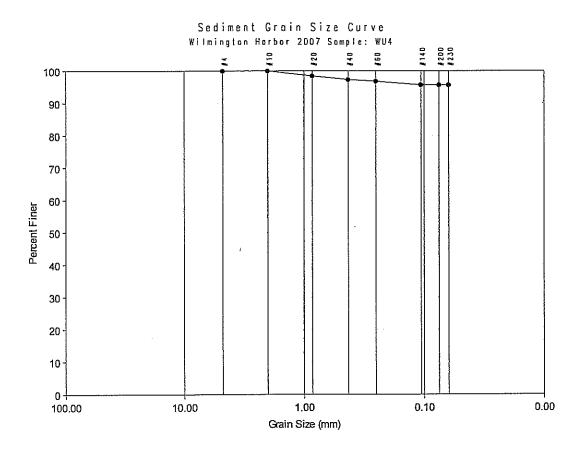























#### APPENDIX C

Core Logs

Springize THE Spring Coolers Wilmington

#### Sediment Project

Stati	OD 7F:	NA	<del></del>	•		. <b>G</b> O	re#s		Name and Associated Street Str
Date	: 6/6	· , <del>20</del> 6	72008			Tid	e:		
Start	t Time: <u>/</u>	<u> 3 :15</u>	-			We	ather: <u>OC</u>	^	
Com	posite T	ime:	<u>:</u>						
Fight Sai	t di				,	-			
	mple #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
20/3		43'	1716			2	eng.	\$480°	
b -27			1900				20	•	_
			137		·		-3	42"	
Com	ıments\ l	Descriptio	ns:24"	•	( 10 ft. ca	ores)	. 3	2	Depths measured in fact
Se	dime	1.4 m.	TO the M.	ndely , At 501	ne detritus é	alittle	Sandy -		
Stat	tion at	r con "	name.	of Drainge	ne detritus é	100/5 B	button s	Court	
Gre	- 4. · · ·		6	74'	•		-		·
			35%				. 5	35 V	

C

•	6 , <del>200</del> :					e:			
Start Time:	å, å,				10/0				
		•		Weather: OC					
Composite	Time:	4	į		•		•		
Sample #	Station Depth	every tim doppe Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments	
,	36 ,S	4.5	***	_	5	7	4,5		
	·	2 F '11	,		•	C.		•	
	•	244				en.			
Comments'	\ Descriptio	ns.40 "		( 10 ft.	cores)	<del>\</del> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Dapiha measured in fee	
Sedhaen	r - E E-	c montan	<u> </u>	. 10. 4400000000000000000000000000000000			· · · · · · · · · · · · · · · · · · ·		
	Sample #	Sample Station # Depth 36S  Comments\ Description	Sample Station Sample # Depth Length  36 . S 4.5	Sample Station Sample # Depth Length Latitude  36.5 4.5  2.5 4  2.4 4  Comments\ Descriptions 4.5	Sample Station Sample # Depth Length Latitude Longitude  36.5 4.5 2.5 1 2.4 1  Comments\ Descriptions 40 16 16 16 16 16 16 16 16 16 16 16 16 16	Sample Station Sample Target # Depth Length Latitude Longitude Depth  36 .5 14.5 5  2.5 14.5  Comments\ Descriptions 40 4 (10 ft. cores)	Sample Station Sample Length Latitude Longitude Depth Depth  36.5 4.5 1.5 5 7  2.5 5 5  Comments\ Descriptions 4.5 (10 ft. cores)	Sample Station Sample Target Pen. Core Depth Dep	

#### Sediment Project

	Station #:_	3/3/3 6 , <del>20</del> 1			Core #'s					
1 JF		, , <u>z</u> u					,	A CONTRACTOR OF THE PARTY OF TH	wy pro do whyddio goddddog blor bllwido.	
1	Composite	Time;	T T T T T T T T T T T T T T T T T T T			. —				
	Sample #	Station Depth	Sample Length	Latitude	Longitude ·	Target Depth	Pen. Depth	Core	Comment	
្នាង ទូស្		4.3	71			27 y	8	124		
							÷,	2.		
; 1							1/2	 		
		A Description		same John i	(10年.	(42\$)	ر ا الله الله	22 W 21 Y	Copita rear-rad in i	
•	<u> </u>		eterroridation in the		<i>V</i> 3		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································		
		1								
	Talakakar (C. Prilitar) (C. Pr	eservensi <del>ngs, prosent des</del> de SC <del>III et de S</del> A	<del>ngan agamatan pagasa pamanang agamatan</del> a bagi		150					

5

# Sediment Project

	Station #:_	WHH				Co	re#'s		
	Date:	6/6, <del>20</del> 0	17208			Tid	e:		
	Start Time:	: 10:40	-			We	eather:_ <i>()</i> (	Hy. Inse	
	Composite	Time:	<u>:</u>		•	,			
	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
10,38.50	ir.	36	3.5			if	10		
10,38.50 40:54 3	3		1, 5			ŕ	Oł,		
			1.5				9		
•	Comments	s\ Descriptio	ons:		( 10 ft.	cores)	10		Depths measured in feet
*	Sedina	cay - 1	TIME M	ud					
e		•	ons: 14 / 19 / 16 / 16 / 16 / 16 / 16 / 16 / 16						•
			1811	<u> </u>	*	,			·

10:54

#### **Sediment Project**

	Station #:_	WHS_				Co	re#'s		
	Date: 6	/G , <del>-20</del> 1	372008			Tid	e:		
	Start Time:	•	 		•	We	ather: ½	Cloudy	fe
	Composite	Time:	- 1						
						- 		,	
	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
13.55		40	4.3			4	9.	4.3	
			18"				8	46"	
			251		<u>.</u>			Ø.	
	Comments	\ Descriptle	ons:25		( 10 ft. c	cores)	9	64	Daphs measured in lea
	redio	rien t	Fine m	itel					

C-7

		Station #:_	WH6	· · · · · · · · · · · · · · · · · · ·		Core #'s						
		Date: 6	, <del>20(</del>	7 <i>00</i> 8			Tid	e:				
		Start Time:		-			We	ather: 🤼	42 clour	dy		
		Composite	Time:	<del>-:</del>								
		Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	· Pen. Depth	Core Depth	Comments		
Ç-%	14,53,48	3	43	50 1			2	9	52.19			
				481				Ċ	68"			
				25"								
		Comments	s\ Descriptio	ons 30 %	• .	· (10 ft.	cores)			Dapthe measured in fee		
		Sectime	'nt -	Fine m	welst.				· • • • • • • • • • • • • • • • • • • •			
				:	F							
				•					,			
						1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1						
	•						- 494 H		:			
							A.		•			
						Nie.				•		
						الزغ	35° '					

# Sediment Project

	Station #:_	WHZ				Coi	re #'s	* .	
	Date:	, <del>20</del> 0	972008			Tid	e;		
	Start Time	·	_	•		We	ather: 1/2	Cloudy	<u> </u>
<b>3</b> 0	Composite	Time:	* ************************************						<del></del>
	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core "Depth	Comments
15,24, 25		511	780			21	5^.	71	
			51				3,	511	
			6411			<u> </u>	£.f.	674	
	Comments	\ Description	ons:	¥	" ( 10 ft, c	cores)		·	Dapiha measurad in ia
	Concre.	mudé	Same 5	and foramt	,,,,				
		,	• -	5- F.W	-	•		•	
								4	
			in the same	,	: .	<del></del>			*****

Ċ

# **Sediment Project**

	Station #:_	WH8				Co	re:#'s		
	Date: 6	∕€ , <del>'20</del> 1	372008			Tic	le:		
	Start Time:	:;	<b></b> ·			We	eather: 🏄 🐴	Er boundary	·
	Composite	Time:	•			<del></del>	•	· · · · · · · · · · · · · · · · · · ·	
«	Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
16.41.11		411	613		•	5'	arity 1	61	and the second s
		, ,	525				الم الم	54	
			53"		-		8	55"	
	Comments	\ Descriptio	ons:		. (10	Off. cores)		•	Depths measured in feet
Echana	7 100	MM 42	0		•				
					· · · · · · · · · · · · · · · · · · ·			ź:	
, ¯*.		ķ	All esc	. i.	·				
	•	, <u>.</u>	,	· •		ge by	`~ <b>v</b>	** ·	
	·	•	·	**************************************		#	* 2	. 2	Server and Control of the Control of

C-10

# Sediment Project

Date: 6/ Start Time:	<u>8:37</u>	am	Sampl	t faken from points	We	e: <u>*</u> eather: <u>/</u>	SUMMY	in.
Composite	Time:	<u> </u>	1			•		
Sample · #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
	**************************************		39042.354	075 031 734		4		a'\
				1				
Comments	\ Descriptio	ons:		•	cores)			Depths measured in feet
Sedimo	nt type	1. Silt	1 Clary	A. J. J.		<del></del>		

_

39

Station #:_	<u>WHU 2</u>	<del></del>			Co	ore #'s	· · · · · · · · · · · · · · · · · · ·	
Date: 6/	12- ; <del>20</del> 0	7720C8	بند ،	1234	Tio	de:		
Start Time:	9:35	-	Sample	uken 1234 way point	W	Weather: Sunny		
Composite	Time:	·			-			
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			39° 42, 122	w 75°31.425		4'		
Comments	\ Descriptio	ons:		( 10 fl.	cores)			Depths measured in feet
Sedime	MT 5%.	Ity cr	candy prant	t butter				
14:1	mater	at 3f	eanny prome + depth of	sampling		•		-

#### Wilmington CDF Sediment Project

Station #:_	WU3				Co	re #'s		· 
Date: 6	12 , 200	372008	1896+ to et	•	·Tla	ê:		
Start Time:	10:16	<del>-</del>	1874		We	eather:_ <i>F.l.</i>	7-	
Composite	Time:	·:	open are	ea in mildle of phraj	-			
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			390 42,368	75° 31,479		4'		
.6.								Depihs measured in fee
Comments		ons:		· (10 ft, ¢	ores)	•		C18-bit in bitoetabil and its road
						•		
		-		•	_			•
	-				-			

713

38° 39' 42,642 75° 78' 31.314

#### Wilmington

Station #:_					, Co	re #'s		
Date: 6 /	2. , <del>20</del> 0	72008	·	•	Tid	e:		
Start Time:	11:15				We	eather:		
Composite	Time:			-				
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments
			39° 42,640	75° 31.368		4		
Comments	•	ons: Next 1	o moat	( 10 ft	. cores)			Deplijs meastred in (eel
		ilty Clay	ŕ	ling in hole				

# C-13

#### Wilmington

Date: 5/12 : <del>2007</del> 2008 Start Time: <u>/2 :35</u>				Tide:					
Composite	Time:	-		ς	<del>V 31 1 M</del>				
Sample ∦	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments	
			39042424	75 8 31.188		Ų.#			
							W. 1985	Likerii in pii apperature energi erre alaadami erre	
							<u> </u>	Ospica messived in test	
Comments	1 Description	ons:		1 u u i	മഭേ)				
50 127	4 1 ² -	5,740	Clay					er	
			1			•			
	· · · · · · · · · · · · · · · · · · ·	acting that, also reason and days were expensed by the	· "************************************	<del>11-25-1</del>					
Approxity to present the first house house from the									

# C-16

#### Wilmington

Station #:_	1/{/ 5	2		Core #'s						
Date: 6	2 ,20	<del>77-</del> 608		Fide:						
Start Time: 11 53				Weather:						
Composite	Time:	4			<del></del>			Moderate Communication and American Communication and American		
Sample #	Station Depth	Sample Length	Latitude	Longitude	Target Depth	Pen. Depth	Core Depth	Comments		
			390 42.623	75° 31.06 Z		*/3				
						1				
				- CANAL CONTROL OF A STATE OF THE STATE OF T		and the state of t				
Comments\ Descriptions:				Captes massured later 4 10 ft. corres)						
	,		hinter about	+ 3 100 het	•					
	_; >4 }	b/Clay								
	,,,,	7								
	***************************************	11, 1447/1945/4						——————————————————————————————————————		