A paradigm shift: Rethinking *Phragmites* in the context of potential positive ecosystem services now and in the near future

Thomas J Mozdzer

Professor & Chair of Biology, Bryn Mawr College Research Associate, Smithsonian Environmental Research Center

Thomas J. Mozdzer Bryn Mawr College

Grace Cott University College Dublin

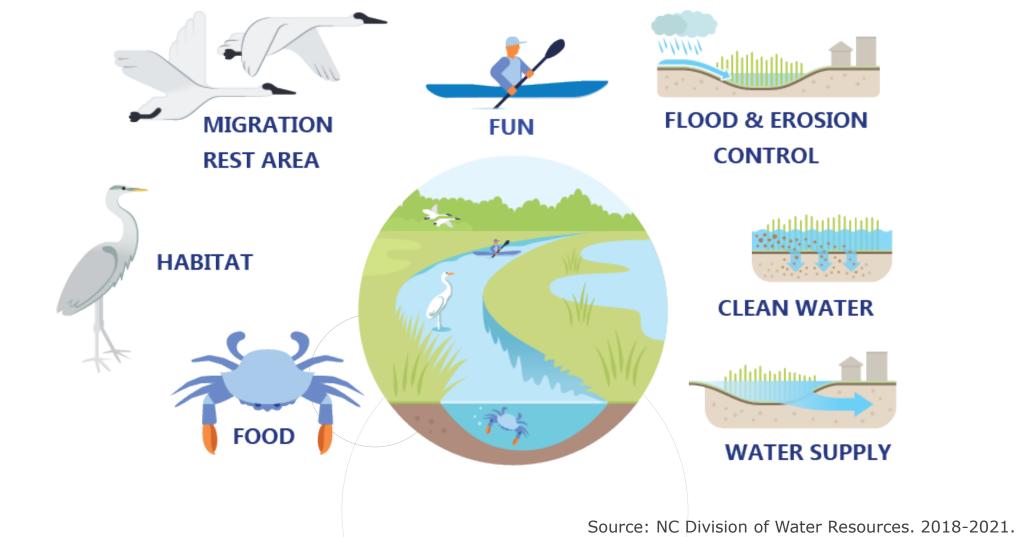
Logan Shepard Bryn Mawr College

Frances Romero

Bryn Mawr College

Judith Weis

Rutgers University Newark

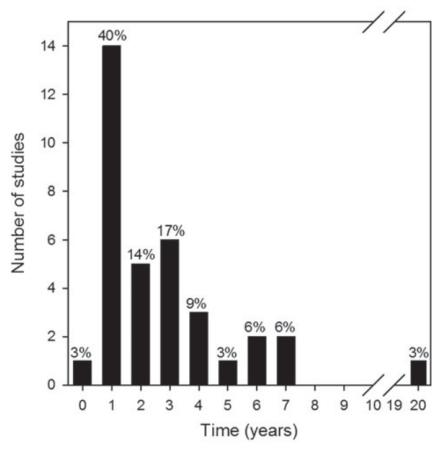

Erik Kiviat

Hudsonia

 $\bullet \bullet \bullet \bullet$

Coastal wetlands provide many ecosystem services

North Carolina Wetlands Information. https://www.ncwetlands.org.



Lessons learned from 50 years of *Phragmites* SPECIAL ISSUE: Phragmites australis in North America and Europe management

Phragmites australis management in the United States: 40 years of methods and outcomes

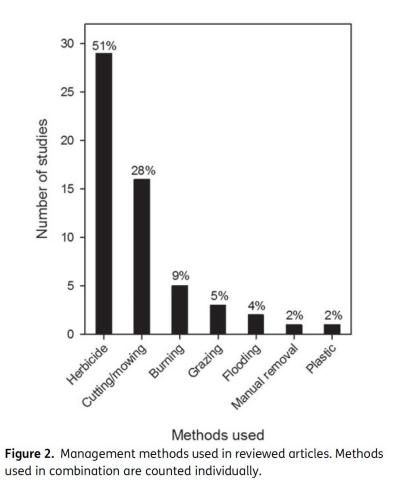
Invited Review

Eric L. G. Hazelton^{1,2*†}, Thomas J. Mozdzer^{2,3,†}, David M. Burdick⁴, Karin M. Kettenring^{1,2} and

Studies do not last long enough

Figure 1. Duration of studies included in review. One study conducted a single survey and is denoted with the time = 0 bar.

Hazelton, Mozdzer et al 2014



Invited Review

SPECIAL ISSUE: Phragmites australis in North America and Europe

Phragmites australis management in the United States: 40 years of methods and outcomes

Eric L. G. Hazelton^{1,2*}[†], Thomas J. Mozdzer^{2,3,†}, David M. Burdick⁴, Karin M. Kettenring^{1,2} and Dennis F. Whigham²

Lessons learned from 50 years of *Phragmites* management

- Studies do not last long enough
- Herbicides are most common approach & are effective at removing *Phragmites*
- Little information on "restored" plant communities

Hazelton, Mozdzer et al 2014

Received: 23 June 2022 Revised: 15 September 2022 Accepted: 16 September 2022

DOI: 10.1002/ecs2.4392

ARTICLE Coastal and Marine Ecology ECOSPHERE AN ESA OPEN ACCESS JOURNAL

Landscape and site factors drive invasive *Phragmites* management and native plant recovery across Chesapeake Bay wetlands

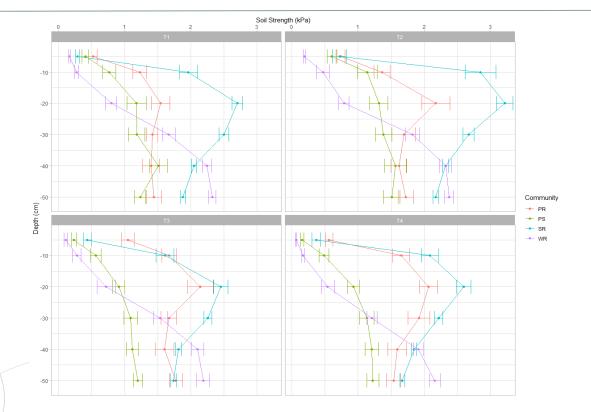
Christine B. Rohal¹[®] | Eric L. G. Hazelton^{1,2}[®] | Eliza K. McFarland² | Rebekah Downard¹ | Melissa K. McCormick²[®] | Dennis F. Whigham²[®] | Karin M. Kettenring¹[®]

Received: 27 September 2019 Accepted: 5 October 2019

DOI: 10.1002/ece3.5820

ORIGINAL RESEARCH

Ecology and Evolution WILEY


Invasive *Phragmites australis* management outcomes and native plant recovery are context dependent

Christine B. Rohal^{1,2} | Chad Cranney^{1,3} | Eric L. G. Hazelton¹ | Karin M. Kettenring¹

Restored plant communities do not resemble reference sites after 5 years of management

In my own recent research at Heinz NWR

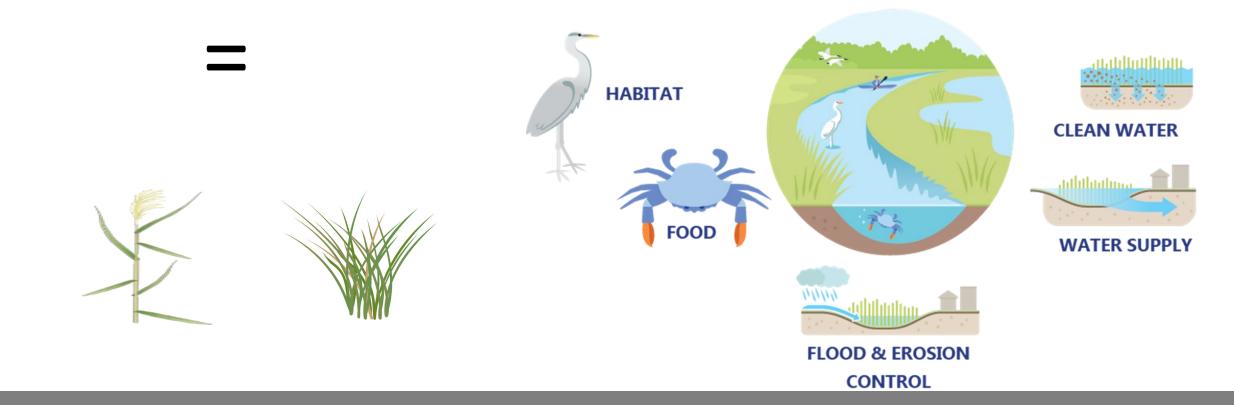
- Management lowered soil shear strength & accelerated decomposition rates
- Management reduced ecosystem resilience to RSLR

Soil shear strength (kPa) at the Heinz NWR across two years. Note that native vegetation communities exhibit contrasting depth profiles of soil strength, with a substantial decrease in shear strength after herbicide treatment in times T2-T4 in the PS (*Phragmites* sprayed) community.

Mozdzer unpublished data

Overarching Question

Does *Phragmites* provide similar ecosystem services when compared to native coastal marsh species in North America?


Hypothesis

Phragmites provides similar ecosystem services as native plant communities in tidal ecosystems

Summary

Does *Phragmites* provide similar ecosystem services when compared to native tidal coastal marsh species in North America?

Summary

Does *Phragmites* provide similar ecosystem services when compared to native coastal marsh species in North America?

YES!

Are there any differences in ecosystem services between Native and *Phragmites* communities? **YES – But** *Phragmites provides many ecosystem services* contrary to what is often reported in the literature when comparing "individual" variables

Smithsonian Global Change Research Wetland

SWS WETLANDS OF DISTINCTION

Recognizing the world's most valuable wetland ecosystems.

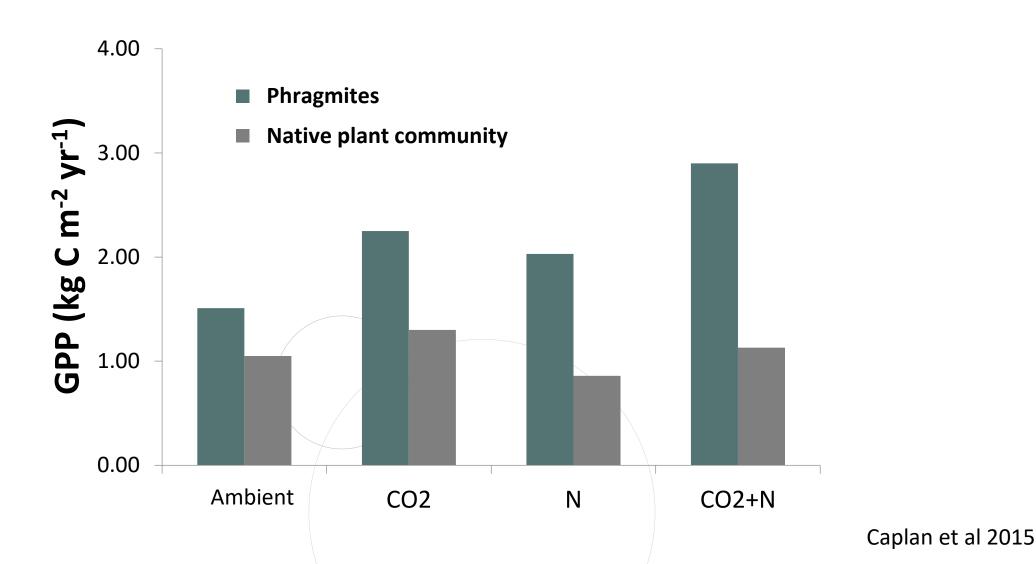


Photo: Chuck Gallegos, aerial support by LightHawk

Simulating different environmental conditions

Current conditions
 Nitrogen enrichment
 2100 (+CO₂)
 2100 + N (CO₂+N)

Phragmites is more productive and fixes up to 3 times more carbon than native plants under current & near-future conditions

Implications

- NOT advocating for a cessation of *Phragmites* management, but a re-evaluation of where and when we
 manage with respect to maintaining ecosystem resilience.
 - Scale matters with herbicide treatment (Rohal et al. 2019)
 - Small (5m2) to medium scale restoration <1,000 m² can be effective
 - Large scale eradication efforts (>12,000 m²) are typically not effective
 - <u>Restored sites are not similar to reference sites in terms of plant community or function after 5 years (Rohal et al.</u>
 2023)
 - Acknowledge that management may be destabilize tidal wetlands lowering ecosystem resilience Suggest we carefully re-evaluate how we prioritize restoration dollars

Implications

- Because *Phragmites* is superior in terms of keeping pace with RSLR, is there a scenario when management should prioritize maintaining marsh integrity over maintaining native species?
- Can Phragmites-dominated wetlands be considered a viable alternate stable state in terms of management & policy goals?
- I am very interested in developing partnerships with managers and policy makers to evaluate how management practices influence ecosystem resilience please contact me!

Acknowledgements

PA Sea Grant – Award #S000157-NOAA NSF: DEB-2051602, NSF-LTREB- 2051343 Bryn Mawr College

Twitter/X: @tjmozdzer Email: tmozdzer@brynmawr.edu