

PHRAGMITES MANAGEMENT

UNDERSTANDING BIOCHAR AND USE OPPORTUNITIES

September 4, 2024

Chuck Hegberg RES, LLC Sr. Project Consultant

What is Biochar(s)

Produced from the carbonization of biomass using little or no oxygen

Solid carbon material Produced from organic matter Resistant to decomposition Unlike charcoal, not used for energy

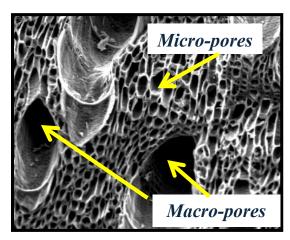
An Ancient Technology, Rediscovered – Terra Preta "Dark Earth"

Carbon-Negative Process CO2:C ratio = 2:1-3.1

Biochar's Are Not Created Equal

High Carbon & High Mineral Carbon Not all biomass should become biochar

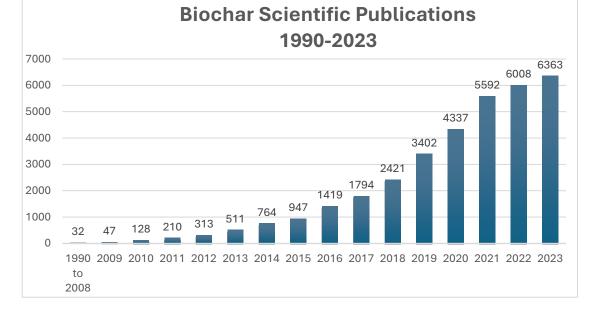
Microbial Real Estate – 1 cy=~16,000 acres of surface area.

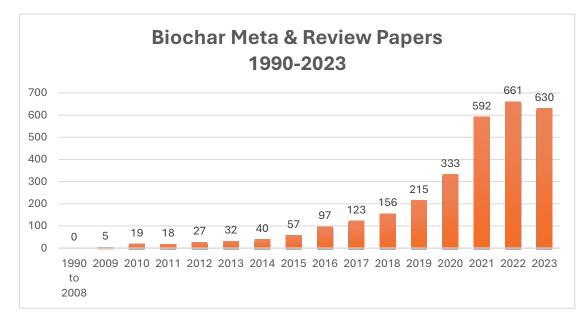


Ancient Technology, Re-Discovered

- Terra Preta ("Dark Earth")
- Dates back more than 7,000 years in the Amazon (Valev et al., 2022)
- 1st documented in Amazon by James Orton (1870)
- 1st researcher of Terra Preta soils by Wim Sombroek (1966)
- International Awareness 2001-2002 led by Johannes Lehmann, Cornell
- Still actively being created in small clusters throughout Southeast Asia and Africa

Fertile, charred soil created by pre-Columbian peoples sustained surprisingly large settlements in the rain forest. Secrets of that ancient "dark earth" could help solve the Amazon's ecological problems today.





Anthropogenic Dark Earth (terra preta), Manaus, Brazil (Photograph by Manuel Arroyo-Kalin).

BIOCHAR'S RAPID SCIENTIFIC GROWTH

No Longer a Boutique Industry... It's Booming!

BIOCHAR RESEARCH METRICS

- 1ST recorded 'biochar' publication 1998
- Dec. 2023 34,288 publications
- 3,005 Biochar meta & review articles
- >80% published in last 5 years
- >50% of publications (>13K) in past 3 years
- >90% of the documents (>21,000) being research articles
- Primary topics pollutant removal, soil improvements, waste management, energy production and climate mitigation
- Future AI could be critical in producing Fit-to-Purpose Biochar

Thermochemical Biomass Conversion Technologies

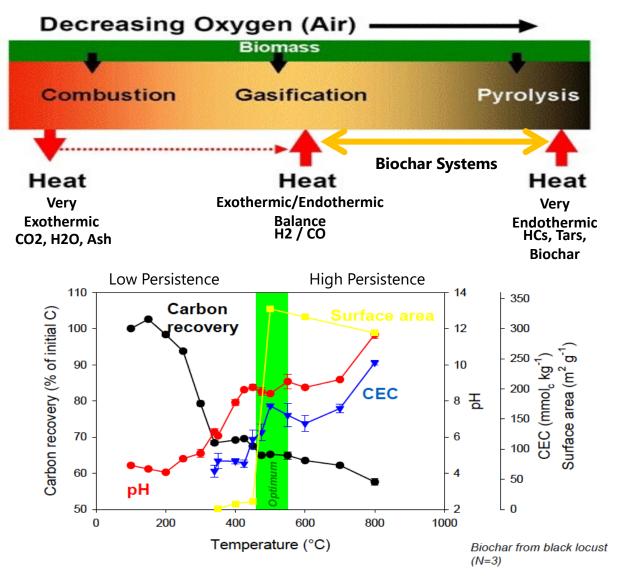
"Ring of Fire" Wilsonbiochar.com

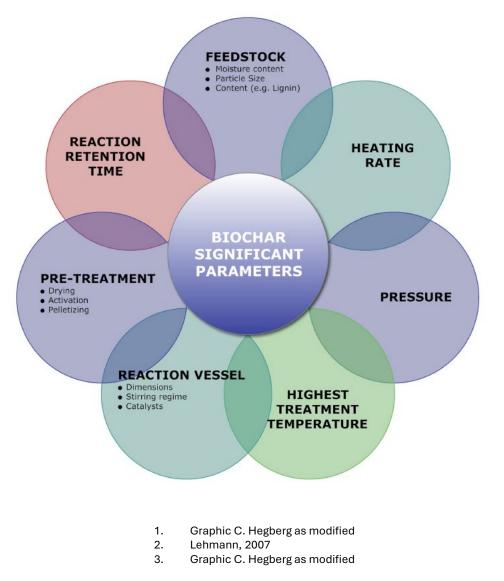
CharBoss airburners.com

Carbonator 6050 tigercat.com PRES-

Pyreg 500 Pyreg.de

ARTIchar artichar.com


Earthcare, LLC Earthcarellc.com


Oregon Biochar Solutions Chardirect.com

(Deltak Coyote Boiler)

Thermochemical Biomass Conversion Process

THERE IS NO 'BURNING' OR 'INCINERATION' IN THE PROCESS

Biochar's Different Forms & Uses

BIOCHAR'S ARE NOT CREATED EQUAL

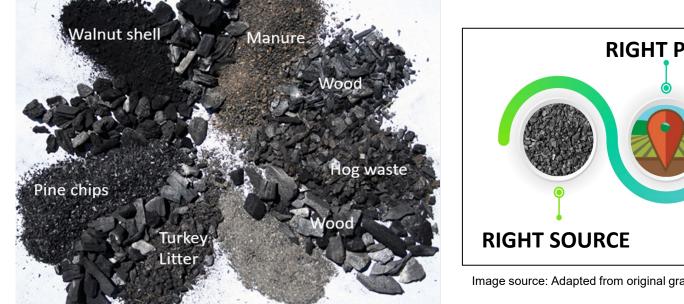


Image source: Adapted from original graphics provided by K.M. Trippe

Be sure your Biochar(s) are certified or supplier proof of lab analysis that meets IBI Biochar Standards Version 2.1 (Link)

Raw Biochar

Pelletized Biochar

Granular Biochar

Blended Biochar

Liquid Biochar

Summary of Biochar Benefits

Re-establish Soil Functions

Increases Infiltration/Retention Increases CEC/AEC (up to 50%) Increases Microbial Activity Balances pH Decreases Bulk Density

Water Quality

Intercept/Absorb/Assimilate Nutrients/Heavy Metals/Hydrocarbon Enormous Surface Area Activated Carbon Replacement

Biomass Upcycling

Biomass Waste (Manures) Cropped Biomass Flexibility Application Methods

Circular Resource Management

Longevity

Short Term Soil Organic Carbon (1-5 years)

Long Term Soil Organic Carbon (100's to 1,000's of Years)

Biochar in Urban Landscapes (Green Infrastructure)

DelDOT Greenway Soil Amendment

DelDOT Bioretention Facility Retrofit

Turf Management & Bioretention Facility

Biochar in Ecological Restoration

Forest Buffers, Grass Buffers & Tree Plantings

Biochar in Ecological Restoration

Wetland Overseeding Restoration

Hydro-seeding/mulching with Biochar

tent No. 8.430,599 Other U.S. Patents pending. BIOTIC SOIL AMENDMENT

Biochar in Agriculture & Compost

NRCS Code 336 – Soil Carbon (Biochar) Amendment

336-CPS-1

Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

SOIL CARBON AMENDMENT

CODE 336

(ac)

DEFINITION

Application of carbon-based amendments derived from plant materials or treated animal byproducts.

NRCS Code 336 Biochar Scenarios								
State	100% Biochar/ 0% Compost	80% Biochar/ 20% Compost	60% Biochar/ 40% Compost	40% Biochar/ 60% Compost	20% Biochar/ 80% Compost			
DE	х	Х	х	Х	х			
MD	х	Х	х	Х	х			
NY	х	Х	х	Х	х			
PA	х	Х	Х	Х	х			
VA	Х	Х	Х	Х	х			
WV	Х	Х	Х	х	Х			

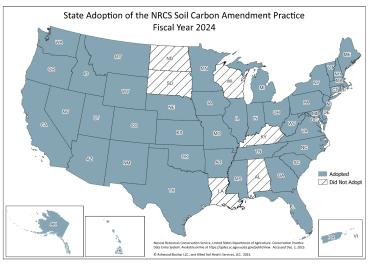
Typical Payment Rates per Acre*	
d on IA Scenarios. Individual state rates may differ \pm 5% based on state COLA.	
mes 4 cubic yards per acre.	

*New England payment rates are per cubic yard, not per acre, and differ from what is shown below.

Biochar Component Cost

Base Assui

\$201 per cubic yard


Practice	Scenario						
Reimbursement	100% Biochar/	80% Biochar/	60% Biochar/	40% Biochar/ 20% Biocha			
heimbursement	0% Compost	20% Compost	40% Compost	60% Compost	80% Compost		
100%	\$1,016	\$945	\$840	\$736	\$632		
90%	\$914	\$851	\$756	\$662	\$569		
75%	\$762	\$709	\$630	\$552	\$474		

Information compiled by Dr. Brandon Smith, Allied Soil Health Services, LLC, 2024

National Water Quality Initiative Practices							
Core Practice	Code	Avoiding	Controlling	Trapping			
Composting Facility	317						
Conservation Cover	327						
Cover Crop	340						
Critical Area Planting	342						
Denitrifying Bioreactor	605						
Drainage Water Management	554						
Field Border	386						
Filter Strip	393						
Grassed Waterway	412						
Nutrient Managaement	590						
Riparian Forest Buffer	391						
Riparian Herbaceous Cover	390						
Tree/Shrub Establishment	612						
Waste Storage Facility	313						
Waste Treatment Lagoon	359						

Biochar in Agriculture & Compost

Enhanced Compost Opportunities with Biochar

Poultry Litter Compost + Biochar

- Acts as a slow-release fertilizer and limits loss or reactive nitrogen to the environment compared to raw manure and synthetic fertilizers
- Co-composting with biochar decreased losses of TN by 51% & NH3 by 60% resulting in higher nitrogen retention (Eunice Agyarko-Mintah etal, 2016)

Biochar can enhance the composting process:

- Reduces Odor & Ammonia Loss
- Increases Nitrogen Retention
- Accelerates the Composting Process
- Greatly Enhances the Beneficial Biological Populations in Compost

Biochar in Agriculture & Compost

BMP Barnyard Runoff Control & Loafing Lot Management & Biofilters

Climate Smart Agriculture & Forestry

Agriculture Slurry Lagoon Covers

"Biochar's have unique physical and chemical properties that make them promising covers in terms of reducing odor and gas emissions, and also nutrient sorption, which other covers don't address." Brian Doughtery, Oregan State University

Biochar in Biosolids (PFAS/PFOS) Management

Biochar in Remediation (Industrial & Mines)

Hope Mountain Mine, Aspen CO

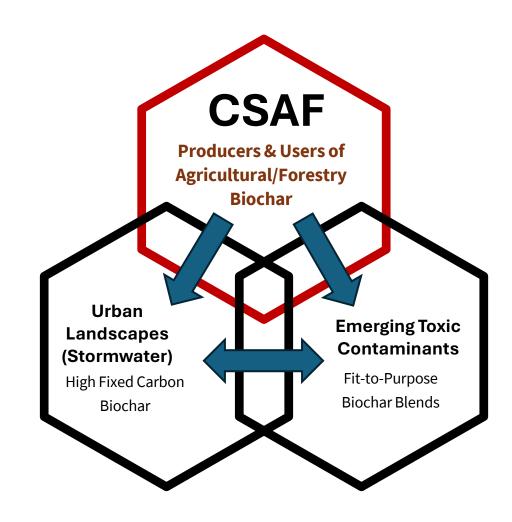
GAC+Sand versus Biochar+Sand

Port of Tacoma Log Yard pH, Zinc, Copper, Turbidity & TSS 80-90% reduction in concentrations

313% Increase in plant cover over conventional alternatives 3.5 times more moisture in soil over conventional alternatives Heavy Metal Sorption

Dec, 2011.		Method- Columb of packed biochar, saturated with IR treated water and sat for 24hrs, columb was drained. Loaded solution was filtered through char with a 4 to 8x repitition.						
Metal	Aluminum, Al	Arsenic, As	Barium, Ba	Beryllium, Be	Cadmium, Cd	Cobalt, Co	Chromium, Cr	Copper, Cu
	91%	54%	66%	99%	98%	92%	98%	99%
	Mulybdenum, Mo	Nickel, Ni	Lead, Pb	Selenium, Se	Tin, Sn	Vanadium, V	Zinc, Zn	Lithium, Li
	45%	91%	99%	54%	100%	75%	98%	39%

Presentation Discussion


Chuck Hegberg Sr. Project Consultant **Biochar SME** chegberg@res.us chegberg@live.com

ILANT

& Installation

