

Initial Review: Updated On:

Complete: Official Use Only

Coastal Zone Management Act Federal Consistency Form

This document provides the Delaware Coastal Management Program (DCMP) with a Federal Consistency Determination or Certification for activities regulated under the Coastal Zone Management Act of 1972, as amended, and NOAA's Federal Consistency Regulations, 15 C.F.R. Part 930. Federal agencies and other applicants for federal consistency are not required to use this form; it is provided to applicants to facilitate the submission of a Consistency Determination or Consistency Certification. In addition, federal agencies and applicants are only required to provide the information required by NOAA's Federal Consistency Regulations.

Project/Activity Name:

Federal Agency or Non-Federal Applicant Contact Information: Ι.

State:

Contact Name/Title:

Federal Agency Contractor Name (if applicable):

Federal Agency:

(either the federal agency proposing an action or the federal agency issuing a federal license/permit or financial assistance to a non-federal applicant)

Mailing Address:

City:

Zip Code:

E-mail:

Telephone #:

Federal Consistency Category: II.

Federal Activity or Development Project (15 C.F.R. Part 930, Subpart C)

Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E)

Federal Financial Assistance (15 C.F.R. Part 930, Subpart F) Federal License or Permit Activity (15 C.F.R. Part 930, Subpart D)

Federal License or Permit Activity which occurs wholly in another state (interstate consistency activities identified in DCMP's Policy document)

Detailed Project Description (attach additional sheets if necessary): III.

DCMP Fed Con Form v.2.0

IV. General Analysis of Coastal Effects (attach additional sheets if necessary):

V. Detailed Analysis of Consistency with DCMP Enforceable Policies (attach additional sheets if necessary):

Policy 5.1: Wetlands Management

Policy 5.2: Beach Management

Policy 5.3: Coastal Waters Management (includes wells, water supply, and stormwater management. Attach additional sheets if necessary)

Policy 5.4: Subaqueous Land and Coastal Strip Management

Policy 5.5: Public Lands Management

Policy 5.6: Natural Lands Management

Policy 5.7: Flood Hazard Areas Management

Policy 5.8: Port of Wilmington

Policy 5.9: Woodlands and Agricultural Lands Management

Policy 5.10: Historic and Cultural Areas Management

Policy 5.11: Living Resources

Policy 5.12 Mineral Resources Management

Policy 5.13: State Owned Coastal Recreation and Conservation

Policy 5.14: Public Trust Doctrine

Policy 5.15: Energy Facilities

Policy 5.16: Public Investment

Policy 5.17: Recreation and Tourism

Policy 5.18: National Defense and Aerospace Facilities

Policy 5.19: Transportation Facilities

Policy 5.20: Air Quality Management

Policy 5.21: Water Supply Management

Policy 5.22: Waste Disposal Management

Policy 5.23: Development

Policy 5.24: Pollution Prevention

Policy 5.25: Coastal Management Coordination

VI. JPP and RAS Review (Check all that apply):

Has the project been reviewed in a monthly Joint Permit Processing and/or Regulatory Advisory Service meeting?

□ JPP □ RAS □] None
---------------	--------

*If yes, provide the date of the meeting(s):

VII. Statement of Certification/Determination and Signature (Check one and sign below):

FEDERAL AGENCY CONSISTENCY DETERMINATION. Based upon the information, data, and analysis included herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity is consistent to the maximum extent practicable with the enforceable policies of the Delaware Coastal Management Program.

OR

FEDERAL AGENCY NEGATIVE DETERMINATION. Based upon the information, data, and analysis included herein, the federal agency, or its contracted agent, listed in (I) above, finds that this proposed activity will not have any reasonably foreseeable effects on Delaware's coastal uses or resources (Negative Determination) and is therefore consistent with the enforceable policies of the Delaware Coastal Management Program.

OR

NON-FEDERAL APPLICANT'S CONSISTENCY CERTIFICATION. Based upon the information, data, and analysis included herein, the non-federal applicant for a federal license or permit, or state or local government agency applying for federal funding, listed in (I) above, finds that this proposed activity complies with the enforceable policies of the Delaware Coastal Management Program and will be conducted in a manner consistent with such program.

Signature:	Wend Mahaney		
Printed Name:		Date:	

Pursuant to 15 C.F.R. Part 930, the Delaware Coastal Management Program must provide its concurrence with or objection to this consistency determination or consistency certification in accordance with the deadlines listed below. Concurrence will be presumed if the state's response is not received within the allowable timeframe.

Federal Consistency Review Deadlines:

Federal Activity or Development Project (15 C.F.R. Part 930, Subpart C)	60 days with option to extend an additional 15 days or stay review (15 C.F.R. § 930.41)
Federal License or Permit (15 C.F.R. Part 930, Subpart D)	Six months, with a status letter at three months. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.63)
Outer Continental Shelf Activity (15 C.F.R. Part 930, Subpart E)	Six months, with a status letter at three months. If three month status letter not issued, then concurrence presumed. The six month review period can be stayed by mutual agreement. (15 C.F.R. § 930.78)
Federal Financial Assistance to State or Local Governments (15 C.F.R. Part 930, Subpart F)	State Clearinghouse schedule

OFFICIAL USE ONLY:

Reviewed By:		Fed Con ID:		Date R	eceived:	
Public notice dates:	to		Comments Re	ceived:	NO	YES [attach comments]
Decision type: (<u>objections or conditions</u> attach details)			_ Decisior	Date:		

	-
Print For	

Save As

U.S. Army Corps of Engineers (USACE) **APPLICATION FOR DEPARTMENT OF THE ARMY PERMIT** For use of this form, see 33 CFR 325. The proponent agency is CECW-CO-R. Form Approved -OMB No. 0710-0003 Expires: 08-31-2023

The public reporting burden for this collection of information, OMB Control Number 0710-0003, is estimated to average 11 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or burden reduction suggestions to the Department of Defense, Washington Headquarters Services, at . Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR APPLICATION TO THE ABOVE EMAIL.

PRIVACY ACT STATEMENT

Authorities: Rivers and Harbors Act, Section 10, 33 USC 403; Clean Water Act, Section 404, 33 USC 1344; Marine Protection, Research, and Sanctuaries Act, Section 103, 33 USC 1413; Regulatory Programs of the Corps of Engineers; Final Rule 33 CFR 320-332. Principal Purpose: Information provided on this form will be used in evaluating the application for a permit. Routine Uses: This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public and may be made available as part of a public notice as required by Federal law. Submission of requested information is voluntary, however, if information is not provided the permit application cannot be evaluated nor can a permit be issued. One set of original drawings or good reproducible copies which show the location and character of the proposed activity must be attached to this application (see sample drawings and/or instructions) and be submitted to the District Engineer having jurisdiction over the location of the proposed activity. An application that is not completed in full will be returned. System of Record Notice (SORN). The information received is entered into our permit tracking database and a SORN has been completed (SORN #A1145b) and may be accessed at the following website:

(ITEMS 1 THRU 4 TO BE FILLED BY THE CORPS)						
1. APPLICATION NO.	2. FIELD OFFICE CODE		3. DATE RECEIVED) 4. D/	ATE APPLICAT	TION COMPLETE
	(ITEMS BELOW TO BE	FILLED BY AP	PLICANT)			
5. APPLICANT'S NAME		8. AUTHORIZ	ED AGENT'S NAME	AND TIT	LE (agent is no	t required)
First - Patricia Middle -	Last - Schuchman	First - Wendy	Midd	e - Mae	Last - M	ahaney
Company - Town of Fenwick Island		Company - A	nchor QEA, LLC			
E-mail Address - pschuchman@fenwickisland	.org	E-mail Addres	s - wmahaney@anch	orqea.coi	n	
6. APPLICANT'S ADDRESS:	na garadan kusin dagin yana pangan pangan pangan di kang san pertamahan di kanan dagi kanan dagi kanan majak	9. AGENT'S A	ADDRESS:		Mar management of a land and any set of an array of the set of the	Man an Anna Anna Anna A
Address- 800 Coastal Highway		Address- 68 1	Excelsior Ave, Suite	101		
City - Fenwick Island State - DE	Zip - 19944 Country - US	City - Saratog	a Springs State -	NY	Zip - 12866	Country - USA
7. APPLICANT'S PHONE NOS. W/AREA COD	E	10. AGENTS PHONE NOs. w/AREA CODE				
a. Residence b. Business 302-539-3011	c. Fax	a. Residence	b. Busin 518.886.0		c. Fa	x
	STATEMENT OF	AUTHORIZATI	ON			
11. I hereby authorize, <u>Anchor QEA, LLC</u> to act in my behalf as my agent in the processing of this application and to furnish, upon request, supplemental information in support of this permit application.					ipon request,	
N/	AME, LOCATION, AND DESCRI	PTION OF PRO	JECT OR ACTIVITY			
12. PROJECT NAME OR TITLE (see instructions) Fenwick Island Channel Dredging Project						
13. NAME OF WATERBODY, IF KNOWN (if a	pplicable)	14. PROJECT	STREET ADDRESS	(if applic	able)	
Little Assawoman Bay		Address				
15. LOCATION OF PROJECT					D F	10011
Latitude: •N 38°27'18.66 Longit	ude: •W 75° 3'34.35	City - Fenv	vick Island	State-	DE	Zip- 19944

		Print Form	Save As
16. OTHER LOCATION DESCRIPTIONS, IF KNO	OWN (see instructions)		
State Tax Parcel ID	Municipality Town of Fenwick Island, DE		
Section - Township -	Range -		
17. DIRECTIONS TO THE SITE			
	southern area of Little Assawoman Bay. Dredged Mat 1 south to west on Lighthouse Rd to north on Bennett		n upland placement
			÷
Assawoman Bay to a depth of -4 feet mean combined channel length is approximately 4 Dredging would begin October 2023 and las Dredged material will be placed into geotex located within uplands and will be surround which would then be transported back to the and dredged material dewatering. Contracto dewatering. Material will remain on site for pre-construction conditions following const details. 19. Project Purpose (Describe the reason or purp Little Assawoman Bay is a popular recreation locations align with areas of the bay that have	f Fenwick would hydraulically dredge two channels (N low water (MLW) with an allowable over-dredge toler 4,000 linear feet and the channels cover a combined sur st approximately 3 months. Approximately 19,000 cubi tile dewatering bags (geobags) at the placement area, a ed with super silt fencing. Sumps and/or earthen berms be bay via pumps. The proposed Project includes upland r will modify the grade within the placement area to co beneficial use as fill for future property modifications. ruction. See Figure 1 for a project location map and see ose of the project, see instructions) onal boating area in southern Delaware inland of the At we been transited by residents for decades. Over recent navigational hazards to both motorized and non-motor	ance to a depth of -5 fee face area of approximat c yards (CY) of materia nd dewatered. The dew will be used to collect access for construction ntain surface water gen Upland staging areas w the Project Supplement lantic Ocean. The prop- years, sediment has bui	et MLW. The tely 4.6 acres. al will be dredged. atering area will be generated water equipment access erated from rill be restored to t for additional
			E3
USE BLOCK	S 20-23 IF DREDGED AND/OR FILL MATERIAL IS TO BE D	ISCHARGED	
20. Reason(s) for Discharge No dischargematerial will be placed at an	upland facility.		
21. Type(s) of Material Being Discharged and the	Amount of Each Type in Cubic Yards:		
Type Amount in Cubic Yards	Type Typ Amount in Cubic Yards Amo	e ount in Cubic Yards	
Not applicable			
22. Surface Area in Acres of Wetlands or Other V Acres or Linear Feet Not applicable	Vaters Filled (see instructions)		
23. Description of Avoidance, Minimization, and C	Compensation (see instructions)		

				Print Form	Save As	
 Construction acce Frequent site insp Project workers shows a statement of the sta	ss shall be by means that a ections shall be implement hall not harass any waterfo	avoid or minimize impacts ted (by the construction mowl or fish in the project a	s on aquatic sites (e.g. hanager). rea.	runoff, including silt fencir , upland access, floating bar urbidity - see Permit Supple	rges).	
24 Is Any Portion of t	the Work Already Complete?		DESCRIBE THE COMPL			
	·					
25. Addresses of Adj	oining Property Owners, Less	ees, Etc., Whose Property Ac	ljoins the Waterbody (if m	ore than can be entered here, please atta	ch a supplemental list).	
a. Address- Adjo	ining property ow	ner maps are pro	ovided as an ap	pendix to the peri	nit application	
City -		State -		Zip -		
b. Address-						
City -		State -		Zip -		
c. Address-						
City -		State -		Zip -		
d. Address-						
City -		State -		Zip -		
e. Address-						
City -		State -		Zip -		
26. List of Other Certi	ficates or Approvals/Denials r		State, or Local Agencies	for Work Described in This App	lication.	
AGENCY	TYPE APPROVAL*	IDENTIFICATION NUMBER	DATE APPLIED	DATE APPROVED	DATE DENIED	
DNREC	CWA Sec. 401	Appendix L		Pending		
DNREC	CWA Sec. 401 Appendix S		Pending			
DNREC	CZMA Consistency			Pending		
* Would include but is	not restricted to zoning, buildi	ng, and flood plain permits				
	e. I further certify that I posses	ss the authority to undertake	the work described here	certify that this information in the information in the information in the duly auth $(1 + 1)^2$		
SIGNATI	CEO Schuch	DATE	13 Wer SIGNAT	TURE OF AGENT	6/22/2023	

ENG FORM 4345, SEP 2022

Save As

18 U.S.C. Section 1001 provides that: Whoever, in any manner within the jurisdiction of any department or agency of the United States knowingly and willfully falsifies, conceals, or covers up any trick, scheme, or disguises a material fact or makes any false, fictitious or fraudulent statements or representations or makes or uses any false writing or document knowing same to contain any false, fictitious or fraudulent statements or entry, shall be fined not more than \$10,000 or imprisoned not more than five years or both.

ENVIRONMENTAL QUESTIONNAIRE FOR CORPS OF ENGINEERS PERMIT APPLICATIONS Philadelphia District, Corps of Engineers Philadelphia, Pennsylvania 19107 CENAP-OP-R

INTRODUCTION AND INSTRUCTIONS

The District Engineer is required by law to assess the initial, cumulative, and long-term effects of any proposed permit on all aspects of the environment.

To speed the analysis of the probable impact of the proposed work, each applicant is required to submit appropriate environmental data as part of a permit application. We ask that you provide a thorough description of your proposed project and answer each question as it applies to the work and the results of that work. Complete and accurate answers will prevent unnecessary delays in processing your permit application

Parts I and II will be filled out by all applicants. Part I is self-explanatory. In Part II, the Environmental Impact Checklist, you should indicate the impacts of your project on all aspects of the environment that are listed. Use the space under "Qualifying Remarks" to indicate the specific impacts that your project will have. This may include types of plants or animals affected, specific adverse, beneficial, or mitigative effects, changes to existing conditions, etc. Although space for answers has been provided, you may wish to supply additional information on attached pages. If you do not anticipate an impact on a certain item, simply place a check in the "No" column.

Part III will be filled out by all applicants applying for a permit to perform dredging.

Part IV will be filled out by all applicants applying for a permit to perform filling operations. This includes activities such as filling behind bulkheads.

Refer any questions you may have concerning this supplemental form to the Regulatory Branch at (215) 656-6728.

PART I

I. <u>PROJECT DESCRIPTION:</u>

A. <u>General Site Location</u>: Accurately locate the project site with respect to State, county, or other subdivision, and in relation to streams and rivers.

The proposed Project will occur in Little Assawoman Bay adjacent to the Town of Fenwick Island, Sussex County, Delaware.

B. <u>Specific Site Locations:</u> Completely locate the project site with respect to cove, creek, property owner, plot number, etc.

The proposed Project will occur in Lighthouse Cove in Little Assawoman Bay.

C. <u>Description of Proposed Action:</u> Carefully describe the action proposed, including the method of construction, equipment, and materials to be used. Details in your description are important. Attach additional sheets if necessary.

The Town of Fenwick would hydraulically dredge two channels (North and South Channels) of Little Assawoman Bay to a depth of -4 feet mean low water (MLW) with an allowable over-dredge tolerance to a depth of -5 feet MLW. The combined channel length is approximately 4,000 linear feet and the channels cover a combined surface area of approximately 4.6 acres. Approximately 19,000 cubic yards (CY) of material will be dredged. Dredged material will be placed into geotextile dewatering bags (geobags) at the placement area, and dewatered. The dewatering area will be located within uplands and will be surrounded with super silt fencing. Sumps and/or earthen berms will be used to collect generated water which would then be transported back to the bay via pumps. The proposed Project includes upland access for construction equipment access and dredged material dewatering. Contractor will modify the grade within the placement area to contain surface water generated from dewatering. Material will remain on site for beneficial use as fill for future property modifications. Upland staging areas will be restored to pre-construction conditions following construction. See Project Supplement for additional details.

D. <u>Purpose of Proposed Action</u>: Define the purpose of the proposed structure or work. For example, the purpose of bulkheading may be to stabilize an eroding bank; whereas, the purpose for a pier may be for the mooring of a private boat, for access to a public or private facility, for a marina, or for another purpose. Please see attached Project Supplement. The Proposed Project's purpose is to dredge areas where sediment has

Please see attached Project Supplement. The Proposed Project's purpose is to dredge areas where sediment has built-up leading to areas of very shallow water that are causing navigational hazards to both motorized and nonmotorized watercraft.

E. Submit color photographs of the site, with explanations of the views shown (prints only). Photographs help us to better understand your project. The more photographs you provide, the easier it is to understand and process your application.

Please see attached Project Supplement

PART II – ENVIRONMENTAL IMPACT CHECKLIST							
ENVIRONMENTAL IMPACT	YES	NO	QUALIFYING REMARKS				
A. Physical Please see attached Permit Supplement							
1. Topography		x					
2. Geological Elements and Leaching		X					
3. Air		X					
4. Transportation		X					
5. Handling of Hazardous Materials		X					
6. Spoil Disposal		X					
7. Sewage and Solid Wastes		X					
8. Water Resources	•	•					
a. Water Quality		X					
b. Hydrography, Circulation, Littoral Drift.		X					
c. Ground Water		X					
B. Biological Please see attached Permit Supplement							
1. Vegetation							
a. Terrestrial		X					
b. Aquatic		X					
2. Fish and Wildlife							
a. Mammals		X					
b. Birds		X					
c. Amphibians		x					
d. Reptiles		X					
e. Fish		X					
f. Shellfish		X					
g. Invertebrates		X					
3. Rare or Endangered Species		X					

ENVIRONMENTAL IMPACT	YES	NO	QUALIFYING REMARKS
C. Cultural Please see attached Permit Supplement			
1. Land Use		X	
2. Population Density and Trends		X	
3. Regional Development		X	
4. Historic Places		X	
5. Archaeological Sites		X	
6. Aesthetics		X	
7. Utilities		X	
8. Transportation Systems		X	
9. Recreation		X	
10. Public Health		X	
D. Other Factors Please see attached Permit Supple	ement		
1. Secondary Effects		X	
2. Controversiality		X	
3. Is significant dredging involved?		X	
4. Is significant filling involved?		X	

Part III

<u>Considerations of a Dredging Proposal:</u> Please see attached Project Supplement

A. Describe characteristics and locations of the proposed dredged material disposal site. Provide photographs.

The dredge material disposal site is an upland undeveloped former farm in area adjacent to the Bay.

B. Is there a comprehensive plan for disposal sites that takes into account the accumulative effect over time and the decreasing amount of suitable sites for disposal?

Project will provide sediment for reuse at the disposal site.

C. Describe the present land use of the disposal site.

Site is vacant and undeveloped.

- D. Describe characteristics of the material to be disposed, including:
 - 1. Physical source of material (i.e. sand, silt, clay, etc.) Give percentages of the various fractions if available.

Dredge material is approximately 65% sand, 25% silt, and 10% clay.

2. Chemical composition of material: Many areas, especially marinas, highly industrialized areas, etc., have sediments with high concentrations of pollutants (chemicals, organic material, etc.). These materials may be re-suspended or reintroduced into the water and result in serious environmental damage. If your proposed dredging is in an area such as described above, a chemical analysis of the material to be dredged should be provided.

The project area is surrounded by developed residential areas and undisturbed fringe marshes. There are no known point sources (Marinas, industrialized areas) in vicinity to the dredge areas. Sediment sampling was conducted within the channel limits with analysis for Metals, PAHs, Pesticides and PCBs. Resulting data shows the material is suitable for upland placement and use as general fill.

3. Dewatering properties of the material to be disposed.

Geobags will be used to dewater the dredged materials. The relatively high sand content will facilitate full dewatering of the material within approximately 4 weeks of dredging.

4. Compactability of material and settling rates of material to be disposed.

 $N\!/\!A$ - Geobags will be used to dewater the dredged materials.

5. Dredging and disposal schedule to insure that operations do not degrade water quality during times of anadromous fish migration.

Dredging will take place in the fall outside of fish windows.

- E. When the project involves land disposal, discuss the following:
 - 1. Method of disposal to be utilized, i.e., pipeline discharge, barge, hopper (underway or stationary).

Hydraulic dredging will be performed with material transport via pipeline to the placement area.

2. Describe method of dredged material containment (i.e. embankment, behind bulkhead, etc.)

Dredged material will be placed into geotextile dewatering bags at the placement area, and dewatered. The dewatering area will be located within uplands and will be surrounded with super silt fencing. Sumps and/or earthen berms will be used to collect generated water which would then be transported back to the bay via pumps.

- 3. What type of leachates will be produced from the spoil material and what is planned for protection of the groundwater? Sediment sampling has shown the material is uncontaminated and suitable for the intended use. Generated water from the geobag dewatering process will be collected and transported back to the bay.
- Methods to insure that spoil water does not adversely affect water quality, both during construction and after completion of the project.
 Sumps and/or earthen berms will be used to collect generated water which would then be transported back to the bay via pumps.
- Provisions for monitoring during discharge: water quality, sediment transport, and precautions to prevent "short-circuiting" dumping. A turbidity monitoring program will be utilized to ensure water quality is not impacted by the dewatering operations. See permit supplement.
- F. Consider and discuss the following for water disposal:
 - 1. Describe methods to be used for water disposal, including volumes and site selection. $_{\mbox{N/A}}$
 - 2. Describe the existing water characteristics at the site, including chemical analysis for water quality.

N/A

G. Discuss the frequency and amount of maintenance dredging which will be required; discuss the resulting impacts. The naturally occurring channels which have been used for decades have shoaled in slowly over a duration of 40-50 years. It is anticipated that shoaling processes would remain slow and maintenance would not be required for 20 years or more. That maintenance cycle expectation is comparable to other maintained waterways in Delaware's Inland Bays.

H. Alternatives. Please see attached Project Supplement

1. Discuss all alternatives to the project, including the "no action" alternative. A "no action" alternative would not address the project purpose and need of providing safe navigation within the bay. More

A "no action" alternative would not address the project purpose and need of providing safe navigation within the bay. More expansive areas for dredging (depths, channel widths, channel extents) were considered but the proposed channels represented the minimum extent of dredging needed to facilitate safe navigation in the most shoaled areas of the bay.

2. Discuss alternative types and methods of dredging and disposal, such as pipeline

discharge, barging, or hopper method.

Hydraulic dredging is the most feasible option for sediment management at this scale. Mechanical dredging and barging is not feasible due to the draft limitations in the bay.

- 3. Discuss alternatives to dredging.
- 4. Discuss alternative areas of sites for spoil disposal.

Other beneficial uses of the dredged material was explored

- 5. Discuss impact of port docking patterns upon the demand for dredging. Can alternative patterns reduce the amount of dredging required to support port operations?
- 6. Support alternative means of construction that would prevent or minimize water quality degradation using EPA standards for guidance.
- 7. State in detail impacts resulting in alternative locations for the proposed project.

Part IV

<u>CONSIDERATIONS OF A FILLING PROPOSAL:</u> Not Applicable

- A. Describe in detail the existing characteristics of the area proposed for filling (i.e. aquatic area, marsh, mudflat, swamp, etc.). In your description, be sure to include the types of vegetation present and the types of animals that use the area. Provide photographs.
- B. Give the following information in regard to the project size:
 - 1. Total area to be filled.
 - 2. Size of underwater area to be filled.
 - 3. Area of intertidal zone to be filled.
 - 4. Area of wetlands to be filled.
 - 5. Proposed height of fill.
 - 6. Volume of material that will be used in filling.
- C. Describe in detail the material to be used as fill including as follows:
 - 1. Type of fill to be used (sand, stone, rubble, etc.). If the material is a composite (i.e., rubble), list the types of materials it will contain.
 - 2. Give the specific location of the source of this material.
 - 3. What types of leachates will be produced from the fill material and what is planned for protection of surface and groundwater?
- D. Carefully describe the method of fill, including the following:
 - 1. Method of fill placement, including equipment used in deposition and grading.
 - 2. Method of stabilization of banks from erosion, sloughing, wave action, boat wakes, etc.
 - 3. Method of stabilization of the surface of the fill.

NAP FORM 1653 OCT 81

- 4. Length of time needed for completion of the project. State if filling will be continuous, intermittent, etc.
- 5. Method of controlling turbidity when filling an underwater area.
- E. Purpose of the Project:
 - 1. What is the intended use of the filled area?
 - 2. What structures, if any, will be constructed on the fill?
 - 3. What benefits would you gain from the proposed fill?

F. Alternatives

- 1. Discuss the "no action" alternative and how this would affect your present and future plans for the development of the area.
- 2. Discuss alternative locations for the proposed fill.
- 3. Discuss the use of elevated structures (i.e. causeways, elevated platforms, etc.) in place of the proposed fill.
- 4. Discuss any other alternatives you have considered prior to formulating the presently submitted proposal.

NOAA Fisheries Greater Atlantic Regional Fisheries Office Essential Fish Habitat (EFH) Assessment & Fish and Wildlife Coordination Act (FWCA) Consultation Worksheet

August 2021 rev.

Authorities

The Magnuson Stevens Fishery Conservation and Management Act (MSA) requires federal agencies to consult with NOAA Fisheries on any action or proposed action authorized, funded, or undertaken by such agency that may adversely affect essential fish habitat (EFH) identified under the MSA. This process is guided by the requirements of our EFH regulation at 50 CFR 600.905, which mandates the preparation of EFH assessments and generally outlines each agency's obligations in the consultation process.

The Fish and Wildlife Coordination Act (FWCA) requires that all federal agencies consult with NOAA Fisheries when proposed actions might result in modifications to a natural stream or body of water. The FWCA also requires that federal agencies consider the effects that these projects would have on fish and wildlife and must also provide for improvement of these resources. Under the FWCA, we work to protect, conserve and enhance species and habitats for a wide range of aquatic resources such as shellfish, diadromous species, and other commercially and recreationally important species that are not federally managed and do not have designated EFH.

It is important to note that these consultations take place between NOAA Fisheries and federal action agencies. As a result, EFH assessments, including this worksheet, must be provided to us by the federal agency, not by permit applicants or consultants.

Use of the Worksheet

This worksheet can serve as an EFH assessment for **Abbreviated EFH Consultations**, and as a means to provide information on potential effects to other NOAA trust resources considered under the FWCA. An abbreviated consultation allows us to determine quickly whether, and to what degree, a federal action may adversely affect EFH. Abbreviated consultation procedures can be used when federal actions do not have the potential to cause substantial adverse effects on EFH and when adverse effects could be alleviated through minor modifications.

The intent of the EFH worksheet is to provide a guide for determining the information needed to fully assess the effects of a proposed action on EFH. In addition, the worksheet may be used as a tool to assist you in developing a more comprehensive EFH assessment for larger projects that may have more substantial adverse effects to EFH. <u>However</u>, for large, complex projects that have the potential for significant adverse effects, an **Expanded EFH Consultation** may be warranted and the use of this worksheet alone is not appropriate as your EFH assessment.

An **adverse effect** is any impact that reduces the quality and/or quantity of EFH. Adverse effects may include direct or indirect physical, chemical, or biological alterations of the waters or substrate and loss of, or injury to, benthic organisms, prey species and their habitat, and other ecosystem components. Adverse effects to EFH may result from actions occurring within EFH or outside of EFH and may include site-specific or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions.

Consultation under the MSA is not required if there is no adverse effect on EFH or if no EFH has been designated in the project area. However, because the definition of "adverse effect" is very broad, most in-water work will result in some level of adverse effect requiring consultation with us, even if the impact is temporary or the overall result of the project is habitat restoration or enhancement. It is important to remember that an adverse effect determination is a trigger to consult with us. It does not mean that a project cannot proceed as proposed, or that project modifications are necessary. An adverse effect determination under the EFH provisions of the MSA simply means that the effects of the proposed action on EFH must be evaluated to determine if there are ways to avoid, minimize, or offset adverse effects. Additional details on EFH consultations, tools, and resources, including frequently asked questions can be found on our website.

Instructions

This worksheet should be used as your EFH assessment for **Abbreviated EFH Consultations** or as a guide to develop your EFH assessment. It is not appropriate to use this worksheet as your EFH assessment for large, complex projects, or those requiring an Expanded EFH Consultation.

When completed fully and with sufficient information to clearly describe the activities proposed, habitats affected, and project impacts, as well as the measures taken to avoid, minimize or offset any unavoidable adverse effects, this worksheet provides us with required components of an EFH assessment including:

- 1. A description of the proposed action.
- 2. An analysis of the potential adverse effects on EFH and the federally managed species.
- 3. The federal agency's conclusions regarding the effects of the action on EFH.
- 4. Proposed mitigation, if applicable.

When completing this worksheet and submitting information to us, it is important to ensure that sufficient information is provided to clearly describe the proposed project and the activities proposed. At a minimum, this should include the public notice (if applicable) or project application and project plans showing:

- location map of the project site with area of impact.
- existing and proposed conditions.
- all in-water work and the location of all proposed structures and/or fill.
- all waters of the U.S. on the project site with mean low water (MLW), mean high water (MHW), high tide line (HTL), and water depths clearly marked.
- Habitat Areas of Particular Concern (HAPCs).
- sensitive habitats mapped, including special aquatic sites (submerged aquatic vegetation, saltmarsh, mudflats, riffles and pools, coral reefs, and sanctuaries and refuges), hard bottom or natural rocky habitat areas, and shellfish beds.
- site photographs, if available.

Your analysis of effects **should focus on impacts that reduce the quality and/or quantity of the habitat or result in conversion to a different habitat type** for all life stages of species with designated EFH within the action area. Simply stating that fish will move away or that the project will only affect a small percentage of the overall population is not a sufficient analysis of the effects of an action on EFH. Also, since the intent of the EFH consultation is to evaluate the direct, indirect, individual and cumulative effects of a particular federal action on EFH and to identify options to avoid, minimize or offset the adverse effects of that action, is it not appropriate to conclude that an impact is minimal just because the area affected is a small percentage of the total area of EFH designated. The focus of the consultation is to reduce impacts resulting from the activities evaluated in the assessment. Similarly, a large area of distribution or range of the fish species is also not appropriate rationale for concluding the impacts of a particular project are minimal.

Use the information on the our EFH consultation website and NOAA's EFH Mapper to complete this worksheet. The mapper is a useful tool for viewing the spatial distribution of designated EFH and HAPCs. Because summer flounder HAPC (defined as: " all native species of macroalgae, seagrasses, and freshwater and tidal macrophytes in any size bed, as well as loose aggregations, within adult and juvenile summer flounder EFH") does not have region-wide mapping, local sources and on-site surveys may be needed to identify submerged aquatic vegetation beds within the project area. The full designations for each species may be viewed as PDF links provided for each species within the Mapper, or via our website links to the New England Fishery Management Councils Omnibus Habitat Amendment 2 (Omnibus EFH Amendment), the Mid-Atlantic Fishery Management Councils FMPs (MAMFC - Fish Habitat), or the Highly Migratory Species website. Additional information on species specific life histories can be found in the EFH source documents accessible through the Habitat and Ecosystem Services Division website. This information can be useful in evaluating the effects of a proposed action. Habitat and Ecosystem Services Division (HESD) staff have also developed a technical memorandum Impacts to Marine Fisheries Habitat from Non-fishing Activities in the Northeastern United States, NOAA Technical Memorandum NMFS-NE-209 to assist in evaluating the effects of non-fishing activities on EFH. If you have questions, please contact the HESD staff member in your area to assist you.

Federal agencies or their non-federal designated lead agency should email the completed worksheet and necessary attachments to the HESD New England (ME, NH, MA, CT, RI) or Mid- Atlantic (NY, NJ, PA, DE, MD, VA) Branch Chief and the regional biologist listed on the <u>Contact Regional Office</u> <u>Staff section</u> on our <u>EFH consultation website</u> and listed below.

We will provide our EFH conservation recommendations under the MSA, and recommendations under the FWCA, as appropriate, within 30 days of receipt of a **complete** EFH assessment for an abbreviated consultation. Please ensure that the EFH worksheet is completed in full and includes detail to minimize delays in completing the consultation. If we are unable to assess potential impacts based on the information provided, we may request additional information necessary to assess the effects of the proposed action on our trust resources before we can begin a consultation. If the worksheet is not completely filled out, it may be returned to you for completion. **The EFH consultation and our response clock does not begin until we have sufficient information upon which to consult**.

If this worksheet is not used, you should include all the information required to complete this worksheet in your EFH assessment. The level of detail that you provide should be commensurate with the magnitude of impacts associated with the proposed project. You may need to prepare a more detailed EFH assessment for more substantial or complex projects to fully characterize the effects of the project and the avoidance and minimization of impacts to EFH. The format of the EFH worksheet may not be sufficient to incorporate the extent of detail required for large-scale projects, and a separate EFH assessment may be required.

Regardless of the format, you should include an analysis as outlined in this worksheet for an expanded EFH assessment, along with any additional necessary information including:

- the results of on-site inspections to evaluate habitat and site-specific effects.
- the views of recognized experts on habitat or the species that may be affected.
- a review of pertinent literature and related information.
- an analysis of alternatives that could avoid or minimize adverse effects on EFH.

For these larger scale projects, interagency coordination meetings should be scheduled to discuss the contents of the EFH consultation and the site-specific information that may be needed in order to initiate the consultation.

Please contact our Greater Atlantic Regional Fisheries Office, <u>Protected Resources Division</u> regarding potential impacts to marine mammals or threatened and endangered species and the appropriate consultation procedures.

HESD Contacts*

New England - ME, NH, MA, RI, CT Chris Boelke, Branch Chief Mike Johnson - ME, NH Kaitlyn Shaw - ME, NH, MA Sabrina Pereira -RI, CT

Mid-Atlantic - NY, NJ, PA, MD, VA

Karen Greene, Branch Chief Jessie Murray - NY, Northern NJ (Monmouth Co. and north) Keith Hanson - NJ (Ocean Co. and south), DE and PA, Mid-Altantic wind Maggie Sager - NJ (Ocean Co. and south), DE and PA Jonathan Watson - MD, DC David O'Brien - VA

Ecosystem Management (Wind/Aquaculture)

Peter Burns, Branch Chief Alison Verkade (NE Wind) Susan Tuxbury (wind coordinator) christopher.boelke@noaa.gov mike.r.johnson@noaa.gov kaitlyn.shaw@noaa.gov sabrina.pereira@noaa

karen.greene@noaa.gov jessie.murray@noaa.gov

keith.hanson@noaa.gov

lauren.m.sager@noaa.gov jonathan.watson@noaa.gov david.l.obrien@noaa.gov

peter.burns@noaa.gov alison.verkade@noaa.gov susan.tuxbury@noaa.gov

*Please check for the most current staffing list on our <u>contact us page</u> prior to submitting your assessment.

EFH Assessment Worksheet rev. August 2021

Please read and follow all of the directions provided when filling out this form.

1. General Project Information

Date Submitted:

Project/Application Number:

Project Name:

Project Sponsor/Applicant:

Federal Action Agency (or state agency if the federal agency has provided written notice delegating the authority¹):

Fast-41:	Yes	No	
Action Agence	ey Contact Name:		
Contact Phon	e:		Contact Email:
Address, City	/Town, State:		

2. Project Description

²Latitude: Longitude: Body of Water (e.g., HUC 6 name):

Project Purpose:

Project Description:

Anticipated Duration of In-Water Work including planned Start/End Dates and any seasonal restrictions proposed to be included in the schedule:

¹ A federal agency may designate a non-Federal representative to conduct an EFH consultation by giving written notice of such designation to NMFS. If a non-federal representative is used, the Federal action agency remains ultimately responsible for compliance with sections 305(b)(2) and 305(b)(4)(B) of the Magnuson-Stevens Act. ² Provide the decimal, or the degrees, minutes, seconds values for latitude and longitude using the World Geodetic System 1984 (WGS84) and negative degree values where applicable.

3. Site Description

EFH includes the biological, chemical, and physical components of the habitat. This includes the substrate and associated biological resources (e.g., benthic organisms, submerged aquatic vegetation, shellfish beds, salt marsh wetlands), the water column, and prey species.

Is the project in designated EFH ³ ?	Yes	No				
Is the project in designated HAPC?	Yes	No				
Does the project contain any Special Aqua	tic Sites ⁴ ? Yes	No				
Is this coordination under FWCA only?	Yes	No				
Total area of impact to EFH (indicate sq ft or acres):						
Total area of impact to HAPC (indicate sq ft or acres):						
Current range of water depths at MLW	Salinity range (PPT):	Water temperature range (°F):				

³Use the tables in Sections 5 and 6 to list species within designated EFH or the type of designated HAPC present. See the worksheet instructions to find out where EFH and HAPC designations can be found. ⁴ Special aquatic sites (SAS) are geographic areas, large or small, possessing special ecological characteristics of productivity, habitat, wildlife protection, or other important easily disrupted ecological values. These areas are generally recognized as significantly influencing or positively contributing to the general overall environmental health or vitality of the entire ecosystem of a region. They include sanctuaries and refuges, wetlands, mudflats, vegetated shallows, coral reefs, and riffle and pool complexes (40 CFR Subpart E). If the project area contains SAS (i.e. sanctuaries and refuges, wetlands, mudflats, vegetated shallows/SAV, coral reefs, and/or riffle and pool complexes, describe the SAS, species or habitat present, and area of impact.

4. Habitat Types

In the table below, select the location and type(s) for each habitat your project overlaps. For each habitat type selected, indicate the total area of expected impacts, then what portion of the total is expected to be temporary (less than 12 months) and what portion is expected to be permanent (habitat conversion), and if the portion of temporary impacts will be actively restored to pre- construction conditions by the project proponent or not. A project may overlap with multiple habitat types.

Habitat Location	Habitat Type	Total impacts (lf/ft ² /ft ³)	Temporary impacts (lf/ft ² /ft ³)	Permanent impacts (lf/ft ² /ft ³)	Restored to pre-existing conditions?*

*Restored to pre-existing conditions means that as part of the project, the temporary impacts will be actively restored, such as restoring the project elevations to pre-existing conditions and replanting. It does not include natural restoration or compensatory mitigation.

Submerged Aquatic Vegetation (SAV) Present?:

Yes:

No:

If the project area contains SAV, or has historically contained SAV, list SAV species and provide survey results including plans showing its location, years present and densities if available. Refer to Section 12 below to determine if local SAV mapping resources are available for your project area.

Sediment Characteristics:

The level of detail required is dependent on your project – e.g., a grain size analysis may be necessary for dredging. In addition, if the project area contains rocky/hard bottom habitat ⁶(pebble, cobble, boulder, bedrock outcrop/ledge) identified as Rocky (coral/rock), Substrate (cobble/gravel), or Substrate (rock) above, describe the composition of the habitat using the following table.

Substrate Type* (grain size)	Present at Site? (Y/N)	Approximate Percentage of Total Substrate on Site
Silt/Mud (<0.063mm)		
Sand (0.063-2mm)		
Rocky: Pebble/Gravel /Cobble(2-256mm)**		
Rocky: Boulder (256- 4096mm)**		
Rocky: Coral		
Bedrock**		

⁶The type(s) of rocky habitat will help you determine if the area is cod HAPC.

* Grain sizes are based on Wentworth grain size classification scale for granules, pebbles, cobbles, and boulders.

** Sediment samples with a content of 10% or more of pebble-gravel-cobble and/or boulder in the top layer (6-12 inches) should

be delineated and material with epifauna/macroalgae should be differentiated from bare pebble-gravel-cobble and boulder.

If no grain size analysis has been conducted, please provide a general description of the composition of the sediment. If available please attach images of the substrate.

Diadromous Fish (migratory or spawning habitat- identify species under Section 10 below):

Yes:

5. EFH and HAPC Designations

Within the Greater Atlantic Region, EFH has been designated by the New England, Mid-Atlantic, and South Atlantic Fisheries Management Councils and NOAA Fisheries. Use the <u>EFH mapper</u> to determine if EFH may be present in the project area and enter all species and life stages that have designated EFH. Optionally, you may review the EFH text descriptions linked to each species in the EFH mapper and use them to determine if the described habitat is present at your project site. If the habitat characteristics described in the text descriptions do not exist at your site, you may be able to exclude some species or life stages from additional consideration. For example, the water depths at your site are shallower that those described in the text description for a particular species or life stage. We recommend this for larger projects to help you determine what your impacts are.

Species Present	EFH is	EFH is designated/mapped for:				
~p	EFH: eggs	EFH: larvae	EFH: juvenile	EFH: adults/ spawning adults	EFH information included?	
Atlantic Butterfish Spiny dogfish	X	X		X ult female	EFH Mapper onl EFH Mapper onl	
Scup Summer flounder Black sea bass		Х	X X X	X X X	EFH Mapper onl EFH Mapper onl EFH Mapper onl	

6. Habitat Areas of Particular Concern (HAPCs)

HAPCs are subsets of EFH that are important for long-term productivity of federally managed species. HAPCs merit special consideration based their ecological function (current or historic), sensitivity to humaninduced degradation, stresses from development, and/or rarity of the habitat.While many HAPC designations have geographic boundaries, there are also habitat specific HAPC designations for certain species, see note below. Use the <u>EFH mapper</u> to identify HAPCs within your project area. Select all that apply.

Summer flounder: SAV ⁷	Alvin & Atlantis Canyons
Sandbar shark	Baltimore Canyon
Sand Tiger Shark (Delaware Bay)	Bear Seamount
Sand Tiger Shark (Plymouth-Duxbury- Kingston Bay)	Heezen Canyon
Inshore 20m Juvenile Cod ⁸	Hudson Canyon
Great South Channel Juvenile Cod	Hydrographer Canyon
Northern Edge Juvenile Cod	Jeffreys & Stellwagen
Lydonia Canyon	Lydonia, Gilbert & Oceanographer Canyons
Norfolk Canyon (Mid-Atlantic)	Norfolk Canyon (New England)
Oceanographer Canyon	Retriever Seamount
Veatch Canyon (Mid-Atlantic)	Toms, Middle Toms & Hendrickson Canyons
Veatch Canyon (New England)	Washington Canyon
Cashes Ledge	Wilmington Canyon
Atlantic Salmon	

⁷ Summer flounder HAPC is defined as all native species of macroalgae, seagrasses, and freshwater and tidal macrophytes in any size bed, as well as loose aggregations, within adult and juvenile summer flounder EFH. In locations where native species have been eliminated from an area, then exotic species are included. Use local information to determine the locations of HAPC.

⁸ The purpose of this HAPC is to recognize the importance of inshore areas to juvenile Atlantic cod. The coastal areas of the Gulf of Maine and Southern New England contain structurally complex rocky-bottom habitat that supports a wide variety of emergent epifauna and benthic invertebrates. Although this habitat type is not rare in the coastal Gulf of Maine, it provides two key ecological functions for juvenile cod: protection from predation, and readily available prey. See <u>EFH mapper</u> for links to text descriptions for HAPCs.

7. Activity Details

Select all that apply	Project Type/Category
	Agriculture
	Aquaculture - List species here:
	Bank/shoreline stabilization (e.g., living shoreline, groin, breakwater, bulkhead)
	Beach renourishment
	Dredging/excavation
	Energy development/use e.g., hydropower, oil and gas, pipeline, transmission line, tidal or wave power, wind
	Fill
	Forestry
	Infrastructure/transportation (e.g., culvert construction, bridge repair, highway, port, railroad)
	Intake/outfall
	Military (e.g., acoustic testing, training exercises)
	Mining (e.g., sand, gravel)
	Overboard dredged material placement
	Piers, ramps, floats, and other structures
	Restoration or fish/wildlife enhancement (e.g., fish passage, wetlands, mitigation bank/ILF creation)
	Survey (e.g., geotechnical, geophysical, habitat, fisheries)
	Water quality (e.g., storm water drainage, NPDES, TMDL, wastewater, sediment remediation)
	Other:

8. Effects Evaluation

Select all that apply	Potential Stressors Caused by the Activity	Select all that apply and if temporary ⁹ or permanent		nd if ary ⁹	Habitat alterations caused by the activity	
	Underwater noise		Temp	Perm		
	Water quality/turbidity/ contaminant release				Water depth change	
	Vessel traffic/barge grounding				Tidal flow change	
	Impingement/entrainment				Fill	
	Prevent fish passage/spawning				Habitat type conversion	
	Benthic community disturbance				Other:	
	Impacts to prey species				Other:	

⁹ Temporary in this instance means during construction. ¹⁰ Entrainment is the voluntary or involuntary movement of aquatic organisms from a water body into a surface diversion or through, under, or around screens and results in the loss of the organisms from the population. Impingement is the involuntary contact and entrapment of aquatic organisms on the surface of intake screens caused when the approach velocity exceeds the swimming capability of the organism.

Details - project impacts and mitigation

Briefly describe how the project would impact each of the habitat types selected above and the amount (i.e., acreage or sf) of each habitat impacted. Include temporary and permanent impact descriptions and direct and indirect impacts. For example, dredging has a direct impact on bottom sediments and associated benthic communities. The turbidity generated can result in a temporary impact to water quality which may have an indirect effect on some species and habitats such as winter flounder eggs, SAV or rocky habitats. The level of detail that you provide should be commensurate with the magnitude of impacts associated with the proposed project. Attach supplemental information if necessary.

What specific measures will be used to avoid and minimize impacts, including project design, turbidity controls, acoustic controls, and time of year restrictions? If impacts cannot be avoided or minimized, why not?

Is compensatory mitigation proposed? Yes No

If compensatory mitigation is not proposed, why not? If yes, describe plans for compensatory mitigation (e.g. permittee responsible, mitigation bank, in-lieu fee) and how this will offset impacts to EFH and other aquatic resources. Include a proposed compensatory mitigation and monitoring plan as applicable.

9. Effects of Climate Change

Effects of climate change should be included in the EFH assessment if the effects of climate change may amplify or exacerbate the adverse effects of the proposed action on EFH. Use the <u>Intergovernmental Panel on Climate Change</u> (IPCC) Representative Concentration Pathways (RCP) 8.5/high greenhouse gas emission scenario (IPCC 2014), at a minimum, to evaluate the future effects of climate change on the proposed projections. For sea level rise effects, use the intermediate-high and extreme scenario projections as defined in <u>Sweet et al. (2017)</u>. For more information on climate change effects to species and habitats relative to NMFS trust resources, see <u>Guidance for Integrating Climate Change</u> Information in Greater Atlantic Region Habitat Conservation Division Consultation Processes.

- 1. Could species or habitats be adversely affected by the proposed action due to projected changes in the climate?If yes, please describe how:
- 2. Is the expected lifespan of the action greater than 10 years? If yes, please describe project lifespan:
- 3. Is climate change currently affecting vulnerable species or habitats, and would the effects of a proposed action be amplified by climate change? If yes, please describe how:
- 4. Do the results of the assessment indicate the effects of the action on habitats and species will be amplified by climate change? If yes, please describe how:
- 5. Can adaptive management strategies (AMS) be integrated into the action to avoid or minimize adverse effects of the proposed action as a result of climate? If yes, please describe how:

10. Federal Agency Determination

Fede	Federal Action Agency's EFH determination (select one)					
	There is no adverse effect ⁷ on EFH or EFH is not designated at the project site. EFH Consultation is not required. This is a FWCA only request.					
	The adverse effect ⁷ on EFH is not substantial. This means that the adverse effects are no more than minimal, temporary, or can be alleviated with minor project modifications or conservation recommendations.					
	This is a request for an abbreviated EFH consultation.					
	The adverse effect ⁷ on EFH is substantial.					
	This is a request for an expanded EFH consultation. We will provide more detailed information, including an alternatives analysis and NEPA documents, if applicable.					

⁷ An adverse effect is any impact that reduces the quality and/or quantity of EFH. Adverse effects may include direct or indirect physical, chemical, or biological alterations of the waters or substrate and loss of, or injury to, benthic organisms, prey species and their habitat, and other ecosystem components. Adverse effects to EFH may result from actions occurring within EFH or outside of EFH and may include site-specific or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions.

11. Fish and Wildlife Coordination Act

Under the FWCA, federal agencies are required to consult with us if actions that the authorize, fund, or undertake will result in modifications to a natural stream or body of water. Federal agencies are required to consider the effects these modifications may have on fish and wildlife resources, as well as provide for the improvement of those resources. Under this authority, we consider the effects of actions on NOAA-trust resources, such as anadromous fish, shellfish, crustaceans, or their habitats, that are not managed under a federal fisheries management plan. Some examples of other NOAA-trust resources are listed below. Some of these species, including diadromous fishes, serve as prey for a number of federally-managed species and are therefore considered a component of EFH pursuant to the MSA. We will be considering the effects of your project on these species and their habitats as part of the EFH/FWCA consultation process and may make recommendations to avoid, minimize or offset and adverse effects concurrently with our EFH conservation recommendations.

Please contact our Greater Atlantic Regional Fisheries Office, <u>Protected Resources Division</u> regarding potential impacts to marine mammals or species listed under the Endangered Species Act and the appropriate consultation procedures.

Fish and	Wildlife	Coordination	Act Resources
----------	----------	--------------	----------------------

Species known to occur at site (list others that may apply)	Describe habitat impact type (i.e., physical, chemical, or biological disruption of spawning and/or egg development habitat, juvenile nursery and/or adult feeding or migration habitat). Please note, impacts to federally listed species of fish, sea turtles, and marine mammals must be coordinated with the GARFO Protected Resources Division.
alewife	
American eel	
American shad	
Atlantic menhaden	
blue crab	
blue mussel	
blueback herring	
Eastern oyster	
horseshoe crab	
quahog	
soft-shell clams	
striped bass	
other species:	
other species:	
other species:	

12. Useful Links

<u>National Wetland Inventory Maps</u> <u>EPA's National Estuary Program (NEP)</u> <u>Northeast Regional Ocean Council (NROC) Data Portal</u> Mid-Atlantic Regional Council on the Ocean (MARCO) Data Portal

Resources by State

Maine

Maine Office of GIS Data Catalog <u>Town shellfish information including shellfish conservation area maps</u> <u>State of Maine Shellfish Sanitation and Management</u> <u>Eelgrass maps</u> <u>Casco Bay Estuary Partnership</u> <u>Maine GIS Stream Habitat Viewer</u>

New Hampshire

NH Statewide GIS Clearinghouse, NH GRANIT NH Coastal Viewer State of NH Shellfish Program

Massachusetts

MA DMF Shellfish Sanitation and Management Program MassGIS Data (Including Eelgrass Maps) MA DMF Recommended TOY Restrictions Document Massachusetts Bays National Estuary Program Buzzards Bay National Estuary Program Massachusetts Division of Marine Fisheries Massachusetts Office of Coastal Zone Management

Rhode Island

RI Shellfish and Aquaculture RI Shellfish Management Plan RI Eelgrass Maps Narragansett Bay Estuary Program Rhode Island Division of Marine Fisheries Rhode Island Coastal Resources Management Council

Connecticut

CT Bureau of Aquaculture Natural Shellfish Beds in CT Eelgrass Maps Long Island Sound Study CT GIS Resources CT DEEP Office of Long Island Sound Programs and Fisheries CT River Watershed Council New York Eelgrass Report Peconic Estuary Program NY/NJ Harbor Estuary Program New York GIS Clearinghouse

New Jersey

Submerged Aquatic Vegetation Mapping Barnegat Bay Partnership NJ GeoWeb NJ DEP Shellfish Maps

Pennsylvania

Delaware River Management Plan PA DEP Coastal Resources Management Program PA DEP GIS Mapping Tools

Delaware

Partnership for the Delaware Estuary Center for Delaware Inland Bays Delaware FirstMap

Maryland

<u>Submerged Aquatic Vegetation Mapping</u> <u>MERLIN (Maryland's Environmental Resources and Land Information Network)</u> <u>Maryland Coastal Atlas</u> <u>Maryland Coastal Bays Program</u>

Virginia

<u>VMRC Habitat Management Division</u> <u>Submerged Aquatic Vegetation mapping</u>

EFH Data Notice

Essential Fish Habitat (EFH) is defined by textual descriptions contained in the fishery management plans developed by the regional fishery management councils. In most cases mapping data can not fully represent the complexity of the habitats that make up EFH. This report should be used for general interest queries only and should not be interpreted as a definitive evaluation of EFH at this location. A location-specific evaluation of EFH for any official purposes must be performed by a regional expert. Please refer to the following links for the appropriate regional resources.

<u>Greater Atlantic Regional Office</u> <u>Atlantic Highly Migratory Species Management Division</u>

Query Results

Degrees, Minutes, Seconds: Latitude = 38° 27' 26" N, Longitude = 76° 56' 28" W Decimal Degrees: Latitude = 38.457, Longitude = -75.059

The query location intersects with spatial data representing EFH and/or HAPCs for the following species/management units.

*** WARNING ***

Please note under "Life Stage(s) Found at Location" the category "ALL" indicates that all life stages of that species share the same map and are designated at the queried location.

Link	Data Caveats	Species/Management Unit	Lifestage(s) Found at Location	Management Council	FMP
P	Θ	Little Skate	Juvenile Adult	New England	Amendment 2 to the Northeast Skate Complex FMP
P	Θ	Atlantic Herring	Juvenile Adult	New England	Amendment 3 to the Atlantic Herring FMP
P	Θ	Red Hake	Adult	New England	Amendment 14 to the Northeast Multispecies FMP
P	Θ	Monkfish	Eggs/Larvae	New England	Amendment 4 to the Monkfish FMP
P	Θ	Windowpane Flounder	Adult Larvae Eggs Juvenile	New England	Amendment 14 to the Northeast Multispecies FMP
P	Θ	Winter Skate	Adult Juvenile	New England	Amendment 2 to the Northeast Skate Complex

EFH

Link	Data Caveats	Species/Management Unit	Lifestage(s) Found at Location	Management Council	FMP
					FMP
Þ	Θ	Witch Flounder	Adult	New England	Amendment 14 to the Northeast Multispecies FMP
P	Θ	Clearnose Skate	Adult Juvenile	New England	Amendment 2 to the Northeast Skate Complex FMP
P	Θ	Smoothhound Shark Complex (Atlantic Stock)	ALL	Secretarial	Amendment 10 to the 2006 Consolidated HMS FMP: EFH
P	Θ	Longfin Inshore Squid	Eggs	Mid-Atlantic	Atlantic Mackerel, Squid,& Butterfish Amendment 11
P	Θ	Bluefish	Adult Juvenile	Mid-Atlantic	Bluefish
P	Θ	Atlantic Butterfish	Eggs Larvae Adult Juvenile	Mid-Atlantic	Atlantic Mackerel, Squid,& Butterfish Amendment 11
Þ	0	Spiny Dogfish	Sub-Adult Female	Mid-Atlantic	Amendment 3 to the Spiny Dogfish FMP
A	0	Scup	Juvenile Adult	Mid-Atlantic	Summer Flounder, Scup, Black Sea Bass
P	0	Summer Flounder	Larvae Juvenile Adult	Mid-Atlantic	Summer Flounder, Scup, Black Sea Bass
P	Θ	Black Sea Bass	Juvenile Adult	Mid-Atlantic	Summer Flounder, Scup, Black Sea Bass

Salmon EFH

No Pacific Salmon Essential Fish Habitat (EFH) were identified at the report location.

HAPCs

Li	nk	Data Caveats	HAPC Name	Management Council
		Θ	Summer Flounder	Mid-Atlantic

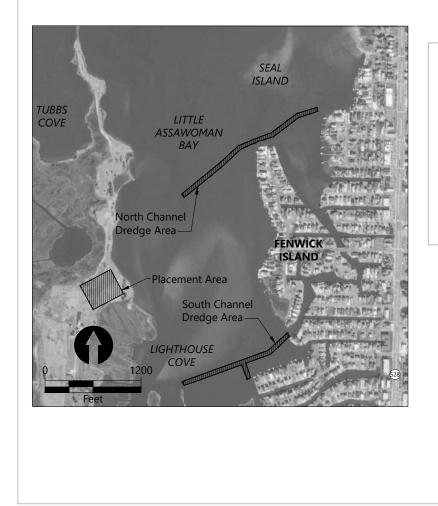
EFH Areas Protected from Fishing

No EFH Areas Protected from Fishing (EFHA) were identified at the report location.

Spatial data does not currently exist for all the managed species in this area. The following is a list of species or management units for which there is no spatial data. **For links to all EFH text descriptions see the complete data inventory: <u>open data inventory --></u>

All spatial data is currently available for the Mid-Atlantic and New England councils, Secretarial EFH, Bigeye Sand Tiger Shark,

Bigeye Sixgill Shark,


Spatial data does not currently exist for all the managed species in this area. The following is a list of species or management units for which there is no spatial data.

**For links to all EFH text descriptions see the complete data inventory: open data inventory -->

Caribbean Sharpnose Shark, Galapagos Shark, Narrowtooth Shark, Sevengill Shark, Sixgill Shark, Smooth Hammerhead Shark, Smalltail Shark

Permit Drawings Little Assawoman Bay Dredging Project

TOWN OF FENWICK ISLAND

Dover
DELAWARE
Project Area
Not to Scale

ı
gend
IS
Channel
Channel
ons
ons
ons
ions
ntrol Plan
Details 1 of 2
Details 2 of 2
1

Publish Date: 2021/06/10 4:57 PM | User: bhurry Filepath: K:\Projects\2069-Fenwick\Permit\2069-PL-001-COVER SHEET AND GENERAL NOTES.dwg Figure 1

Figure 1 Cover Sheet

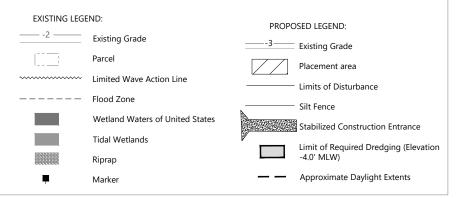
GENERAL NOTES

- 1. This project includes hydraulic dredging of sediments in Little Assawoman Bay, Fenwick island, Delaware, and associated upland access for construction equipment access and dredged material dewatering.
- 2. If specifications contradict these drawings, specifications shall govern.
- Locations displayed for existing conditions such as shorelines, structures, underground utilities, identified trees, and utilities are approximate. contractor shall field verify location of site structures, location of identified trees, shoreline, and other site features prior to construction.
- The owner's representative shall be notified in writing of any conditions that vary from those shown on the drawings, the contractor's work shall not vary from the drawings without the expressed approval of owner's representative.
- 5. Details shown are typical; similar details apply to similar conditions unless otherwise noted.
- These drawings do not include necessary components for construction safety. the contractor is responsible for the safety of site personnel and shall abide by the requirements of the technical specifications and the contractor's health and safety plan (HASP), as appropriate, as well as applicable Occupational Safety and Health Administration (OSHA) regulations.
- 7. The contractor is responsible for obtaining all utility markouts and forwarding confirmation of notification to the owner's representative. the contractor shall be responsible to obtain any and all necessary permits from the affected utility companies and for scheduling of inspections by utility company personnel, if required, during construction.
- 8. The contractor shall adequately protect all existing structures and utilities. any damage to existing structures, shorelines, or utilities shall be the sole responsibility of the contractor.
- 9. Overhead lines are present at the site and they are not shown in their entirety on these drawings. contractor shall field verify and locate all overhead lines present along the work areas.
- 10. The contractor shall comply with all required permits and other applicable regulatory requirements.
- 11. The contractor shall be responsible for temporary erosion and sediment control measures during the construction period, as required by the permits, local ordinances, plans, and specifications.
- 12. The contractor is advised that all local public nuisance laws and noise ordinances shall be observed during the course of construction.
- The contractor shall furnish, install, and maintain appropriate signage for traffic control and pedestrian safety during construction. maintain open access for all public roadways during performance of the work.
- 14. The contractor shall maintain a neat and orderly site, yard, and grounds. remove and dispose off site all rubbish, waste materials, litter, and all foreign substances. promptly notify appropriate authorities and owner's representative, and remove petro-chemical spills, stains, and other foreign deposits in accordance with local, state, and federal regulations.

ESTIMATE OF QUANTITIES									
PROJECT AREA	REQUIRED DREDGE VOLUME (CY)	ALLOWABLE OVERDREDGE VOLUME (CY)	TOTAL VOLUME (CY)						
NORTH CHANNEL	5,597	3,968	9,565						
SOUTH CHANNEL	5,483	3,411	8,894						
TOTAL	11,080	7,379	18,459						

SEQUENCE OF CONSTRUCTION:

Specific activities conducted by the contractor to complete the work include, but are not limited to:

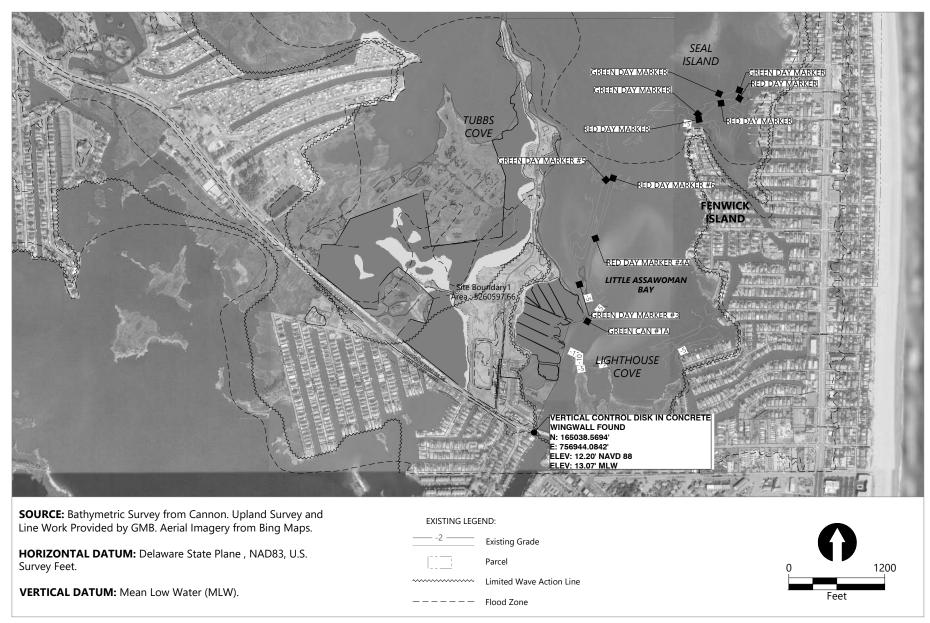

- 1. Conduct field investigations or evaluations to confirm site conditions.
- 2. Prepare and submit final work plans and all other pre-construction submittals.
- 3. Attend a pre-construction meeting with the owner's representative.
- 4. Mobilize crews, facilities, equipment, and materials required to complete the work.
- 5. Install and maintain environmental controls.
- 6. Establish dredged material dewatering area in accordance with these project drawings.
- 7. Dredge north and south channels to the limits specified on drawings. this work includes, but is not limited to:

A. Dredge sediments in the sequence identified in the technical specifications

- B. Transport sediments via pipeline to the dredged material dewatering area
- C. Manage and dewater sediments as stated in the specifications.
- 8. Place aids to navigation buoys within Little Assawoman Bay as shown on these drawings.
- 9. Restore the upland site, where applicable, to pre-construction conditions in accordance with the technical specifications.

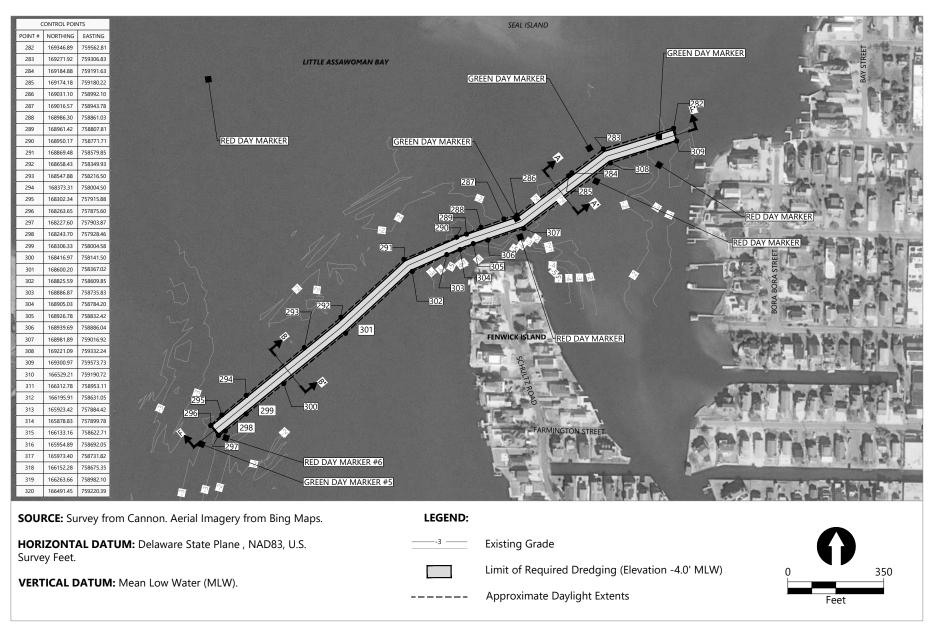
SURVEY NOTES:

- 1. Horizontal Datum: Delaware State Plane , North American Datum of 1983 (NAD83), U.S. Survey Feet
- 2. Vertical Datum: Mean Low Water. 0' MLW = -0.87 NAVD88

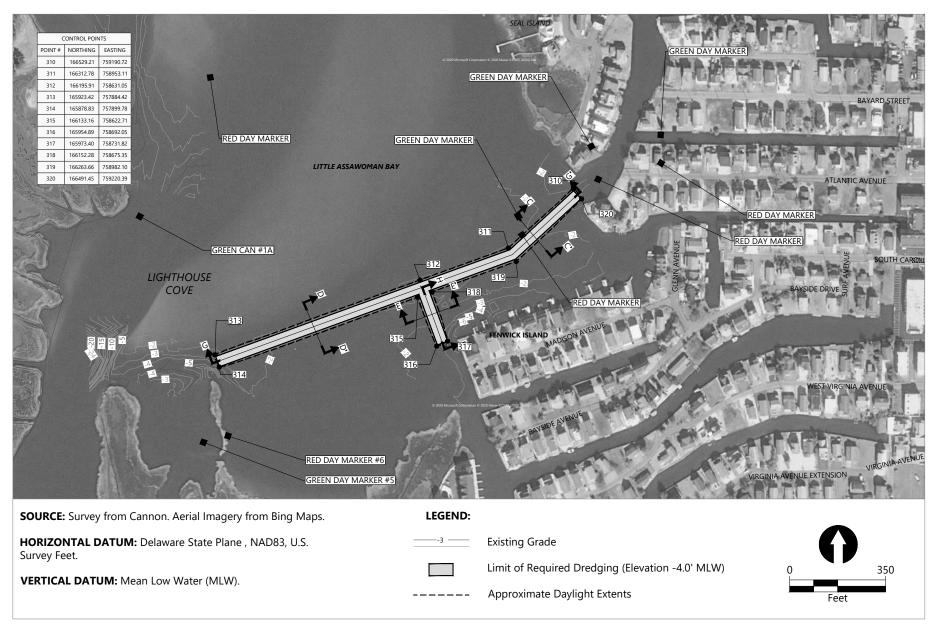


Publish Date: 2021/06/10 4:57 PM | User: bhurry

Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-001-COVER SHEET AND GENERAL NOTES.dwg Figure 2


Figure 2 General Notes and Legend

Publish Date: 2021/06/10 4:57 PM | User: bhurry Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-002-EXISTING CONDITIONS.dwg Figure 3


Figure 3 Existing Conditions

Publish Date: 2021/06/10 4:58 PM | User: bhurry Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-003-PROPOSED DESIGN.dwg Figure 4

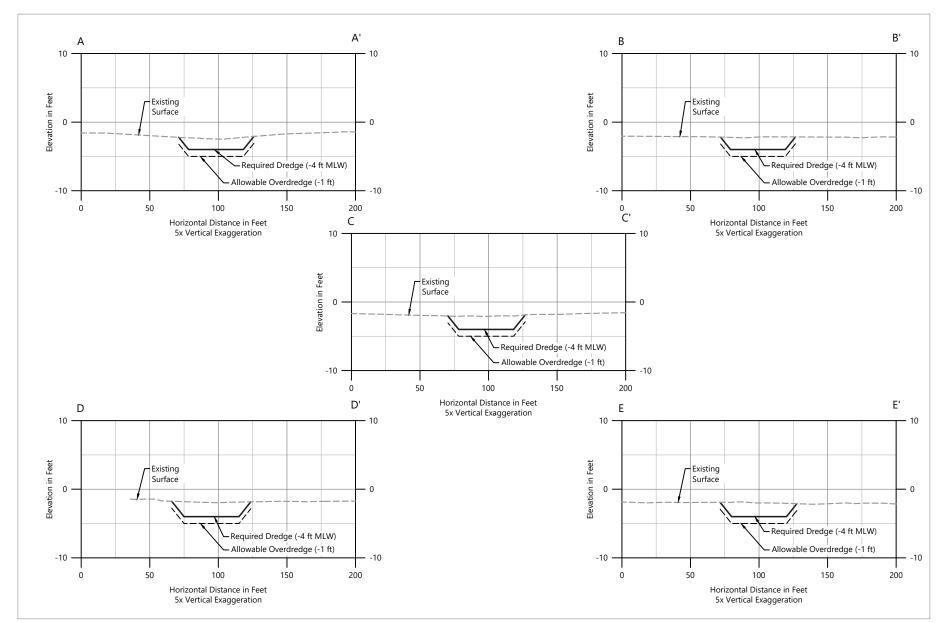
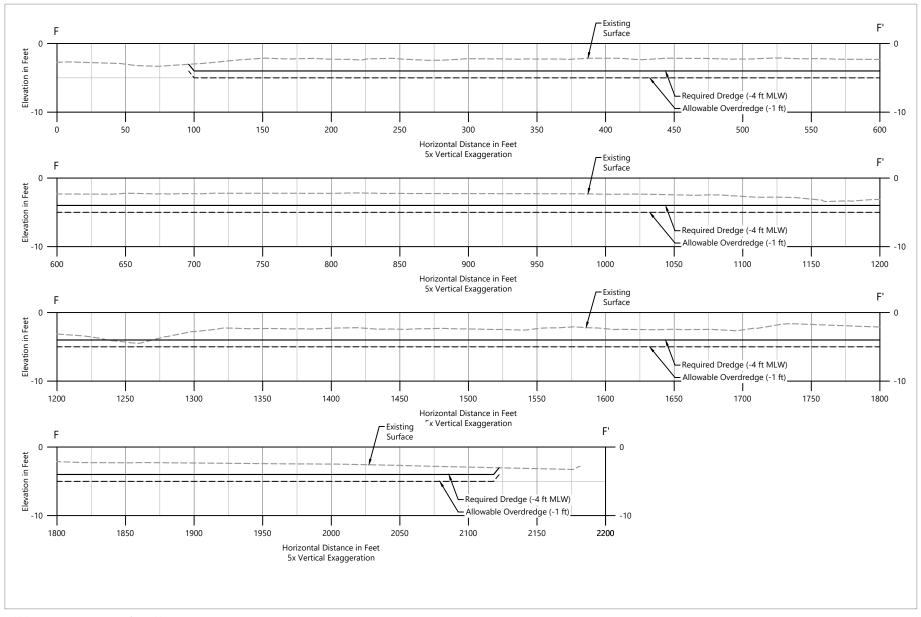


Figure 4 Dredging Plan - North Channel

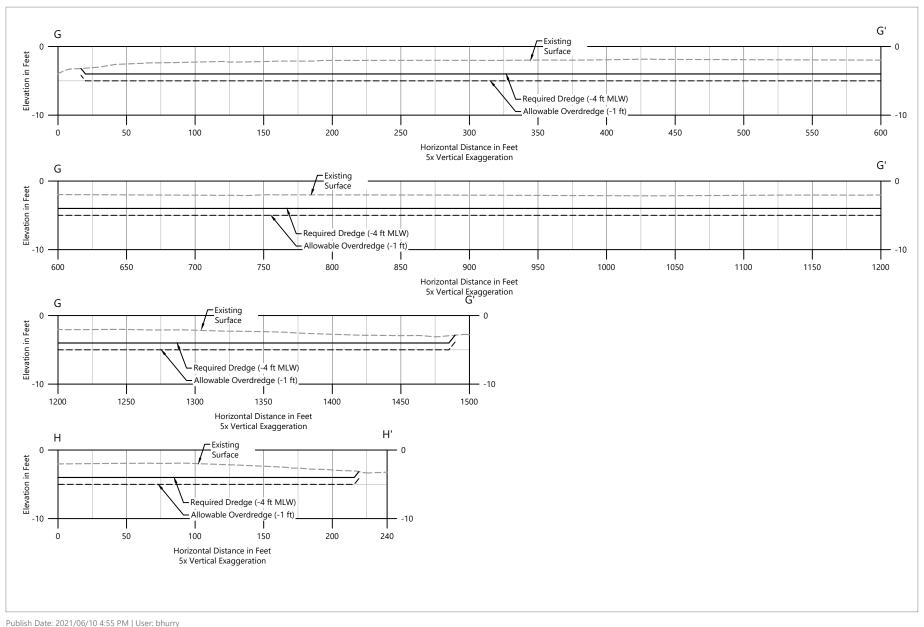
Publish Date: 2021/06/10 5:05 PM | User: bhurry Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-003-PROPOSED DESIGN.dwg Figure 5



Publish Date: 2021/06/10 4:55 PM | User: bhurry Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-003-PROPOSED DESIGN.dwg Figure 6

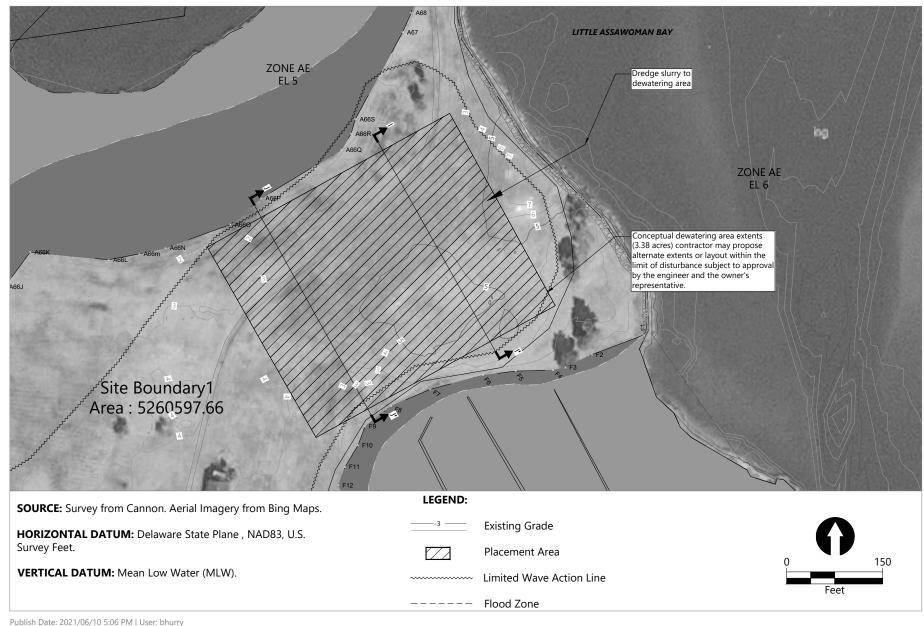
Figure 6 Dredge Cross Sections

Permit Set Little Assawoman Bay Dredging Project

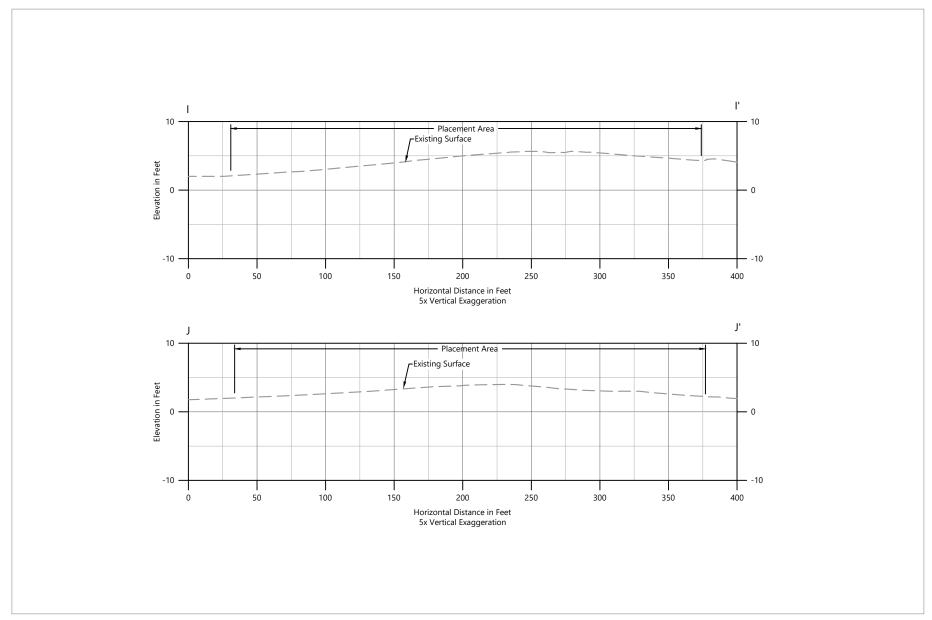


Publish Date: 2021/06/10 4:55 PM | User: bhurry

Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-003-PROPOSED DESIGN.dwg Figure 7

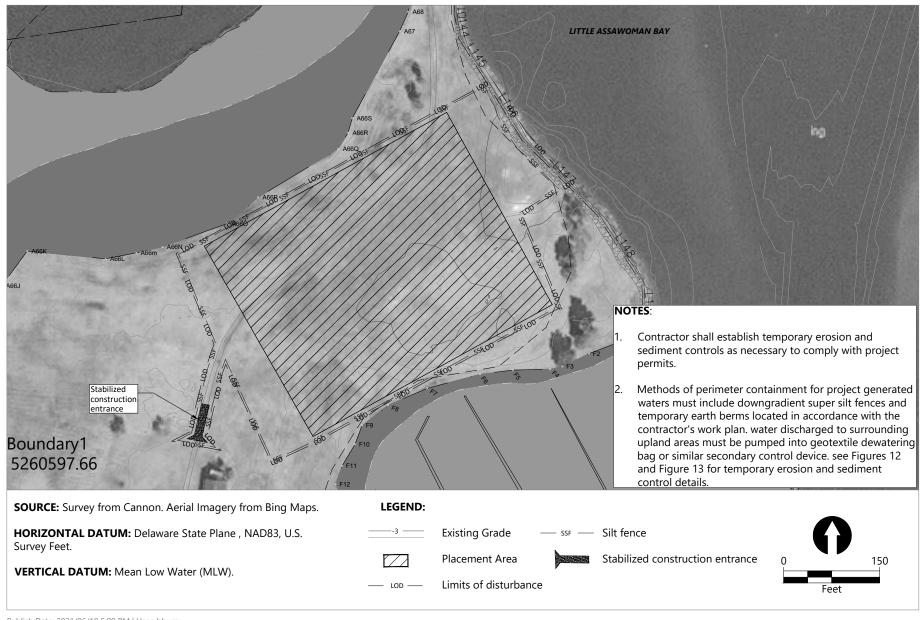

Figure 7 Dredge Cross Sections

Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-003-PROPOSED DESIGN.dwg Figure 8


Figure 8 Dredge Cross Sections

Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-004-PLACEMENT.dwg Figure 9

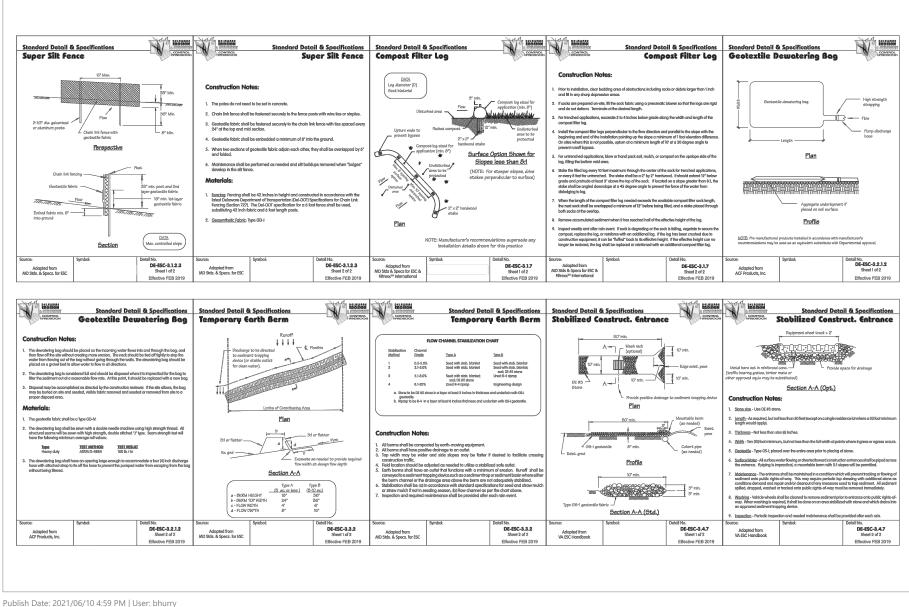
Figure 9 Placement Plan



Publish Date: 2021/06/10 4:55 PM | User: bhurry Filepath: K:\Projects\2069-Fenwick\Penwick\Permit\2069-PL-004-PLACEMENT.dwg Figure 10

Figure 10 Placement Cross Sections

Permit Set Little Assawoman Bay Dredging Project



Publish Date: 2021/06/10 5:09 PM | User: bhurry Filepath: K) Projecto 2069, Equivide Equivide Parmith 2069, PL, 005, EROSION AND SEL

Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-005-EROSION AND SEDIMENT CONTROL.dwg Figure 11

Figure 11 Erosion and Sediment Control Plan

Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-005-EROSION AND SEDIMENT CONTROL.dwg Figure 12

Figure 12 Erosion and Sediment Control Details 1 of 2

EROSION EROSION BROSION EROSION EROSION Standard Detail & Specifications Construction Site Waste Mgt & Spill Control **Spill Control** Spill Control Spill Control **Spill Control** fon – Soli P Notes (cont.) Notes: Notes (cont.) Fueling should only take place in signed designated areas, facilities and watercourses. The Construction Site Pollution Prevention Plan should include the following elements olumo of Potestia olution leight of containen rea of containen Contact information for reporting spills through the DNREC 24-Hour Toll Free Number shall be prominently posted. d. Trash shall be disposed of in accordance with all applicable Delaware laws. 2. Fueling must be with nozzles equipped with automatic shut-off to control drips. Do not top of 1. Material Inventory e. Trash cans shall be placed at all lunch spots and littering is strictly prohibited. Recycle bins shall be placed near the construction trailer. Protect the areas where equipment or vehicles are being repaired, maintained, fueled or parks from storm water run-on and runoff. Document the storage and use of the following materials: . Education a. Concrete f. If fertilizer bags can not be stored in a weather and covered with plastic sheeting which is o 4. Use barriers such as berms to prevent storm water run-on and runoff, and to contain splits Bestmanagement pract progress meetings. shall be a part of reauld b. Detergents Place a "Fueling Area" sign next to each fueling area. . Paints (enamel and lates Information regarding waste management, equipment shall be prominently posted in the construction trailer . Equipment maintenance practices 6. Store hazardous materials such as fuel, solvents, oil and chemicals in secondary con d. Cleaning solvents . Inspect vehicles and equipment for leaks on each day of use. Repair fluid and oil leaks a. If possible, equipment should be taken to off-sile (maintenance. rcial facilities for e. Pesticides f. Wood scrops immediately b. If performed on-site, vehicles shall be washed with high-pressure water spray without detergents in an area contained by an impervious berm. 8. Absorbent spill clean-up materials and spill kits must be available in fueling areas and on fu g. Fertilizers CONTACT INFORMATION h. Petroleum based products DNREC 24-Hour Toll Free Number 9. If fueling is to take place at night, make sure the fueling area is sufficiently illumina c. Drip pans shall be used for all equipment maintenance. 800-662-8802 2. Good housekeeping practices 10. Properly dispose of used oil, fluids, lubricants and spill clean-up materials d. Equipment shall be inspected for leaks on a daily basis. DNREC Solid & Hezerdous Weste Me 302.739.9403 a. Store only enough product required to do the job. CLEAN UP SPILLS e. Washout from concrete trucks shall be disposed of in a temporary pit for hardening and b. All materials shall be stored in a neat, orderly manner in their origi 1. If it is safe to do so, immediately contain and clean up any chemical and/or haza proper disposal. and covered. spills. f. Fuel nozzles shall be equipped with automatic shut-off valves. Property dispose of used oil, fluids, lubricants and spill clean-up material c. Substances shall not be mixed. I can reacted arran be equipped with automatic shuf-off valves. Jil used products such as oil, antifrezz, solvents and tres shall be dispo accordance with manufacturers' recommendations and local, state and federal regulations. Plantin at sed of in 3. Do not bury spills or wash them down with water. d. When possible, all of a product shall be used up prior to disposal of the co LEAKS AND DRIPS e. Manufacturers' instructions for disposal shall be strictly adhered to 1. Use drip pans or absorbent pads at all times. Place under and around leaky equip f. The site foreman shall designate someone to inspect all BMPs daily. 5. Spill prevention practices Do not allow all, grease, fuel or chemicals to drip onto the ground. Have split kits and clean up material on-site. Potential spill areas shall be identified to the storm drain system. . Waste management practices All waste materials shall be collected that does not drain to a waterbody. Repair leaky equipment promptly or remove problem ve Clean up contaminated soil immediately. irles and emirment from the si b. Warning signs shall be posted in hazardous material storage greas Preventive maintenance shall be performed on all tanks, valves, pumps, pipes and other equipment as necessary. b. Waste materials shall be salvaged and/or recycled whenever possible Store contaminated waste in sealed conta containers properly. de de la c. The dumpsters shall be emptied a minimum of twice per week, or more if licensed trash hauler is responsible for cleaning out dumpsters. d. Low or non-toxic substances shall be 6. Clean up all spills and leaks. Promptly dispose of waste and spent clean up mate Source: Symbol Detali No. Symbol: Detail N Symbol: DE-ESC-3.6.1 DE-ESC-3.6.1 Sheet 2 of 5 DE-ESC-3.6.1 Sheet 3 of 5 Adapted from USEPA Pub. 840-8-92-002 DE-ESC-3.6.1 Sheet 4 of 5 DE-ESC-3.6.1 Sheet 5 of 5 Adapted from USEPA Pub. 840-8-92-002 Adapted from USEPA Pub. 840-8-92-002 Delaware ESC Handbook Delaware ESC Handbool Sheet 1 of 5 Effective FEB 2019 Effective FEB 2019 Effective FEB 2019 Effective FEB 2019 Effective FEB 2019

egetative Stabilization	SH SUPPORT	vegetative	Stabilization	Vegetative S	(QUIIZQ(ION	- Innoncon	Construction Note 1. Site Preparation	-	Stabilization	
	Instant Bilder Strate, Schlaft Starter Schlaft, Schlaft Starter Schlaft, Schlaft Starter Schlaft Starter Schlaft Sc		Al of the second	Harring United Bin. A. Collect Fair Collection of the Collection of the Collect	NUMERICANCE NUMBRICANCE NUMERICANCE NUMERICANCE	Ranky Image: Control of the second	subbitzon structures b. Find griding and shap 2. Seedbed Phypanation # Is Important to proper material. The and active a So Saf Ammenhannenis a. Saf Ammenhannenis d. Litras - Apply limiting mul- tito the tap 4 Sa factor to the tap 4 Sa factor into the tap 4 Sa factor formation (16 - D-3). Into the tap 4 Sa factor and the factor of the tap 4 Sa factor formation (16 - D-3). Into the tap 4 Sa factor may be used with provi b. Apply seed uniformly call and the tap 4 Sa factor may be used with provi b. Apply seed uniformly call and the tap 4 Sa factor and the tap 4 Sa facto	Silo Preparation Weight and model another and additional contril provides such as developing, gree Silo Preparation Prior to sucching Antalia, break dates, dates, greened withown, you will be an exceeded and the second and the se		
iource: Symbol: Detail No. Delaware ESC Handbook DE-ESC-3,4,3 Sheet 1 of 4	Source: Delaware ESC Handbook	Symbol:	Detail No. DE-ESC-3.4.3 Sheet 2 of 4 Effective FEB 2019	Source: Delaware ESC Handbook	Symbol:	Detail No. DE-ESC-3.4.3 Sheet 3 of 4 Effective FEB 2019	Source: Delaware ESC Handbook	Symbol:	Detail No. DE-ESC-3.4.3 Sheet 4 of 4 Effective FEB 2019	

Filepath: K:\Projects\2069-Fenwick\Fenwick\Permit\2069-PL-005-EROSION AND SEDIMENT CONTROL.dwg Figure 13

Figure 13 Erosion and Sediment Control Details 2 of 2

Sediment Chemistry Analysis

Memorandum

December 9, 2022

- To: Bill Rymer, Town of Fenwick Island
- From: Steve Bagnull and David Haury, Anchor QEA
- cc: Ram Mohan, PE, PhD, FASCE, Anchor QEA and Tony Pratt, Town of Fenwick Island Consultant

Re: Town of Fenwick Island – Dredging Project Preliminary Sediment Risk Analysis Summary

Anchor QEA has reviewed the results of the chemical analysis completed on two composite sediment samples collected in October 2021 from the proposed dredge material located in navigation channels in the Town of Fenwick Island. Our understanding is that one option for placement of the dredge material is at the site of a proposed residential development. In support of forthcoming conversations with the upland property owner, we have developed this memorandum to provide a preliminary evaluation of the sediment sample data with respect to human and ecological risk. The first step in evaluating whether placement of this material at the site of a proposed residential development would be an issue from a risk perspective is to determine whether there are any human health concerns that could result from long-term exposure to this material by future residents. The State of Delaware (DNREC 2013) has published conservative human health screening levels that can be compared to the results of the chemical analysis of the sediment samples to determine if there are any potential human health issues. These screening values include both cancer and non-cancer endpoints. The results of this human health screening analysis are provided herein. Sediment sample results that are the subject of this analysis are provided as Attachment 1 of this memorandum.

Thallium is the only chemical detected in the composite samples that exceeds its screening value for a non-cancer endpoint. Non-cancer hazards are evaluated on the basis of a reference dose, which is equal to a hazard quotient (HQ) of 1.0. The State of Delaware, however, sets its screening levels equal to a hazard quotient of 0.1 in order to account for exposure to multiple chemicals that together may add up to a total hazard index (HI) of 1.0 or greater. Based on this approach, long-term exposure to thallium by future residents results in a HQ = 0.33, well below a value of 1.0. However, although other metals detected in the sediment samples do not exceed their respective non-cancer screening levels, these results should also be included in the screening to determine if, collectively, long-term exposure to metals by future residents will exceed an HI of 1.0. The results of this more comprehensive screening approach yield a total HI = 0.42, again well below a threshold of 1.0. Other chemical constituents in the composite samples (i.e., PAHs, pesticides, and PCBs) were measured at exceedingly low levels or were non-detect and would not contribute to any risks to human health. It should be noted that a study completed by the State of Delaware on background levels of chemicals in soils throughout the state (DNREC 2012) indicates that thallium is generally at non-detect levels, with detection limits (i.e., 1.1 to 2 parts per million) that exceed the detected thallium concentrations in the two composite samples (0.251 and 0.258 parts per million); it is not unreasonable to conclude based on this that thallium in these two composite samples is at levels consistent with background levels in the state. Finally, it should also be noted that the probability of long-term exposure by future residents to any of the dredge material used as fill at the proposed site is likely very low, given that this fill material will ultimately be covered by hard surfaces, such as roads and driveways, or by topsoil to support lawns, thereby eliminating any exposure to the fill itself. This assumption should be confirmed through continued discussions with the upland property owner.

Given the degree to which a residential development would drastically alter the environment of the site and any exposure patterns by ecological receptors, it is likely that any ecological risk arising from exposure to the dredge material would be negligible. However, the State of Delaware also publishes conservative screening levels for ecological receptors, and for completeness it is important to complete a screening analysis for environmental risk as well. Chromium, mercury, selenium, vanadium, and zinc are the only chemical constituents in the composite samples that exceed their respective screening values for soil. Screening levels for these metals are generally based on potential effects to native and/or agricultural plants and/or soil invertebrates and are considered "no-effect" thresholds, below which no adverse effects are expected. Exceedances of these screening values does not mean that unacceptable exposure is occurring but does point to the need for further evaluation, which considers the nature of exposure and whether these constituents are also present as background levels in soils. First, the nature of the proposed residential development would minimize any exposure to these receptors, similar to the discussion above for human receptors. Second, the aforementioned background soil study completed by the State of Delaware indicates that the concentrations of these metals measured in the composite samples are generally within the range of soil background levels throughout the State. As such, it is likely that any exposure to concentrations in the dredge material that might be slightly higher than background levels would not result in unacceptable risk.

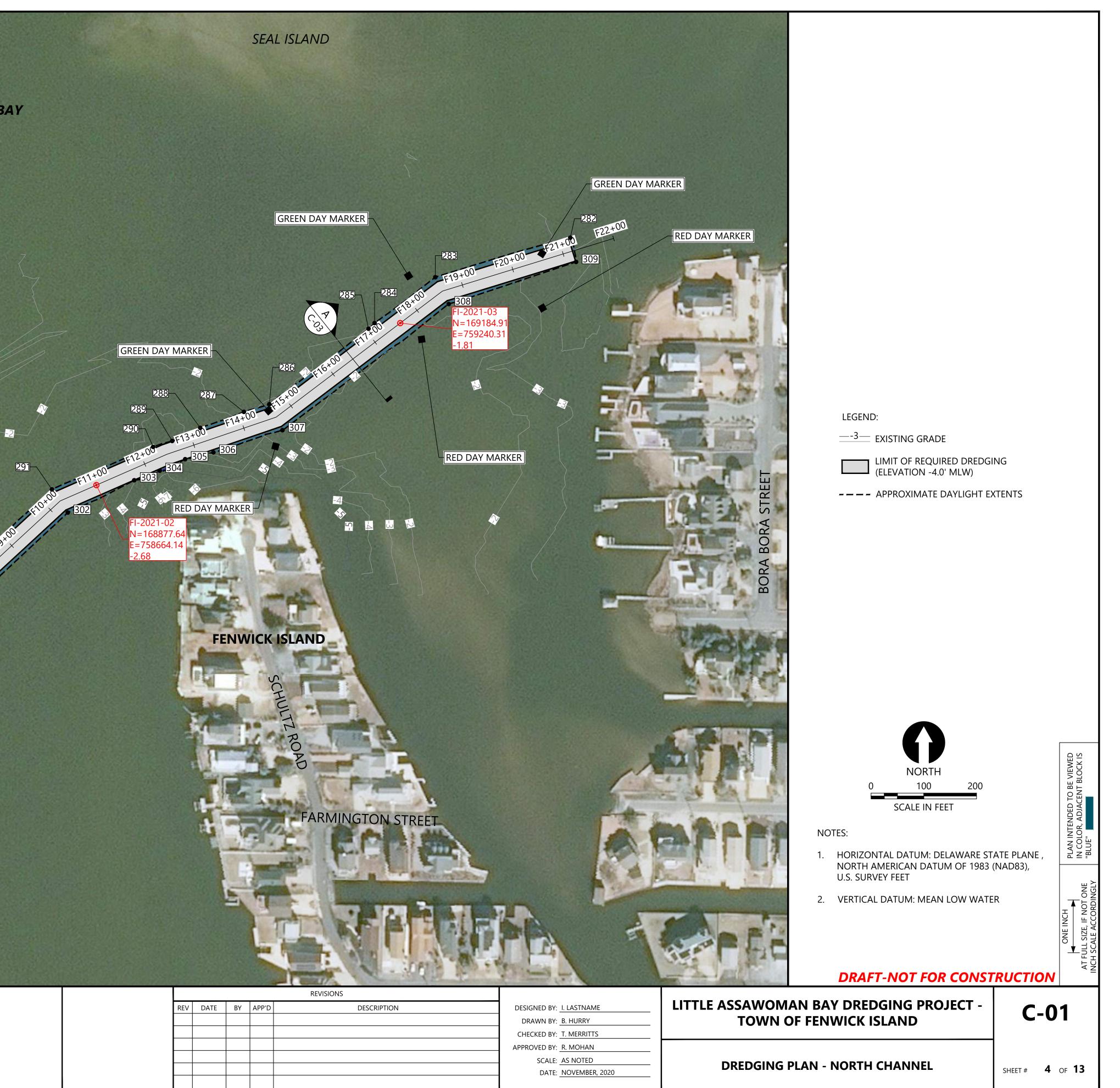
References

DNREC 2012. Statewide Soil Background Study: Report of Findings. July 2012.

DNREC 2013. *Hazardous Substance Cleanup Act Screening Level Table Guidance*. January 2013. Updated February 2022.

Attachments

Attachment 1 - Town of Fenwick Island Dredge Area Sediment Data

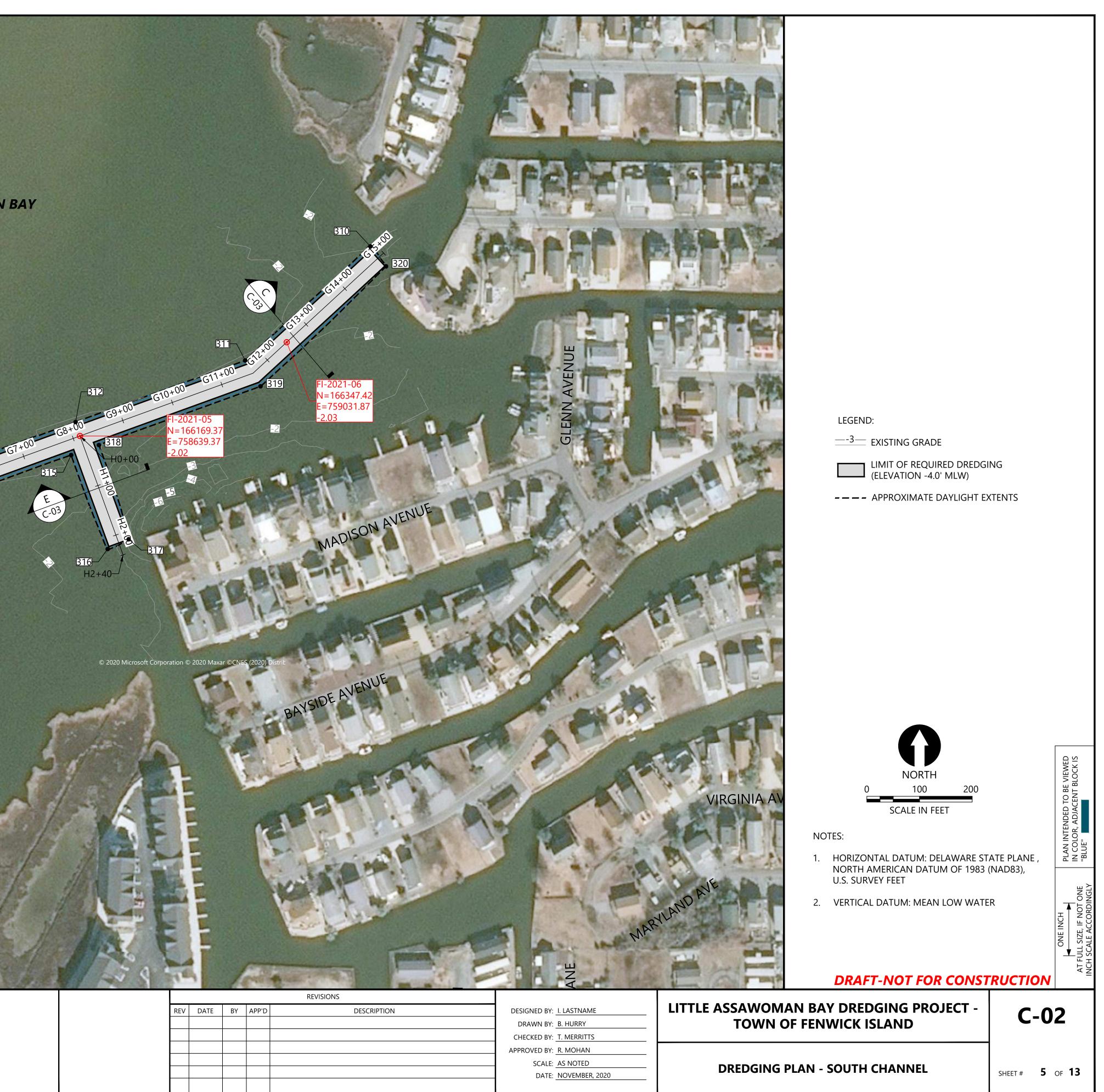

Attachment 1

Sample Location Figures

	and the second se		A WARD DOWN
	NTS		
	EASTING	NORTHING	POINT #
	759562.81	169346.89	282
	759306.83	169271.92	283
LITTLE ASSAWOMAN BA	759191.63	169184.88	284
	759180.22	169174.18	285
	758992.10	169031.10	286
	758943.78	169016.57	287
	758861.03	168986.30	288
	758807.81	168961.42	289
	758771.71	168950.17	290
	758579.85	168869.48	291
RED DAY MARKER	758349.93	168658.43	292
	758216.50	168547.88	293
	758004.50	168373.31	294
	757915.88	168302.34	295
	757875.60	168263.65	296
	757903.87	168227.60	297
	757928.46	168243.70	298
	758004.58	168306.33	299
	758141.50	168416.97	300
-2	758367.02	168600.20	301
	758609.85	168825.59	302
4	758735.83	168886.87	303
	758784.20	168905.03	304
	758832.42	168926.78	305
	758886.04	168939.69	306
292 F8 ^x 0	759016.92	168981.89	307
293 F6+00 B01	759332.24	169221.09	308
202 Fl ⁻ <u>301</u>	759573.73	169300.97	309
293 E6*00	759190.72	166529.21	310
	758953.11	166312.78	311
E5+00	758631.05	166195.91	312
No all	757884.42	165923.42	313
294 F ^A 800	757899.78	165878.83	314
294 194 194 194 194 194 194 194 1	758622.71	166133.16	315
295 N=168456.48 E=758147.41	758692.05	165954.89	316
295 295 296 F2×00 299 299 299 299 299	758731.83	165973.40	317
00	758675.35	166152.28	318
	758982.10	166263.66	319
F0+00 297	759220.39	166491.45	320
RED DAY MARKER #6			
GREEN DAY MARKER #5			
		h	

				REVISIONS	
REV	DATE	BY	APP'D	DESCRIPTION	DESIGNED BY: <u>I. LASTNAME</u>
					DRAWN BY: <u>B. HURRY</u>
					CHECKED BY: <u>T. MERRITTS</u>
					APPROVED BY: <u>R. MOHAN</u>
					SCALE: AS NOTED
					DATE: <u>NOVEMBER, 2020</u>

		7/14/1	
	C	ONTROL POIN	ITS
	POINT #	NORTHING	EASTING
	310	166529.21	759190.72
A	311	166312.78	758953.11
	312	166195.91	758631.05
	313	165923.42	757884.42
	314	165878.83	757899.78
	315	166133.16	758622.71
	316	165954.89	758692.05
	317	165973.40	758731.82
	318	166152.28	758675.35
. [p	319	166263.66	758982.10
	320	166491.45	759220.39
-			AN CONTRACTOR


LITTLE ASSAWOMAN BAY

LIGHTHOUSE GREEN CAN #1A COVE

FI-2021-04 N=166011.34 E=758203.57 -1.97

REV	DATE	BY	APP'D	DESCRIPTION	DESIGNED BY:	I. LASTNAM
					DRAWN BY:	B. HURRY
					CHECKED BY:	T. MERRITT
					APPROVED BY:	R. MOHAN
					SCALE:	AS NOTED
					DATE:	NOVEMBER

Sediment Core Logs

ACT Engineers, Inc. 1 Washington Boulevard, Suite 3 Robbinsville, NJ 08691 Telephone No. (609) 918-0200 www.actengineers.com Log of

Soil Boring

FI-2021-01

		E١	IGINEE	RS	Telephone No. (609) 918-0200 www.actengineers.com	-	TH)
Project Name:	211008-00 A Sed. Samplin		EA - Fenwick Island	Logged by:	Sean Lynch	Approximate Depth (ft)	3.75'
Project Location:	Little Assawoman Bay			Investigation Method:	VibeCore-Mini	Approximate Surface Elevation (MLLW)	-3.0'
Project Number:	211008-00			Excavation Contractor:	ACT Engineers, Inc.	Date Measured:	10/19/2021
Depth MLLW (FT)	Recovery (ft)	Sample Type	Lab Sample ID	Sample Time	Material Description	Comme	ents
$ \begin{array}{c} 0\\ 1\\ 2\\ 3\\ -4\\ -5\\ -6\\ -7\\ -8\\ 8 \end{array} $	2.5'	Grab	FI-2021-01	10:00	Sediment @ -3' Dark gray silty sand EOB @ -5.3 MLLW		
				FT-2021-DI			

20

Page 1 of 6

ACT Engineers, Inc. 1 Washington Boulevard, Suite 3 Log of

Project Name: Project Location:	211008-00 A Sampling Little Assawo	nchor QE	A - Fenwick Island Sed.		1 Washington Boulevard, Suite 3 Robbinsville, NJ 08691 Telephone No. (609) 918-0200 www.actengineers.com Sean Lynch	FI-202 (NOR	oring 1-02
Project Number:	211008-00			Excavation Contractor:	ACT Engineers, Inc.	Date Measured:	10/19/2021
Depth MLLW (FT)	Recovery (ft)	Sample Type	Lab Sample ID	Sample Time	Material Description	Comme	ents
	2'	Grab	FI-2021-02	10:40	Sediment @ -3.2' MLLW Dark gray silty sand EOB @ -5.2' MLLW		

Page 2 of 6

Project Name: Project Location:

Depth

MLLW (FT)

0

1

Project Number:

ACT Engineers, Inc.

Log of

	EN	IGINEE	RS	1 Washington Boulevard, Suite 3 Robbinsville, NJ 08691 Telephone No. (609) 918-0200 <u>www.actengineers.com</u>	FI-2021 (NORT	1-03
211008-00 Ar Sampling	ichor QE	A - Fenwick Island Sed.	Logged by:	Sean Lynch	Approximate Depth (ft)	4.00
Little Assawor	nan Bay	,	Investigation Method:	VibeCore-Mini	Approximate Surface Elevation (MLLW)	-3.1
211008-00			Excavation Contractor:	ACT Engineers, Inc.	Date Measured:	10/19/2021
Recovery (ft)	Sample Type	Lab Sample ID	Sample Time	Material Description	Comme	ents
2'	Grab	FI-2021-03	11:15	Sediment @ -3.1' MLLW Dark gray silty sand EOB @ -5.1' MLLW		
	W GR MA		Hon .	HILE BO		

Page 3 of 6

ACT Engineers, Inc. 1 Washington Boulevard, Suite 3 Robbinsville, NJ 08691 Telephone No. (609) 918-0200 www.actengineers.com Log of

Soil Boring

FI-2021-04

		E١	IGINEE	RS	Telephone No. (609) 918-0200		ſH)
Project Name:	211008-00 A Sampling	nchor QI	EA - Fenwick Island Sed.	Logged by:	www.actengineers.com Sean Lynch	Approximate Depth (ft)	4.00
Project Location:	Little Assawo	oman Ba	1	Investigation Method:	VibeCore-Mini	Approximate Surface Elevation (MLLW)	-3.2
Project Number:	211008-00			Excavation Contractor:	ACT Engineers, Inc.	Date Measured:	10/19/2021
Depth MLLW (FT)	Recovery (ft)	Sample Type	Lab Sample ID	Sample Time	Material Description	Comme	ents
	4 3' 5 6	3' ਉੱ FI-2021-04			Sediment @ -3.2' MLLW Dark gray silty sand EOB @ -6.2' MLLW	1 live tagel	us clam

Page 4 of 6

ACT Engineers, Inc. 1 Washington Boulevard, Suite 3 Robbinsville, NJ 08691 Telephone No. (609) 918-0200 www.actengineers.com Log of Soil Boring

FI-2021-05

						11202	1 00	
		E١	GINEE	RS	Telephone No. (609) 918-0200	. ,		
Project Name:	211008-00 A Sampling	nchor QI	EA - Fenwick Island Sed.	Logged by:	www.actengineers.con Sean Lynch	1 Approximate Depth (ft)	4.00	
Project Location:	Little Assawc	oman Ba	ý	Investigation Method:	VibeCore-Mini	Approximate Surface Elevation (MLLW)	-3.2	
Project Number:	211008-00			Excavation Contractor:	ACT Engineers, Inc.	Date Measured:	10/19/2021	
Depth MLLW (FT)	Recovery (ft)	Sample Type	Lab Sample ID	Sample Time	Material Description	Comme	ents	
	0 1 2 3 4 2.5' 6 6 7 8	Grab	FI-2021-05	12:30	Sediment @ -3.2' MLLW Gray silty sand EOB @ -5.7' MLLW	1 live tagel	us clam	

Page 5 of 6

ACT Engineers, Inc. 1 Washington Boulevard, Suite 3 Robbinsville, NJ 08691 Log of

Soil Boring

Project Name: Project Location: Project Number:	211008-00 A Sampling Little Assawo 211008-00	nchor QE	A - Fenwick Island Sed.	Logged by: Investigation Method: Excavation Contractor:	Telephone No. (609) 918-020 www.actengineers.co Sean Lynch VibeCore-Mini ACT Engineers, Inc.	-	4.00 -3.3 10/19/2021
Depth MLLW (FT)	Recovery (ft)	Sample Type	Lab Sample ID	Sample Time	Material Description	Comme	ents
0 1 2 3 4 5 6 7 8	2'	Grab	FI-2021-06	12:55	Sediment @ -3.3' MLLW Gray silty sand EOB @ -5.3' MLLW	2 live tagelu	ıs clams

Page 5 of 6

Sample Data Tables

hend bankDarke Sca (b) bank Sca (b)Darke Sca (b)Best Sca (b) </th <th>37.6 1.24 62.4 </th>	37.6 1.24 62.4
Convertional Parameter (c) Instrume parameter (c) Instrum parameter (124 62.4
Indegrade and provide and	124 62.4
Total Solids Image: Marcine M	62.4
first p(c) Index	
Cayindex <th< td=""><td></td></th<>	
Cobles Image: Constant of the constant	
Gravel, coarse Image:	 7430 2.45 U 4.62 17.1 0.365 J
Gravel, fine Image: fine	 7430 2.45 U 4.62 17.1 0.365 J
Sand, fine Instant Stad, fine Stad, fin	
Sad, medium Image: Medium mediu	 2.45 U 4.62 17.1 0.365 J
Sit Image: site Image: site Site <td> 7430 2.45 U 4.62 17.1 0.365 J</td>	 7430 2.45 U 4.62 17.1 0.365 J
Metak (mg/kg) Image: Second Seco	7430 2.45 U 4.62 17.1 0.365 J
Aumand Image: state	2.45 U 4.62 17.1 0.365 J
Atlinory S 3.1 2.28 U Arsnic 7.24 10 11 3.6 Barium 2.28 10 11 3.6 Barium 2.28 100 3.6 Barium 2.28 100 3.6 Barium 0.10 160	2.45 U 4.62 17.1 0.365 J
Assnic 7.24 10 11 3.63 Barlum 2.83 1500 1.2.6 Beryllum 10 16 0.291 0.291 Cadmim 0.68 3 7.1 0.151 Cadium 0.68 3 7.1 0.151 Cadium 0.58 3.0.4 2.14 0.151 Chromium 523 0.4 2.14 1.4.0	4.62 17.1 0.365 J
Barium 283 1500 12.6 Berglium 0 10 16 0 0 0 0.291 Cadmium 0.68 3 7.1 0 0 0 0.151 Calcium 0 0 0.151 Chromium 523 0.4 214 0 0 14.0	17.1 0.365 J
Beylium Image: Marcine	0.365 J
Cadmin 0.68 3 7.1 0.151 J Calcium 0.151 J 0.151 J Calcium 0.151 J Chronium 52.3 0.4 214 14.0	
Chromium 523 0.4 214 14.0	0.115 J
	10400
	18.8
Cobalt 20 34 3.33	4.27
Copper 18.7 50 310 6.43	6.16
Iron	11900
Lead 30.2 41 400 9.45 Magnesium 2630	5.58 3570
Marganese 2100 200 271.9	109
Image: Constraint of the second sec	0.010 J
Nickel 15.9 30 150	10.3
Potassium 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1640
Selenium 0.2 39	1.92 J
Silver 0.73 2 39 0.712 U	0.766 U
Sodium	4190
Thallium 1 0.078 0.258 Vandium 2 134 153	0.251 J 21.3
Vanadium 2 134 15.3 Zinc 124 8.5 2300 36.7	32
Lilli (24) 0.3 2.300 ** ** ** ** ** ** ** ** ** ** ** ** *	32
Proyect Annual Pyrotechols (Mg/Kg) Acenaphtene 0.00671 20 360 0.00807	0.000622 J
Acamphtlylene Control	0.00112 J
Anthracee 0.0469 1800 1800	0.00184
Benzo(a)enthracene 0.0748 1.1 0.0306	0.00405
Benzo(a)pyrene 0.0888 0.24	0.00381
Benzo(b)fluoranthene 1.11	0.00515
Berao(e)pree Image: Constraint of the second o	0.00374
Berzo(g,h)perylene 0.0191 Berzo(g,k)fluoranthene 0.0258	0.00421 0.00403
Bertoglationamente de la construction de la	0.00403
Cl-Surgenes 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.00668
C1-Fluorenes ··· <t< td=""><td>0.000933 J</td></t<>	0.000933 J
C1-Naphthalenes 20 20 20 20 20 20 20 20 20 20 20 20 20	0.000949 J
C1-Phenathrenes/Anthracenes	0.00533
C2-Chrysenes ·· ·· ·· ·· 0.00667	0.00368
C2-Fluorenes ··· ··· ··· ··· 0.00338	0.00254
C2-Naphthalenes	0.00572
C2-Phennthrene/Anthrene Anthrene/A	0.00504
	0.00525
G3-Ruberes	0.00532
C3-requiringences Canada	0.00243
Crimenal devices / Constraints	0.00961
	0.0032
C4-Phenanthrenes/Anthracenes	0.00296
Chrysene 0.108 110 0.0403	0.0054

			Task Location ID Sample ID Sample Date Depth Sample Type Matrix	2021_SedChar FI-2021-01 FI-2021-01-20211019 10/19/2021 0 - 2.3 ft N SE	2021_SedChar FI-2021-02 FI-2021-02-20211019 10/19/2021 0 - 2 ft N SE	2021_SedChar Fi-2021-03 Fi-2021-03-20211019 10/19/2021 0 - 2 ft N SE	2021_SedChar Fi-2021-04 Fi-2021-04-20211019 10/19/2021 0 - 3 ft N SE	2021_SedChar FI-2021-05 FI-2021-05-20211019 10/19/2021 0 - 2.5 ft N SE	2021_SedChar Fi-2021-06 Fi-2021-06-20211019 10/19/2021 0 - 2 ft N SE	2021_SedChar FI-2021-NORTH FI-2021-NORTH-20211019 10/19/2021 N SE	2021_SedChar FI-2021-SOUTH FI-2021-SOUTH-20211019 10/19/2021 N SE
			X Y	758147.41 168456.48	758664.14 168877.64	759240.31 169184.91	758203.57 166011.34	758639.37 166169.37	759031.87 166347.42		
Chemical	DNREC_HSCA_EC_SED_M	DNREC_HSCA_EC_SOIL	DNREC_HSCA_SOIL								
Fluoranthene	0.113		240							0.0616	0.00871
Fluorene Indeno(1,2,3-c,d)pyrene	0.0212	30	240			-				0.00761 0.019	0.000952 J 0.00352
Naphthalene	0.0346		2							0.0041	0.00131 J
Perylene										0.0217	0.0181
Phenanthrene	0.0867		180							0.0447	0.0052
Pyrene	0.153		180							0.0522	0.00872
Pesticides (mg/kg) 2,4'-DDD (o,p'-DDD)						-				0.000147 U	0.000736 U
2,4'-DDE (0,p'-DDE)										0.000147 U	0.000736 U
2,4'-DDT (o,p'-DDT)										0.000147 U	0.000736 U
4,4'-DDD (p,p'-DDD)	0.00122		0.19							0.000555	0.000736 U
4,4'-DDE (p,p'-DDE)	0.00207		2							0.000995	0.000736 U
4,4'-DDT (p,p'-DDT) Aldrin	0.00119		1.9 0.039							0.000147 U 0.000147 U	0.000736 U 0.000736 U
Aldrin Chlordane, alpha- (Chlordane, cis-)			0.059							0.000147 U	0.000736 U
Chlordane, beta- (Chlordane, trans-)										0.000147 U	0.000736 U
Dieldrin	0.00072		0.034						-	0.000147 U	0.000736 U
Endosulfan sulfate										0.000147 U	0.000736 U
Endosulfan, alpha- (I)										0.000147 U 0.000147 U	0.000736 U 0.000736 U
Endosulfan, beta (II) Endrin	0.00267		1.9							0.000147 U	0.000736 U
Endrin aldehyde										0.000440 U	0.00221 U
Endrin ketone										0.000147 U	0.000736 U
Heptachlor			0.13							0.000147 U	0.000736 U
Heptachlor epoxide	0.0006		0.07							0.000294 U	0.00147 U
Hexachlorobenzene Hexachlorocyclohexane (BHC), alpha-	1.36	1000	0.21							0.000294 U 0.000147 U	0.00147 U 0.000736 U
Hexachlorocyclohexane (BHC), alpha- Hexachlorocyclohexane (BHC), beta-	1.50		0.3							0.000147 U	0.000736 U
Hexachlorocyclohexane (BHC), delta-										0.000147 U	0.000736 U
Hexachlorocyclohexane (BHC), gamma- (Lindar			0.57							0.000147 U	0.000736 U
Methoxychlor	0.0296		32							0.00147 U	0.00736 U
Mirex Nonachlor, cis-			0.036							0.000147 U 0.000147 U	0.000736 U 0.000736 U
Nonachlor, trans-										0.000147 U	0.000736 U
Oxychlordane										0.000294 U	0.00147 U
Toxaphene	0.536		0.49							0.00737 U	0.0369 U
PCB Congeners (ng/kg)							r		i	1	
PCB-001 PCB-002										282 U 282 U	301 U 301 U
PCB-002 PCB-003										282 U 282 U	301 U 301 U
PCB-004/010						-				563 U	601 U
PCB-005										282 U	301 U
PCB-006										282 U	301 U
PCB-007 PCB-008										282 U 282 U	301 U 301 U
PCB-008 PCB-009										282 U 282 U	301 U 301 U
PCB-003										282 U	301 U
PCB-012										282 U	301 U
PCB-013						-				563 U	601 U
PCB-014										282 U	301 U
PCB-015 PCB-016										282 U 282 U	301 U 301 U
PCB-016 PCB-017										282 U 282 U	301 U
PCB-018										282 U	301 U
PCB-019										282 U	301 U
PCB-020/021										563 U	601 U
PCB-022										282 U	301 U
PCB-023 PCB-024										282 U 282 U	301 U 301 U
PCB-024 PCB-025										282 U	301 U
PCB-026			1							282 U	301 U
PCB-027										282 U	301 U
PCB-028										282 U	301 U

			Task Location ID Sample ID Sample Date Depth Sample Type Matrix X v	2021_SedChar FI-2021-01 FI-2021-01-20211019 10/19/2021 0 - 2.3 ft N SE 758147.41 168456.48	2021_5edChar FI-2021-02 FI-2021-02-20211019 10/19/2021 0 - 2 ft N SE 758664.14 168877.64	2021_SedChar FI-2021-03 FI-2021-03-20211019 10/19/2021 0 - 2 ft N SE 759240.31 169184.91	2021_5edChar FI-2021-04 FI-2021-04-20211019 10/19/2021 0 - 3 ft N SE 758203.57 166011.34	2021_SedChar FI-2021-05 FI-2021-05-20211019 10/19/2021 0 - 2.5 ft N SE 758639.37 166169.37	2021_SedChar FI-2021-06 FI-2021-06-20211019 10/19/2021 0 - 2 ft N SE 759031.87 166347.42	2021 SedChar FI-2021-NORTH FI-2021-NORTH-20211019 10/19/2021 N SE 	2021_5edChar FI-2021-SOUTH FI-2021-SOUTH-20211019 10/19/2021 N SE
Chemical	DNREC_HSCA_EC_SED_M	DNREC_HSCA_EC_SOIL	DNREC_HSCA_SOIL	100450.40	100077.04	105104.51	100011.54	100103.37	100347.42		
PCB-029					-					282 U	301 U
PCB-030										282 U	301 U
PCB-031 PCB-032										282 U 282 U	301 U 301 U
PCB-032					-					282 U	301 U
PCB-034										282 U	301 U
PCB-035					-					282 U	301 U
PCB-036										282 U	301 U
PCB-037 PCB-038										282 U 282 U	301 U 301 U
PCB-039										282 U	301 U
PCB-040										282 U	301 U
PCB-041					-					282 U	301 U
PCB-042				-	-					282 U	301 U
PCB-043						-				282 U	301 U
PCB-044 PCB-045										282 U 282 U	301 U 301 U
PCB-046/073									-	563 U	601 U
PCB-047										282 U	301 U
PCB-048										282 U	301 U
PCB-049										282 U	301 U
PCB-050 PCB-051										282 U 282 U	301 U 301 U
PCB-051										282 U	301 U
PCB-053										282 U	301 U
PCB-054					-					282 U	301 U
PCB-055										282 U	301 U
PCB-056 PCB-057										282 U 282 U	301 U 301 U
PCB-057 PCB-058/067										282 U	601 U
PCB-059										282 U	301 U
PCB-060					-					282 U	301 U
PCB-061										282 U	301 U
PCB-062/065/075										845 U	902 U
PCB-063 PCB-064/068					-					282 U 563 U	301 U 601 U
PCB-066										282 U	301 U
PCB-069					-					282 U	301 U
PCB-070					-					282 U	301 U
PCB-071										282 U	301 U
PCB-072 PCB-074										282 U 282 U	301 U 301 U
PCB-076										282 U	301 U
PCB-077										282 U	301 U
PCB-078										282 U	301 U
PCB-079										282 U	301 U
PCB-080 PCB-081										282 U 282 U	301 U 301 U
PCB-081 PCB-082										282 U 282 U	301 U 301 U
PCB-083/112/125										845 U	902 U
PCB-084/089										563 U	601 U
PCB-085					-					282 U	301 U
PCB-086/109										563 U	601 U
PCB-087/111 PCB-088/095/121										563 U 845 U	601 U 902 U
PCB-090/055/121										563 U	601 U
PCB-091										282 U	301 U
PCB-092					-					282 U	301 U
PCB-093					-					282 U	301 U
PCB-094 PCB-096										282 U 282 U	301 U 301 U
PCB-096 PCB-097										282 U 282 U	301 U 301 U
PCB-098	1								-	282 U	301 U
PCB-099										282 U	301 U

		Task Location ID Sample Date Depth Sample Type Matrix X Y	2021_SedChar Fi-2021-01 Fi-2021-01-20211019 10/19/2021 0 - 2.3 ft N SE 758147.41 168456.48	2021 SedChar Fi-2021-02 Fi-2021-02-20211019 10/19/2021 0 - 2 ft N SE 758664.14 168877.64	2021_SedChar Fi-2021-03 Fi-2021-03-20211019 10/19/2021 0 - 2 ft N SE 759240.31 169184.91	2021_SedChar Fi-2021-04 Fi-2021-04-20211019 10/19/2021 0 - 3 ft N SE 758203.57 166011.34	2021_5edChar FI-2021-05 FI-2021-05-20211019 10/19/2021 0 - 2.5 ft N SE 758639.37 166169.37	2021 SedChar Fi-2021-06 Fi-2021-06-20211019 10/19/2021 0 - 2 ft N SE 759031.87 166347.42	2021 SedChar FI-2021-NORTH FI-2021-NORTH-20211019 10/19/2021 N SE 	2021_SedChar FI-2021-SOUTH FI-2021-SOUTH-20211019 10/19/2021 N SE
Chemical	DNREC_HSCA_EC_SED_M	DNREC_HSCA_EC_SOIL DNREC_HSCA_SOIL	100450.40	100077.04	105104.51	100011.54	100103.31	100347.42		
PCB-100									282 U	301 U
PCB-102 PCB-103									282 U 282 U	301 U 301 U
PCB-103 PCB-104									282 U 282 U	301 U 301 U
PCB-105		120000							282 U	301 U
PCB-106									282 U	301 U
PCB-107/123									563 U	601 U
PCB-108 PCB-110									282 U 282 U	301 U 301 U
PCB-110 PCB-113									282 U 282 U	301 U 301 U
PCB-114		120000							282 U	301 U
PCB-115									282 U	301 U
PCB-116									282 U	301 U
PCB-117 PCB-118		120000							282 U	301 U 301 U
PCB-118 PCB-119		120000						-	282 U 282 U	301 U 301 U
PCB-120								-	282 U	301 U
PCB-122									282 U	301 U
PCB-124									282 U	301 U
PCB-126		36							282 U	301 U
PCB-127 PCB-128									282 U 282 U	301 U 301 U
PCB-120 PCB-129/158									262 U	601 U
PCB-130/164									563 U	601 U
PCB-131									282 U	301 U
PCB-132									282 U	301 U
PCB-133 PCB-134									282 U 282 U	301 U 301 U
PCB-134 PCB-135									282 U 282 U	301 U 301 U
PCB-136									282 U	301 U
PCB-137									282 U	301 U
PCB-138									282 U	301 U
PCB-139/143									563 U	601 U
PCB-140 PCB-141									282 U 282 U	301 U 301 U
PCB-141 PCB-142									282 U	301 U 301 U
PCB-144									282 U	301 U
PCB-145									282 U	301 U
PCB-146									282 U	301 U
PCB-147/149									563 U	601 U
PCB-148 PCB-150									282 U 282 U	301 U 301 U
PCB-150 PCB-151									282 U	301 U
PCB-152									282 U	301 U
PCB-153									282 U	301 U
PCB-154									282 U	301 U
PCB-155 PCB-156		120000							282 U 282 U	301 U 301 U
PCB-156 PCB-157		120000							282 U 282 U	301 U 301 U
PCB-159	1								282 U	301 U
PCB-160/163									563 U	601 U
PCB-161									282 U	301 U
PCB-162									282 U	301 U
PCB-165 PCB-166									282 U 282 U	301 U 301 U
PCB-165 PCB-167		120000						-	282 U	301 U 301 U
PCB-168									282 U	301 U
PCB-169		120							282 U	301 U
PCB-170								-	282 U	301 U
PCB-171 PCB-172									282 U 282 U	301 U 301 U
PCB-172 PCB-173								-	282 U 282 U	301 U 301 U
PCB-174	1								282 U	301 U
PCB-175/182									563 U	601 U

		2021_SedChar FI-2021-01 FI-2021-01-20211019 10/19/2021 0 - 2.3 ft N SE 758147.41 168456.48	2021_SedChar Fi-2021-02 Fi-2021-02-20211019 10/19/2021 0 - 2 ft N SE 758664.14 168877.64	2021_SedChar Fi-2021-03 Fi-2021-03-20211019 10/19/2021 0 - 2 ft N SE 759240.31 169184.91	2021_SedChar Fi-2021-04 Fi-2021-04-20211019 10/19/2021 0 - 3 ft N SE 758203.57 166011.34	2021_SedChar FI-2021-05 FI-2021-05-20211019 10/19/2021 0 - 2.5 ft N SE 758639.37 166169.37	2021_SedChar Fi-2021-06 Fi-2021-06-20211019 10/19/2021 0 - 2 ft N SE 759031.87 166347.42	2021_SedChar FI-2021-NORTH FI-2021-NORTH-20211019 10/19/2021 N SE 	2021_SedChar FI-2021-SOUTH FI-2021-SOUTH-20211019 10/19/2021 N SE 	
Chemical	DNREC_HSCA_EC_SED_M DNREC_HSCA_EC_SOIL	DNREC_HSCA_SOIL								
PCB-176									282 U	301 U
PCB-177									282 U	301 U
PCB-178									282 U	301 U
PCB-179									282 U	301 U
PCB-180									282 U	301 U
PCB-181									282 U	301 U
PCB-183									282 U	301 U
PCB-184									282 U	301 U
PCB-185									282 U	301 U
PCB-186									282 U	301 U
PCB-187									282 U	301 U
PCB-188									282 U	301 U
PCB-189		130000							282 U	301 U
PCB-190									282 U	301 U
PCB-191									282 U	301 U
PCB-192									282 U	301 U
PCB-193									282 U	301 U
PCB-194									282 U	301 U
PCB-195									282 U	301 U
PCB-196									282 U	301 U
PCB-197									282 U	301 U
PCB-198									282 U	301 U
PCB-199									282 U	301 U
PCB-200/204									563 U	601 U
PCB-201									282 U	301 U
PCB-202									282 U	301 U
PCB-203									282 U	301 U
PCB-205									282 U	301 U
PCB-206									282 U	301 U
PCB-207									282 U	301 U
PCB-208									282 U	301 U
PCB-209									282 U	301 U
Total PCB Congener (U = 0)	40000 4000000								845 U	902 U

Notes:

Detected concentration is greater than DNREC_HSCA_EC_SED_M screening level (2021 Delaware DNREC HSCA Screening Levels for Ecological Sediment in Marine Water) Detected concentration is greater than DNREC_HSCA_EC_SOIL screening level (2021 Delaware DNREC HSCA Screening Levels for Ecological Surface Soil) Detected concentration is greater than DNREC_HSCA_SOIL screening level (2021 Delaware DNREC HSCA Screening Levels for Soil)

Bold: Detected result

J: Estimated value

U: Compound analyzed for, but not detected above detection limit

Total PCB Congener (U = 0): Total PCB congeners where nondetected results are replaced with zero. If all results are nondetects, the maximum nondetected value is reported as the total.

Laboratory Report

ANALYTICAL REPORT

Lab Number:	L2157780
Client:	Anchor QEA, LLC 176 Prospect Park West Seattle, WA 98101
ATTN: Phone: Project Name:	Steve Bagnull (267) 751-4116 LITTLE ASSAWOMAN BAY, FENWICK
Project Number: Report Date:	192069-01.01 01/11/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK
Project Number:	192069-01.01

Lab Number:	L2157780
Report Date:	01/11/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2157780-01	FI-2021-01-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 10:00	10/21/21
L2157780-02	FI-2021-02-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 10:40	10/21/21
L2157780-03	FI-2021-03-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 11:15	10/21/21
L2157780-04	FI-2021-04-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 11:52	10/21/21
L2157780-05	FI-2021-05-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 12:30	10/21/21
L2157780-06	FI-2021-06-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 12:55	10/21/21
L2157780-07	FI-2021-NORTH-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 11:20	10/21/21
L2157780-08	FI-2021-SOUTH-20211019	SEDIMENT	LITTLE ASSAWOMAN BAY	10/19/21 13:00	10/21/21

Project Name: LITTLE ASSAWOMAN BAY, FENWICK Project Number: 192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: LITTLE ASSAWOMAN BAY, FENWICK Project Number: 192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Case Narrative (continued)

Report Submission

January 11, 2022; This is a final report.

December 28, 2021: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2157780: The samples were frozen upon receipt in order to arrest the holding time.

L2157780-01: The sample identified as "FI-2021-01" on the chain of custody was identified as "FI-2021-F1" on the container label. At the client's request, the sample is reported as "FI-2021-01".

L2157780-07: The collection date and time on the chain of custody was 19-OCT-21 11:20; however, the collection date/time on the container label was 19-OCT-21 10:00. At the client's request, the collection date/time is reported as 19-OCT-21 11:20.

L2157780-08: The collection date and time on the chain of custody was 19-OCT-21 13:00; however, the collection date/time on the container label was 19-OCT-21 11:52. At the client's request, the collection date/time is reported as 19-OCT-21 13:00.

Pesticides

L2157780-08D: The sample has elevated detection limits due to the dilution required by the sample matrix. WG1580105-2/-3: The surrogate recovery is outside the individual acceptance criteria for tetrachloro-metaxylene (195% and 186%), but within the overall method allowances.

Total Organic Carbon

WG1587625-1: The required batch QC was prepared; however, the native sample required a different reporting method; therefore, the associated QC results could not be reported.

Grain Size Analysis

Project Name:LITTLE ASSAWOMAN BAY, FENWICKProject Number:192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Case Narrative (continued)

The WG1583676-1 Laboratory Duplicate RPD for % coarse sand (67%), performed on L2157780-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Galt Por Elizabeth Porta

Title: Technical Director/Representative

Date: 01/11/22

ORGANICS

SEMIVOLATILES

		Serial_No	0:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-07	Date Collected:	10/19/21 11:20
Client ID:	FI-2021-NORTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Sediment	Extraction Method	I: ALPHA OP-013
Analytical Method:	1,8270D-SIM(M)	Extraction Date:	12/07/21 16:24
Analytical Date:	12/14/21 12:24	Cleanup Method:	EPA 3611B
Analyst:	CC	Cleanup Date:	12/11/21
Percent Solids:	68%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs - Mansfield Lab						
Naphthalene	4.10		ug/kg	1.47	0.422	1
C1-Naphthalenes	3.25		ug/kg	1.47	0.422	1
C2-Naphthalenes	5.12		ug/kg	1.47	0.422	1
C3-Naphthalenes	3.77		ug/kg	1.47	0.422	1
C4-Naphthalenes	3.65		ug/kg	1.47	0.422	1
Acenaphthylene	1.34	J	ug/kg	1.47	0.280	1
Acenaphthene	8.07		ug/kg	1.47	0.259	1
Fluorene	7.61		ug/kg	1.47	0.392	1
C1-Fluorenes	2.80		ug/kg	1.47	0.392	1
C2-Fluorenes	3.38		ug/kg	1.47	0.392	1
C3-Fluorenes	7.26		ug/kg	1.47	0.392	1
Phenanthrene	44.7		ug/kg	1.47	0.487	1
C1-Phenanthrenes/Anthracenes	18.9		ug/kg	1.47	0.487	1
C2-Phenanthrenes/Anthracenes	11.2		ug/kg	1.47	0.487	1
C3-Phenanthrenes/Anthracenes	6.87		ug/kg	1.47	0.487	1
C4-Phenanthrenes/Anthracenes	3.43		ug/kg	1.47	0.487	1
Anthracene	14.5		ug/kg	1.47	0.303	1
Fluoranthene	61.6		ug/kg	1.47	0.467	1
Pyrene	52.2		ug/kg	1.47	0.386	1
C1-Fluoranthenes/Pyrenes	31.6		ug/kg	1.47	0.386	1
Benz(a)anthracene	30.6		ug/kg	1.47	0.300	1
Chrysene	40.3		ug/kg	1.47	0.297	1
C1-Chrysenes	13.2		ug/kg	1.47	0.297	1
C2-Chrysenes	6.67		ug/kg	1.47	0.297	1
C3-Chrysenes	6.88		ug/kg	1.47	0.297	1
C4-Chrysenes	9.16		ug/kg	1.47	0.297	1
Benzo(b)fluoranthene	29.0		ug/kg	1.47	0.382	1
Benzo(j)+(k)fluoranthene	25.8		ug/kg	1.47	0.292	1

		Serial_No	0:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-07	Date Collected:	10/19/21 11:20
Client ID:	FI-2021-NORTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs - Mansfield Lab						
Benzo(e)pyrene	19.3		ug/kg	1.47	0.303	1
Benzo(a)pyrene	31.2		ug/kg	1.47	0.420	1
Perylene	21.7		ug/kg	1.47	0.284	1
Indeno(1,2,3-cd)pyrene	19.0		ug/kg	1.47	0.399	1
Dibenz(a,h)+(a,c)anthracene	5.38		ug/kg	1.47	0.397	1
Benzo(g,h,i)perylene	19.1		ug/kg	1.47	0.390	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Naphthalene-d8	72	50-130	
Phenanthrene-d10	92	50-130	
Benzo(a)pyrene-d12	107	50-130	

		Serial_No	0:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-08	Date Collected:	10/19/21 13:00
Client ID:	FI-2021-SOUTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Sediment	Extraction Method	I: ALPHA OP-013
Analytical Method:	1,8270D-SIM(M)	Extraction Date:	12/07/21 16:24
Analytical Date:	12/16/21 09:22	Cleanup Method:	EPA 3611B
Analyst:	CC	Cleanup Date:	12/11/21
Percent Solids:	62%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs - Mansfield Lab						
Naphthalene	1.31	J	ug/kg	1.56	0.447	1
C1-Naphthalenes	0.949	J	ug/kg	1.56	0.447	1
C2-Naphthalenes	5.72		ug/kg	1.56	0.447	1
C3-Naphthalenes	2.45		ug/kg	1.56	0.447	1
C4-Naphthalenes	3.20		ug/kg	1.56	0.447	1
Acenaphthylene	1.12	J	ug/kg	1.56	0.297	1
Acenaphthene	0.622	J	ug/kg	1.56	0.274	1
Fluorene	0.952	J	ug/kg	1.56	0.415	1
C1-Fluorenes	0.933	J	ug/kg	1.56	0.415	1
C2-Fluorenes	2.54		ug/kg	1.56	0.415	1
C3-Fluorenes	5.32		ug/kg	1.56	0.415	1
Phenanthrene	5.20		ug/kg	1.56	0.516	1
C1-Phenanthrenes/Anthracenes	5.33		ug/kg	1.56	0.516	1
C2-Phenanthrenes/Anthracenes	5.04		ug/kg	1.56	0.516	1
C3-Phenanthrenes/Anthracenes	4.37		ug/kg	1.56	0.516	1
C4-Phenanthrenes/Anthracenes	2.96		ug/kg	1.56	0.516	1
Anthracene	1.84		ug/kg	1.56	0.321	1
Fluoranthene	8.71		ug/kg	1.56	0.495	1
Pyrene	8.72		ug/kg	1.56	0.409	1
C1-Fluoranthenes/Pyrenes	6.68		ug/kg	1.56	0.409	1
Benz(a)anthracene	4.05		ug/kg	1.56	0.317	1
Chrysene	5.40		ug/kg	1.56	0.315	1
C1-Chrysenes	3.91		ug/kg	1.56	0.315	1
C2-Chrysenes	3.68		ug/kg	1.56	0.315	1
C3-Chrysenes	5.25		ug/kg	1.56	0.315	1
C4-Chrysenes	9.61		ug/kg	1.56	0.315	1
Benzo(b)fluoranthene	5.15		ug/kg	1.56	0.405	1
Benzo(j)+(k)fluoranthene	4.03		ug/kg	1.56	0.309	1

		Serial_No	p:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-08	Date Collected:	10/19/21 13:00
Client ID:	FI-2021-SOUTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PAHs - Mansfield Lab						
Benzo(e)pyrene	3.74		ug/kg	1.56	0.321	1
Benzo(a)pyrene	3.81		ug/kg	1.56	0.444	1
Perylene	18.1		ug/kg	1.56	0.300	1
Indeno(1,2,3-cd)pyrene	3.52		ug/kg	1.56	0.422	1
Dibenz(a,h)+(a,c)anthracene	1.06	J	ug/kg	1.56	0.420	1
Benzo(g,h,i)perylene	4.21		ug/kg	1.56	0.414	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Naphthalene-d8	67	50-130	
Phenanthrene-d10	87	50-130	
Benzo(a)pyrene-d12	100	50-130	

L2157780

01/11/22

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:
	Method Blank Analysis Batch Quality Control	

Extraction Method: ALPHA OP-013

Analytical Method:1,82Analytical Date:12/*Analyst:CC

1,8270D-SIM(M) 12/14/21 06:28 CC

Extraction Method:ALPHA OP-013Extraction Date:12/07/21 16:24Cleanup Method:EPA 3611BCleanup Date:12/11/21

Parameter	Result	Qualifi	er Units	RL	MDL	
PAHs - Mansfield Lab for sample(s):	07-08	Batch:	WG1580280-1			
Naphthalene	ND		ug/kg	1.00	0.287	
C1-Naphthalenes	ND		ug/kg	1.00	0.287	
C2-Naphthalenes	ND		ug/kg	1.00	0.287	
C3-Naphthalenes	ND		ug/kg	1.00	0.287	
C4-Naphthalenes	ND		ug/kg	1.00	0.287	
Acenaphthylene	ND		ug/kg	1.00	0.191	
Acenaphthene	ND		ug/kg	1.00	0.176	
Fluorene	ND		ug/kg	1.00	0.267	
C1-Fluorenes	ND		ug/kg	1.00	0.267	
C2-Fluorenes	ND		ug/kg	1.00	0.267	
C3-Fluorenes	ND		ug/kg	1.00	0.267	
Phenanthrene	ND		ug/kg	1.00	0.331	
C1-Phenanthrenes/Anthracenes	ND		ug/kg	1.00	0.331	
C2-Phenanthrenes/Anthracenes	ND		ug/kg	1.00	0.331	
C3-Phenanthrenes/Anthracenes	ND		ug/kg	1.00	0.331	
C4-Phenanthrenes/Anthracenes	ND		ug/kg	1.00	0.331	
Anthracene	ND		ug/kg	1.00	0.206	
Fluoranthene	ND		ug/kg	1.00	0.318	
Pyrene	ND		ug/kg	1.00	0.263	
C1-Fluoranthenes/Pyrenes	ND		ug/kg	1.00	0.263	
Benz(a)anthracene	ND		ug/kg	1.00	0.204	
Chrysene	ND		ug/kg	1.00	0.202	
C1-Chrysenes	ND		ug/kg	1.00	0.202	
C2-Chrysenes	ND		ug/kg	1.00	0.202	
C3-Chrysenes	ND		ug/kg	1.00	0.202	
C4-Chrysenes	ND		ug/kg	1.00	0.202	
Benzo(b)fluoranthene	ND		ug/kg	1.00	0.260	
Benzo(j)+(k)fluoranthene	ND		ug/kg	1.00	0.198	
Benzo(e)pyrene	ND		ug/kg	1.00	0.206	

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D-SIM(M)
Analytical Date:	12/14/21 06:28
Analyst:	CC

Extraction Method:	ALPHA OP-013
Extraction Date:	12/07/21 16:24
Cleanup Method:	EPA 3611B
Cleanup Date:	12/11/21

Parameter	Result	Qualit	ier Units	RL	MDL	
PAHs - Mansfield Lab for sample(s):	07-08	Batch:	WG1580280-1			
Benzo(a)pyrene	ND		ug/kg	1.00	0.285	
Perylene	ND		ug/kg	1.00	0.193	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	1.00	0.271	
Dibenz(a,h)+(a,c)anthracene	ND		ug/kg	1.00	0.270	
Benzo(g,h,i)perylene	ND		ug/kg	1.00	0.266	

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
Naphthalene-d8	71	50-130		
Phenanthrene-d10	92	50-130		
Benzo(a)pyrene-d12	106	50-130		

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

ICK

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Project Number: 192069-01.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
PAHs - Mansfield Lab Associated sample(s):	07-08 Batch:	WG158028	0-2 WG158028	30-3				
Naphthalene	76		82		50-130	8		30
Acenaphthylene	81		86		50-130	6		30
Acenaphthene	80		87		50-130	8		30
Fluorene	82		86		50-130	5		30
Phenanthrene	86		90		50-130	5		30
Anthracene	89		93		50-130	4		30
Fluoranthene	79		84		50-130	6		30
Pyrene	82		86		50-130	5		30
Benz(a)anthracene	87		92		50-130	6		30
Chrysene	83		86		50-130	4		30
Benzo(b)fluoranthene	98		103		50-130	5		30
Benzo(j)+(k)fluoranthene	89		93		50-130	4		30
Benzo(a)pyrene	106		111		50-130	5		30
Indeno(1,2,3-cd)pyrene	93		98		50-130	5		30
Dibenz(a,h)+(a,c)anthracene	105		111		50-130	6		30
Benzo(g,h,i)perylene	106		111		50-130	5		30

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
Naphthalene-d8	81	84	50-130
Phenanthrene-d10	95	97	50-130
Benzo(a)pyrene-d12	111	114	50-130

PCBS

		Serial_No	0:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-07	Date Collected:	10/19/21 11:20
Client ID:	FI-2021-NORTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Sediment	Extraction Method	l: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)	Extraction Date:	12/07/21 14:11
Analytical Date:	12/10/21 18:11	Cleanup Method:	EPA 3630
Analyst:	CC	Cleanup Date:	12/09/21
Percent Solids:	68%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PCB Congeners/Homologs - Mansfield Lab						
CI1-BZ#1-Cal/RTW	ND		ug/kg	0.282	0.141	1
CI1-BZ#2	ND		ug/kg	0.282	0.141	1
CI1-BZ#3	ND		ug/kg	0.282	0.141	1
Cl2-BZ#4/#10	ND		ug/kg	0.563	0.282	1
Cl2-BZ#9	ND		ug/kg	0.282	0.141	1
Cl2-BZ#7	ND		ug/kg	0.282	0.141	1
Cl2-BZ#6	ND		ug/kg	0.282	0.141	1
Cl2-BZ#5	ND		ug/kg	0.282	0.141	1
Cl2-BZ#8	ND		ug/kg	0.282	0.141	1
Cl3-BZ#19	ND		ug/kg	0.282	0.141	1
Cl2-BZ#14	ND		ug/kg	0.282	0.141	1
CI3-BZ#30	ND		ug/kg	0.282	0.141	1
Cl3-BZ#18	ND		ug/kg	0.282	0.141	1
Cl2-BZ#11	ND		ug/kg	0.282	0.141	1
Cl3-BZ#17	ND		ug/kg	0.282	0.141	1
Cl2-BZ#12	ND		ug/kg	0.282	0.141	1
Cl3-BZ#27	ND		ug/kg	0.282	0.141	1
CI2-BZ#13	ND		ug/kg	0.563	0.282	1
Cl3-BZ#24	ND		ug/kg	0.282	0.141	1
Cl3-BZ#16	ND		ug/kg	0.282	0.141	1
Cl3-BZ#32	ND		ug/kg	0.282	0.141	1
Cl2-BZ#15	ND		ug/kg	0.282	0.141	1
Cl3-BZ#34	ND		ug/kg	0.282	0.141	1
Cl3-BZ#23	ND		ug/kg	0.282	0.141	1
Cl4-BZ#54	ND		ug/kg	0.282	0.141	1
Cl3-BZ#29-Cal	ND		ug/kg	0.282	0.141	1
Cl4-BZ#50-Cal	ND		ug/kg	0.282	0.141	1
Cl3-BZ#26	ND		ug/kg	0.282	0.141	1

				Serial_No:01112217:20				
Project Name:	LITTLE ASSAWOMAN B	AY, FENV	VICK		Lab N	umber:	L2157780	
Project Number:	192069-01.01				Report Date:		01/11/22	
		SAMP	LE RESULTS	5				
Lab ID:	L2157780-07				Date Co	llected:	10/19/21 11:20	
Client ID:	FI-2021-NORTH-20211019			Date Re	eceived:	10/21/21		
Sample Location:	LITTLE ASSAWOMAN	BAY			Field Pr	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
PCB Congeners/H	omologs - Mansfield Lab							

Cl3-BZ#25	ND	ug/kg	0.282	0.141	1
CI4-BZ#53	ND	ug/kg	0.282	0.141	1
CI3-BZ#-31	ND	ug/kg	0.282	0.141	1
CI3-BZ#28	ND	ug/kg	0.282	0.141	1
CI3-BZ#33	ND	ug/kg	0.282	0.141	1
Cl4-BZ#51	ND	ug/kg	0.282	0.141	1
Cl3-BZ#21/#20	ND	ug/kg	0.563	0.282	1
Cl4-BZ#45	ND	ug/kg	0.282	0.141	1
Cl3-BZ#22	ND	ug/kg	0.282	0.141	1
Cl4-BZ#73/#46	ND	ug/kg	0.563	0.282	1
CI4-BZ#69	ND	ug/kg	0.282	0.141	1
CI4-BZ#43	ND	ug/kg	0.282	0.141	1
Cl3-BZ#36	ND	ug/kg	0.282	0.141	1
CI4-BZ#52	ND	ug/kg	0.282	0.141	1
Cl4-BZ#48	ND	ug/kg	0.282	0.141	1
CI4-BZ#49	ND	ug/kg	0.282	0.141	1
CI5-BZ#104	ND	ug/kg	0.282	0.141	1
CI4-BZ#47	ND	ug/kg	0.282	0.141	1
Cl4-BZ#65/#75/#62	ND	ug/kg	0.845	0.422	1
Cl3-BZ#39	ND	ug/kg	0.282	0.141	1
Cl3-BZ#38	ND	ug/kg	0.282	0.141	1
Cl4-BZ#44	ND	ug/kg	0.282	0.141	1
CI4-BZ#59	ND	ug/kg	0.282	0.141	1
Cl4-BZ#42	ND	ug/kg	0.282	0.141	1
Cl4-BZ#71	ND	ug/kg	0.282	0.141	1
Cl3-BZ#35	ND	ug/kg	0.282	0.141	1
Cl4-BZ#41	ND	ug/kg	0.282	0.141	1
CI4-BZ#72	ND	ug/kg	0.282	0.141	1
CI5-BZ#96	ND	ug/kg	0.282	0.141	1
CI5-BZ#103	ND	ug/kg	0.282	0.141	1
Cl4-BZ#68/#64	ND	ug/kg	0.563	0.282	1
CI4-BZ#40	ND	ug/kg	0.282	0.141	1
CI3-BZ#37	ND	ug/kg	0.282	0.141	1
CI5-BZ#100	ND	ug/kg	0.282	0.141	1
CI5-BZ#94	ND	ug/kg	0.282	0.141	1
Cl4-BZ#57	ND	ug/kg	0.282	0.141	1
Cl4-BZ#67/#58	ND	ug/kg	0.563	0.282	1

					Serial_No:01112217:20				
Project Name:	LITTLE ASSAWOMAN B	AY, FENV	VICK		Lab Number:		L2157780		
Project Number:	192069-01.01				Report Date:		01/11/22		
		SAMP	LE RESULTS	6					
Lab ID:	L2157780-07				Date Col	lected:	10/19/21 11:20		
Client ID:	FI-2021-NORTH-20211019			Date Received:		10/21/21			
Sample Location:	LITTLE ASSAWOMAN	BAY			Field Pre	ep:	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
PCB Congeners/H	omologs - Mansfield Lab								
		ND			0.000	0.4.44	4		
CI5-BZ#102		ND		ug/kg	0.282	0.141	1		
CI4-BZ#61		ND		ug/kg	0.282	0.141	1		

ug/kg

0.282

0.282

0.282

0.282

0.845

0.282

0.282

0.282

0.282

0.282

0.282

0.282

0.282

0.563

0.563

0.282

0.282

0.282

0.282

0.282

0.282

0.282

0.845

0.563

0.282

0.282

0.282

0.282

0.282

0.282

0.282

0.563

0.282

0.282

0.282

0.141

0.141

0.141

0.141

0.422

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.282

0.282

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.422

0.282

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.282

0.141

0.141

0.141

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ND

		1		
04	A	2-		
		1.	h /	٩.
	ANA	LY	ric.	AL

CI5-BZ#98

CI4-BZ#76

CI5-BZ#93

CI4-BZ#63

CI4-BZ#74

CI6-BZ#155

CI4-BZ#70

CI5-BZ#91

CI4-BZ#66

Cl4-BZ#80

CI4-BZ#55

CI5-BZ#92

CI4-BZ#56

CI5-BZ#113

CI5-BZ#99

Cl6-BZ#150

CI4-BZ#60

Cl6-BZ#152

CI5-BZ#119

Cl6-BZ#145

CI5-BZ#97

Cl6-BZ#148

Cl4-BZ#79

CI5-BZ#116

CI4-BZ#78

Cl6-BZ#136

CI5-BZ#117

Cl5-BZ#115

Cl6-BZ#154-Cal

CI5-BZ#87/#111

Cl5-BZ#83/#125/#112

CI5-BZ#86/#109

CI5-BZ#89/#84

CI5-BZ#101/#90

CI5-BZ#121/#95/#88

					Serial_No:01112217:20				
Project Name:	LITTLE ASSAWOMAN BA	Y, FENV	VICK		Lab Number:		L2157780		
Project Number:	192069-01.01	192069-01.01			Report Date:		01/11/22		
SAMPLE RESULTS									
Lab ID:	L2157780-07				Date Col	lected:	10/19/21 11:20		
Client ID:	FI-2021-NORTH-20211019			Date Red	ceived:	10/21/21			
Sample Location:	LITTLE ASSAWOMAN B	LITTLE ASSAWOMAN BAY			Field Prep:		Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
PCB Congeners/H	omologs - Mansfield Lab								
Cl5-BZ#85		ND		ug/kg	0.282	0.141	1		
CI5-BZ#120		ND		ug/kg	0.282	0.141	1		

CI5-BZ#85	ND	ug/kg	0.282	0.141	1
CI5-BZ#120	ND	ug/kg	0.282	0.141	1
CI5-BZ#110	ND	ug/kg	0.282	0.141	1
Cl4-BZ#81	ND	ug/kg	0.282	0.141	1
Cl6-BZ#151	ND	ug/kg	0.282	0.141	1
CI6-BZ#135	ND	ug/kg	0.282	0.141	1
CI5-BZ#82	ND	ug/kg	0.282	0.141	1
CI6-BZ#144	ND	ug/kg	0.282	0.141	1
Cl6-BZ#147/#149	ND	ug/kg	0.563	0.282	1
CI4-BZ#77	ND	ug/kg	0.282	0.141	1
Cl6-BZ#143/#139	ND	ug/kg	0.563	0.282	1
CI5-BZ#124	ND	ug/kg	0.282	0.141	1
CI6-BZ#140	ND	ug/kg	0.282	0.141	1
CI5-BZ#108	ND	ug/kg	0.282	0.141	1
CI5-BZ#107/#123	ND	ug/kg	0.563	0.282	1
CI7-BZ#188-Cal/RTW	ND	ug/kg	0.282	0.141	1
CI6-BZ#134	ND	ug/kg	0.282	0.141	1
CI5-BZ#106	ND	ug/kg	0.282	0.141	1
CI6-BZ#133	ND	ug/kg	0.282	0.141	1
CI6-BZ#142	ND	ug/kg	0.282	0.141	1
CI5-BZ#118	ND	ug/kg	0.282	0.141	1
CI6-BZ#131	ND	ug/kg	0.282	0.141	1
CI7-BZ#184	ND	ug/kg	0.282	0.141	1
CI6-BZ#165	ND	ug/kg	0.282	0.141	1
CI6-BZ#146	ND	ug/kg	0.282	0.141	1
CI6-BZ#161	ND	ug/kg	0.282	0.141	1
CI5-BZ#122	ND	ug/kg	0.282	0.141	1
CI6-BZ#168	ND	ug/kg	0.282	0.141	1
CI5-BZ#114	ND	ug/kg	0.282	0.141	1
CI6-BZ#153	ND	ug/kg	0.282	0.141	1
CI6-BZ#132	ND	ug/kg	0.282	0.141	1
CI7-BZ#179	ND	ug/kg	0.282	0.141	1
CI6-BZ#141	ND	ug/kg	0.282	0.141	1
CI7-BZ#176	ND	ug/kg	0.282	0.141	1
CI5-BZ#105	ND	ug/kg	0.282	0.141	1
Cl6-BZ#137	ND	ug/kg	0.282	0.141	1
CI5-BZ#127	ND	ug/kg	0.282	0.141	1

				Serial_No:01112217:20				
Project Name:	LITTLE ASSAWOMAN BAY, FE	NWICK		Lab Number:		L2157780		
Project Number:	192069-01.01			Report	Date:	01/11/22		
	SAI	MPLE RESULT	S					
Lab ID:	L2157780-07			Date Col	lected:	10/19/21 11:20		
Client ID:	FI-2021-NORTH-20211019			Date Red	ceived:	10/21/21		
Sample Location:	LITTLE ASSAWOMAN BAY			Field Pre	ep:	Not Specified		
Sample Depth:								
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
PCB Congeners/H	omologs - Mansfield Lab							
CI7-BZ#186	ND		ug/kg	0.282	0.141	1		
Cl6-BZ#130/#164	ND		ug/kg	0.563	0.282	1		
CI7-BZ#178	ND		ug/kg	0.282	0.141	1		
Cl6-BZ#138	ND		ug/kg	0.282	0.141	1		

FCD Congeners/Homologs - Mai						
CI7-BZ#186	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#130/#164	ND	ug/kg	0.563	0.282	1	
CI7-BZ#178	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#138	ND	ug/kg	0.282	0.141	1	
CI6-BZ#163/#160	ND	ug/kg	0.563	0.282	1	
Cl6-BZ#129/#158	ND	ug/kg	0.563	0.282	1	
CI7-BZ#182/#175	ND	ug/kg	0.563	0.282	1	
CI7-BZ#187	ND	ug/kg	0.282	0.141	1	
CI7-BZ#183	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#166	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#159	ND	ug/kg	0.282	0.141	1	
CI5-BZ#126	ND	ug/kg	0.282	0.141	1	
CI7-BZ#185	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#162	ND	ug/kg	0.282	0.141	1	
CI7-BZ#174	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#128	ND	ug/kg	0.282	0.141	1	
Cl8-BZ#202	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#167	ND	ug/kg	0.282	0.141	1	
CI7-BZ#181	ND	ug/kg	0.282	0.141	1	
CI7-BZ#177	ND	ug/kg	0.282	0.141	1	
CI8-BZ#204/#200-CAL	ND	ug/kg	0.563	0.282	1	
CI7-BZ#171	ND	ug/kg	0.282	0.141	1	
CI7-BZ#173	ND	ug/kg	0.282	0.141	1	
Cl8-BZ#197	ND	ug/kg	0.282	0.141	1	
CI7-BZ#172	ND	ug/kg	0.282	0.141	1	
CI7-BZ#192	ND	ug/kg	0.282	0.141	1	
CI6-BZ#156	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#157	ND	ug/kg	0.282	0.141	1	
CI7-BZ#180	ND	ug/kg	0.282	0.141	1	
CI7-BZ#193	ND	ug/kg	0.282	0.141	1	
Cl8-BZ#199	ND	ug/kg	0.282	0.141	1	
CI7-BZ#191	ND	ug/kg	0.282	0.141	1	
Cl8-BZ#198	ND	ug/kg	0.282	0.141	1	
CI8-BZ#201	ND	ug/kg	0.282	0.141	1	
CI7-BZ#170	ND	ug/kg	0.282	0.141	1	
CI7-BZ#190	ND	ug/kg	0.282	0.141	1	
CI8-BZ#196	ND	ug/kg	0.282	0.141	1	

	Serial_No:01112217:20						0:01112217:20
Project Name:	LITTLE ASSAWOMAN	BAY, FENW	ICK		Lab Nu	umber:	L2157780
Project Number:	192069-01.01				Report Date:		01/11/22
		SAMPL	E RESULTS	5			
Lab ID:	L2157780-07				Date Co	llected:	10/19/21 11:20
Client ID:	FI-2021-NORTH-20211019			Date Received:		10/21/21	
Sample Location:	LITTLE ASSAWOMAN	BAY			Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
PCB Congeners/H	omologs - Mansfield Lab						

PCB Congeners/Homologs - Mansheid	Lab					
CI8-BZ#203	ND	ug/kg	0.282	0.141	1	
Cl6-BZ#169	ND	ug/kg	0.282	0.141	1	
CI9-BZ#208	ND	ug/kg	0.282	0.141	1	
CI9-BZ#207	ND	ug/kg	0.282	0.141	1	
CI7-BZ#189	ND	ug/kg	0.282	0.141	1	
CI8-BZ#195	ND	ug/kg	0.282	0.141	1	
CI8-BZ#194	ND	ug/kg	0.282	0.141	1	
CI8-BZ#205	ND	ug/kg	0.282	0.141	1	
CI9-BZ#206-Cal/RTW	ND	ug/kg	0.282	0.141	1	
CI10-BZ#209-Cal/RTW	ND	ug/kg	0.282	0.141	1	
Monochlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Dichlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Trichlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Tetrachlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Pentachlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Hexachlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Heptachlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Octachlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Nonachlorobiphenyls	ND	ug/kg	0.282	0.141	1	
Decachlorobiphenyl	ND	ug/kg	0.282	0.141	1	
Total PCB	ND	ug/kg	0.282	NA	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Cl3-BZ#19-C13 (surr)	67		50-125	
Cl8-BZ#202-C13 (surr)	75		50-125	

		Serial_No	0:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-08	Date Collected:	10/19/21 13:00
Client ID:	FI-2021-SOUTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Sediment	Extraction Method	l: EPA 3570
Analytical Method:	105,8270D-SIM/680(M)	Extraction Date:	12/07/21 14:11
Analytical Date:	12/10/21 19:26	Cleanup Method:	EPA 3630
Analyst:	CC	Cleanup Date:	12/09/21
Percent Solids:	62%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
PCB Congeners/Homologs - N	lansfield Lab					
CI1-BZ#1-Cal/RTW	ND		ug/kg	0.301	0.150	1
CI1-BZ#2	ND		ug/kg	0.301	0.150	1
CI1-BZ#3	ND		ug/kg	0.301	0.150	1
Cl2-BZ#4/#10	ND		ug/kg	0.601	0.301	1
Cl2-BZ#9	ND		ug/kg	0.301	0.150	1
Cl2-BZ#7	ND		ug/kg	0.301	0.150	1
Cl2-BZ#6	ND		ug/kg	0.301	0.150	1
Cl2-BZ#5	ND		ug/kg	0.301	0.150	1
Cl2-BZ#8	ND		ug/kg	0.301	0.150	1
Cl3-BZ#19	ND		ug/kg	0.301	0.150	1
Cl2-BZ#14	ND		ug/kg	0.301	0.150	1
CI3-BZ#30	ND		ug/kg	0.301	0.150	1
Cl3-BZ#18	ND		ug/kg	0.301	0.150	1
Cl2-BZ#11	ND		ug/kg	0.301	0.150	1
Cl3-BZ#17	ND		ug/kg	0.301	0.150	1
Cl2-BZ#12	ND		ug/kg	0.301	0.150	1
Cl3-BZ#27	ND		ug/kg	0.301	0.150	1
Cl2-BZ#13	ND		ug/kg	0.601	0.301	1
Cl3-BZ#24	ND		ug/kg	0.301	0.150	1
Cl3-BZ#16	ND		ug/kg	0.301	0.150	1
Cl3-BZ#32	ND		ug/kg	0.301	0.150	1
Cl2-BZ#15	ND		ug/kg	0.301	0.150	1
Cl3-BZ#34	ND		ug/kg	0.301	0.150	1
Cl3-BZ#23	ND		ug/kg	0.301	0.150	1
CI4-BZ#54	ND		ug/kg	0.301	0.150	1
Cl3-BZ#29-Cal	ND		ug/kg	0.301	0.150	1
Cl4-BZ#50-Cal	ND		ug/kg	0.301	0.150	1
Cl3-BZ#26	ND		ug/kg	0.301	0.150	1

						Serial_No	0:01112217:20
Project Name:	LITTLE ASSAWOMAN B	AY, FENV	VICK		Lab Number:		L2157780
Project Number:	192069-01.01				Report Date:		01/11/22
		SAMP	LE RESULTS	6			
Lab ID:	L2157780-08				Date Co	llected:	10/19/21 13:00
Client ID:	FI-2021-SOUTH-20211019				Date Re	eceived:	10/21/21
Sample Location:	LITTLE ASSAWOMAN I	BAY			Field Pr	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
PCB Congeners/H	omologs - Mansfield Lab						
					0.004	0.450	_

Ci4-B283NDugkg0.3010.1601Ci8-B2243NDugkg0.3010.1601Ci8-B2243NDugkg0.3010.1601Ci8-B2243NDugkg0.3010.1601Ci8-B2243NDugkg0.3010.1601Ci8-B2243NDugkg0.3010.1601Ci8-B2742NDugkg0.3010.1501Ci8-B2742NDugkg0.3010.1501Ci8-B2743NDugkg0.3010.1601Ci8-B2743NDugkg0.3010.1601Ci8-B2743NDugkg0.3010.1601Ci8-B2743NDugkg0.3010.1601Ci8-B2743NDugkg0.3010.1601Ci8-B2743NDugkg0.3010.1601Ci8-B2744NDugkg0.3010.1601Ci8-B2740NDugkg0.3010.1601Ci8-B2744NDugkg0.3010.1601Ci8-B2744NDugkg0.3010.1601Ci8-B2745NDugkg0.3010.1601Ci8-B2746NDugkg0.3010.1601Ci8-B2746NDugkg0.3010.1601Ci8-B2745NDugkg0.3010.1601Ci8-B2746NDugkg0.3010.1601<	CI3-BZ#25	ND	ug/kg	0.301	0.150	1
C13-82/23 ND ug/kg 0.301 0.150 1 C13-82/233 ND ug/kg 0.301 0.150 1 C14-82/45	CI4-BZ#53	ND	ug/kg	0.301	0.150	1
C18-82/83 ND ug/kg 0.301 0.150 1 C14-82/851 ND ug/kg 0.301 0.150 1 C18-62/21/82/0 ND ug/kg 0.601 0.301 1 C18-62/22 ND ug/kg 0.601 0.301 1 C18-62/22 ND ug/kg 0.601 0.301 1 C14-62/86 ND ug/kg 0.601 0.301 1 C14-62/86 ND ug/kg 0.301 0.150 1 C14-62/86	Cl3-BZ#-31	ND	ug/kg	0.301	0.150	1
CH-B2F51 ND ug/kg 0.301 0.150 1 CH-B2F51 ND ug/kg 0.301 0.150 1 CH-B2F45 ND ug/kg 0.301 0.150 1 CH-B2F32 ND ug/kg 0.301 0.150 1 CH-B2F32#46 ND ug/kg 0.301 0.150 1 CH-B2F43 ND ug/kg 0.301 0.150 1 CH-B2F44 ND ug/kg 0.301 0.150 1 CH-B2F45 ND ug/kg 0.301 0.150 1 CH-B2F47 ND <td>CI3-BZ#28</td> <td>ND</td> <td>ug/kg</td> <td>0.301</td> <td>0.150</td> <td>1</td>	CI3-BZ#28	ND	ug/kg	0.301	0.150	1
C13-B2#21/#20 ND Ug/kg 0.601 0.301 1 C14-B2#45 ND Ug/kg 0.301 0.150 1 C14-B2#45 ND Ug/kg 0.301 0.150 1 C14-B2#3/#46 ND Ug/kg 0.301 0.150 1 C14-B2#6 ND Ug/kg 0.301 0.150 1 C14-B2#43 ND Ug/kg 0.301 0.150 1 C14-B2#45 ND Ug/kg 0.301 0.150 1 C14-B2#47 ND Ug/kg 0.301 0.150 1 C14-B2#47 ND Ug/kg 0.301 0.150 1 C14-B2#47 ND Ug/kg 0.301 0.150 1 C14-B2#42	CI3-BZ#33	ND	ug/kg	0.301	0.150	1
CH-B2#45 ND ugkg 0.301 0.150 1 C14-B2#42 ND ugkg 0.301 0.150 1 C14-B2#32 ND ugkg 0.801 0.301 1 C14-B2#46 ND ugkg 0.801 0.150 1 C14-B2#43 ND ugkg 0.301 0.150 1 C14-B2#44 ND ugkg 0.301 0.150 1 C14-B2#45 ND ugkg 0.301 0.150 1 C14-B2#46 ND ugkg 0.301 0.150 1 C14-B2#47 ND ugkg 0.301 0.150 1 C14-B2#47 ND	Cl4-BZ#51	ND	ug/kg	0.301	0.150	1
ND ug/kg 0.301 0.150 1 Ci4-B22473/#46 ND ug/kg 0.601 0.301 1 Ci4-B22459 ND ug/kg 0.301 0.150 1 Ci4-B22463 ND ug/kg 0.301 0.150 1 Ci4-B2443 ND ug/kg 0.301 0.150 1 Ci4-B2452 ND ug/kg 0.301 0.150 1 Ci4-B2443 ND ug/kg 0.301 0.150 1 Ci4-B2449 ND ug/kg 0.301 0.150 1 Ci4-B2449 ND ug/kg 0.301 0.150 1 Ci4-B2449 ND ug/kg 0.301 0.150 1 Ci4-B2447 ND ug/kg 0.301 0.150 1 Ci4-B2459 ND ug/kg 0.301 0.150 1 Ci4-B2459 ND ug/kg 0.301 0.150 1 Ci4-B2459 ND	CI3-BZ#21/#20	ND	ug/kg	0.601	0.301	1
CH-BZ#73/#46 ND ug/kg 0.601 0.301 1 CH-BZ#69 ND ug/kg 0.301 0.150 1 CH-BZ#64 ND ug/kg 0.301 0.150 1 CH-BZ#36 ND ug/kg 0.301 0.150 1 CH-BZ#62 ND ug/kg 0.301 0.150 1 CH-BZ#43 ND ug/kg 0.301 0.150 1 CH-BZ#62 ND ug/kg 0.301 0.150 1 CH-BZ#49 ND ug/kg 0.301 0.150 1 CH-BZ#65/75/#62 ND ug/kg 0.301 0.150 1 CH-BZ#65/#75/#62 ND ug/kg 0.301 0.150 1	Cl4-BZ#45	ND	ug/kg	0.301	0.150	1
Cl4-B2#69 ND ug/kg 0.301 0.150 1 Cl4-B2#43 ND ug/kg 0.301 0.150 1 Cl4-B2#43 ND ug/kg 0.301 0.150 1 Cl4-B2#46 ND ug/kg 0.301 0.150 1 Cl4-B2#48 ND ug/kg 0.301 0.150 1 Cl4-B2#49 ND ug/kg 0.301 0.150 1 Cl4-B2#65/#75/#62 ND ug/kg 0.301 0.150 1 Cl4-B2#65/#75/#62 ND ug/kg 0.301 0.150 1 Cl4-B2#65/#75/#62 ND ug/kg 0.301 0.150 1 Cl4-B2#62 ND ug/kg 0.301 0.150 1 <	Cl3-BZ#22	ND	ug/kg	0.301	0.150	1
Cl4-B2#43 ND ug/kg 0.301 0.150 1 Cl3-B2#36 ND ug/kg 0.301 0.150 1 Cl4-B2#462 ND ug/kg 0.301 0.150 1 Cl4-B2#48 ND ug/kg 0.301 0.150 1 Cl4-B2#49 ND ug/kg 0.301 0.150 1 Cl4-B2#47 ND ug/kg 0.301 0.150 1 Cl4-B2#43 ND ug/kg 0.301 0.150 1 Cl4-B2#44	Cl4-BZ#73/#46	ND	ug/kg	0.601	0.301	1
Ci3-B2#36 ND ug/kg 0.301 0.150 1 Ci4-B2#52 ND ug/kg 0.301 0.150 1 Ci4-B2#48 ND ug/kg 0.301 0.150 1 Ci4-B2#49 ND ug/kg 0.301 0.150 1 Ci4-B2#49 ND ug/kg 0.301 0.150 1 Ci4-B2#49 ND ug/kg 0.301 0.150 1 Ci4-B2#47 ND ug/kg 0.301 0.150 1 Ci4-B2#49 ND ug/kg 0.301 0.150 1 Ci4-B2#42 ND ug/kg 0.301 0.150 1 Ci4-B2#71 ND ug/kg 0.301 0.150 1 Ci4-B2#72	Cl4-BZ#69	ND	ug/kg	0.301	0.150	1
CI4-B2:#52 ND ug/kg 0.301 0.150 1 CI4-B2:#48 ND ug/kg 0.301 0.150 1 CI4-B2:#49 ND ug/kg 0.301 0.150 1 CI4-B2:#47 ND ug/kg 0.301 0.150 1 CI4-B2:#6/#75/#62 ND ug/kg 0.301 0.150 1 CI4-B2:#47 ND ug/kg 0.301 0.150 1 CI4-B2:#6/#75/#62 ND ug/kg 0.301 0.150 1 CI4-B2:#44 ND ug/kg 0.301 0.150 1 CI4-B2:#42 ND ug/kg 0.301 0.150 1 CI4-B2:#42 ND ug/kg 0.301 0.150 1	Cl4-BZ#43	ND	ug/kg	0.301	0.150	1
CI4+B2#48 ND ug/kg 0.301 0.150 1 CI4+B2#49 ND ug/kg 0.301 0.150 1 CI4-B2#47 ND ug/kg 0.301 0.150 1 CI4-B2#47 ND ug/kg 0.301 0.150 1 CI4-B2#65/#75/#62 ND ug/kg 0.301 0.150 1 CI4-B2#45/#75/#62 ND ug/kg 0.301 0.150 1 CI4-B2#45/#75/#62 ND ug/kg 0.301 0.150 1 CI4-B2#43 ND ug/kg 0.301 0.150 1 CI4-B2#43 ND ug/kg 0.301 0.150 1 CI4-B2#43 ND ug/kg 0.301 0.150 1 CI4-B2#42 ND ug/kg 0.301 0.150 1 CI4-B2#42 ND ug/kg 0.301 0.150 1 CI4-B2#42 ND ug/kg 0.301 0.150 1 <	CI3-BZ#36	ND	ug/kg	0.301	0.150	1
CI4-B2#49 ND ug/kg 0.301 0.150 1 CI5-B2#104 ND ug/kg 0.301 0.150 1 CI4-B2#47 ND ug/kg 0.301 0.150 1 CI4-B2#65/#75/#62 ND ug/kg 0.301 0.150 1 CI3-B2#39 ND ug/kg 0.301 0.150 1 CI4-B2#45/#75/#62 ND ug/kg 0.301 0.150 1 CI3-B2#38 ND ug/kg 0.301 0.150 1 CI4-B2#44 ND ug/kg 0.301 0.150 1 CI4-B2#42 ND ug/kg 0.301 0.150 1 CI4-B2#41 ND ug/kg 0.301 0.150 1 CI4-B2#41 ND ug/kg 0.301 0.150 1 CI4-B2#41 ND ug/kg 0.301 0.150 1 CI4-B2#103 ND ug/kg 0.301 0.150 1 CI4	Cl4-BZ#52	ND	ug/kg	0.301	0.150	1
CIG-B2#104 ND ug/kg 0.301 0.150 1 CI4-B2#47 ND ug/kg 0.301 0.150 1 CI4-B2#65/#75/#62 ND ug/kg 0.902 0.451 1 CI3-B2#39 ND ug/kg 0.301 0.150 1 CI3-B2#38 ND ug/kg 0.301 0.150 1 CI4-B2#44 ND ug/kg 0.301 0.150 1 CI4-B2#44 ND ug/kg 0.301 0.150 1 CI4-B2#42 ND ug/kg 0.301 0.150 1 CI4-B2#47 ND ug/kg 0.301 0.150 1 CI4-B2#40 ND ug/kg 0.301 0.150 1 CI4-B2#40 <td>Cl4-BZ#48</td> <td>ND</td> <td>ug/kg</td> <td>0.301</td> <td>0.150</td> <td>1</td>	Cl4-BZ#48	ND	ug/kg	0.301	0.150	1
Cl4-BZ#47 ND ug/kg 0.301 0.150 1 Cl4-BZ#65/#75/#62 ND ug/kg 0.902 0.451 1 Cl3-BZ#39 ND ug/kg 0.301 0.150 1 Cl3-BZ#38 ND ug/kg 0.301 0.150 1 Cl4-BZ#44 ND ug/kg 0.301 0.150 1 Cl4-BZ#44 ND ug/kg 0.301 0.150 1 Cl4-BZ#44 ND ug/kg 0.301 0.150 1 Cl4-BZ#42 ND ug/kg 0.301 0.150 1 Cl4-BZ#71 ND ug/kg 0.301 0.150 1 Cl4-BZ#41 ND ug/kg 0.301 0.150 1 Cl4-BZ#472 ND ug/kg 0.301 0.150 1 Cl4-BZ#46 ND ug/kg 0.301 0.150 1 Cl4-BZ#464 ND ug/kg 0.301 0.150 1 Cl4-BZ#464<	Cl4-BZ#49	ND	ug/kg	0.301	0.150	1
CI4-BZ#65/#75/#62 ND ug/kg 0.902 0.451 1 CI3-BZ#39 ND ug/kg 0.301 0.150 1 CI3-BZ#38 ND ug/kg 0.301 0.150 1 CI4-BZ#44 ND ug/kg 0.301 0.150 1 CI4-BZ#44 ND ug/kg 0.301 0.150 1 CI4-BZ#44 ND ug/kg 0.301 0.150 1 CI4-BZ#42 ND ug/kg 0.301 0.150 1 CI4-BZ#71 ND ug/kg 0.301 0.150 1 CI4-BZ#35 ND ug/kg 0.301 0.150 1 CI4-BZ#41 ND ug/kg 0.301 0.150 1 CI4-BZ#72 ND ug/kg 0.301 0.150 1 CI4-BZ#68/#64 ND ug/kg 0.301 0.150 1 CI4-BZ#68/#64 ND ug/kg 0.301 0.150 1 CI4-B	CI5-BZ#104	ND	ug/kg	0.301	0.150	1
C13-B2#39 ND ug/kg 0.301 0.150 1 C13-B2#38 ND ug/kg 0.301 0.150 1 C14-B2#44 ND ug/kg 0.301 0.150 1 C14-B2#44 ND ug/kg 0.301 0.150 1 C14-B2#42 ND ug/kg 0.301 0.150 1 C14-B2#41 ND ug/kg 0.301 0.150 1 C14-B2#42 ND ug/kg 0.301 0.150 1 C14-B2#40 ND ug/kg 0.301 0.150 1 C14-B2#68/#64	Cl4-BZ#47	ND	ug/kg	0.301	0.150	1
ND Ug/kg 0.301 0.150 1 Cl4-BZ#44 ND Ug/kg 0.301 0.150 1 Cl4-BZ#59 ND Ug/kg 0.301 0.150 1 Cl4-BZ#59 ND Ug/kg 0.301 0.150 1 Cl4-BZ#42 ND Ug/kg 0.301 0.150 1 Cl4-BZ#71 ND Ug/kg 0.301 0.150 1 Cl4-BZ#35 ND Ug/kg 0.301 0.150 1 Cl4-BZ#41 ND Ug/kg 0.301 0.150 1 Cl4-BZ#72 ND Ug/kg 0.301 0.150 1 Cl5-BZ#96 ND Ug/kg 0.301 0.150 1 Cl4-BZ#40 ND Ug/kg 0.301 0.150 1 Cl4-BZ#40 ND Ug/kg 0.301 0.150 1 Cl4-BZ#40 ND Ug/kg 0.301 0.150 1 Cl5-BZ#100 ND	Cl4-BZ#65/#75/#62	ND	ug/kg	0.902	0.451	1
CI4-BZ#44 ND ug/kg 0.301 0.150 1 CI4-BZ#59 ND ug/kg 0.301 0.150 1 CI4-BZ#42 ND ug/kg 0.301 0.150 1 CI4-BZ#42 ND ug/kg 0.301 0.150 1 CI4-BZ#71 ND ug/kg 0.301 0.150 1 CI3-BZ#35 ND ug/kg 0.301 0.150 1 CI4-BZ#41 ND ug/kg 0.301 0.150 1 CI4-BZ#72 ND ug/kg 0.301 0.150 1 CI5-BZ#103 ND ug/kg 0.301 0.150 1 CI4-BZ#46 ND ug/kg 0.301 0.150 1 CI4-BZ#40 ND ug/kg 0.301 0.150 1 CI4-BZ#40 ND ug/kg 0.301 0.150 1 CI3-BZ#37 ND ug/kg 0.301 0.150 1 CI5-BZ#100	CI3-BZ#39	ND	ug/kg	0.301	0.150	1
Cl4-BZ#59 ND ug/kg 0.301 0.150 1 Cl4-BZ#42 ND ug/kg 0.301 0.150 1 Cl4-BZ#71 ND ug/kg 0.301 0.150 1 Cl3-BZ#35 ND ug/kg 0.301 0.150 1 Cl4-BZ#71 ND ug/kg 0.301 0.150 1 Cl3-BZ#35 ND ug/kg 0.301 0.150 1 Cl4-BZ#72 ND ug/kg 0.301 0.150 1 Cl5-BZ#96 ND ug/kg 0.301 0.150 1 Cl4-BZ#68/#64 ND ug/kg 0.301 0.150 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl4-BZ#68/#64 ND ug/kg 0.301 0.150 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl3-BZ#37 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 <td>Cl3-BZ#38</td> <td>ND</td> <td>ug/kg</td> <td>0.301</td> <td>0.150</td> <td>1</td>	Cl3-BZ#38	ND	ug/kg	0.301	0.150	1
Cl4-BZ#42 ND ug/kg 0.301 0.150 1 Cl4-BZ#71 ND ug/kg 0.301 0.150 1 Cl3-BZ#35 ND ug/kg 0.301 0.150 1 Cl4-BZ#41 ND ug/kg 0.301 0.150 1 Cl4-BZ#72 ND ug/kg 0.301 0.150 1 Cl5-BZ#96 ND ug/kg 0.301 0.150 1 Cl4-BZ#68/#64 ND ug/kg 0.301 0.150 1 Cl4-BZ#70 ND ug/kg 0.301 0.150 1 <	Cl4-BZ#44	ND	ug/kg	0.301	0.150	1
Cl4-BZ#71 ND ug/kg 0.301 0.150 1 Cl3-BZ#35 ND ug/kg 0.301 0.150 1 Cl4-BZ#41 ND ug/kg 0.301 0.150 1 Cl4-BZ#41 ND ug/kg 0.301 0.150 1 Cl4-BZ#72 ND ug/kg 0.301 0.150 1 Cl5-BZ#96 ND ug/kg 0.301 0.150 1 Cl4-BZ#68/#64 ND ug/kg 0.301 0.150 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl3-BZ#37 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#94 ND ug/kg 0.301 0.150 1 Cl4-BZ#67 ND ug/kg 0.301 0.150 1	Cl4-BZ#59	ND	ug/kg	0.301	0.150	1
Cl3-BZ#35 ND ug/kg 0.301 0.150 1 Cl4-BZ#41 ND ug/kg 0.301 0.150 1 Cl4-BZ#72 ND ug/kg 0.301 0.150 1 Cl5-BZ#96 ND ug/kg 0.301 0.150 1 Cl5-BZ#103 ND ug/kg 0.301 0.150 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl4-BZ#40 ND ug/kg 0.601 0.301 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl3-BZ#37 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#94 ND ug/kg 0.301 0.150 1 Cl4-BZ#57 ND ug/kg 0.301 0.150 1	Cl4-BZ#42	ND	ug/kg	0.301	0.150	1
Cl4-BZ#41 ND ug/kg 0.301 0.150 1 Cl4-BZ#72 ND ug/kg 0.301 0.150 1 Cl5-BZ#96 ND ug/kg 0.301 0.150 1 Cl5-BZ#103 ND ug/kg 0.301 0.150 1 Cl4-BZ#68/#64 ND ug/kg 0.601 0.301 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl3-BZ#37 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#94 ND ug/kg 0.301 0.150 1 Cl4-BZ#57 ND ug/kg 0.301 0.150 1	Cl4-BZ#71	ND	ug/kg	0.301	0.150	1
Cl4-BZ#72 ND ug/kg 0.301 0.150 1 Cl5-BZ#96 ND ug/kg 0.301 0.150 1 Cl5-BZ#103 ND ug/kg 0.301 0.150 1 Cl4-BZ#68/#64 ND ug/kg 0.601 0.301 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl3-BZ#37 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#94 ND ug/kg 0.301 0.150 1 Cl4-BZ#57 ND ug/kg 0.301 0.150 1	Cl3-BZ#35	ND	ug/kg	0.301	0.150	1
CI5-BZ#96 ND ug/kg 0.301 0.150 1 CI5-BZ#103 ND ug/kg 0.301 0.150 1 CI4-BZ#68/#64 ND ug/kg 0.601 0.301 1 CI4-BZ#40 ND ug/kg 0.301 0.150 1 CI3-BZ#37 ND ug/kg 0.301 0.150 1 CI5-BZ#100 ND ug/kg 0.301 0.150 1 CI5-BZ#37 ND ug/kg 0.301 0.150 1 CI5-BZ#100 ND ug/kg 0.301 0.150 1 CI5-BZ#100 ND ug/kg 0.301 0.150 1 CI5-BZ#94 ND ug/kg 0.301 0.150 1 CI4-BZ#57 ND ug/kg 0.301 0.150 1	Cl4-BZ#41	ND	ug/kg	0.301	0.150	1
CI5-BZ#103 ND ug/kg 0.301 0.150 1 CI4-BZ#68/#64 ND ug/kg 0.601 0.301 1 CI4-BZ#40 ND ug/kg 0.301 0.150 1 CI3-BZ#37 ND ug/kg 0.301 0.150 1 CI5-BZ#100 ND ug/kg 0.301 0.150 1 CI5-BZ#94 ND ug/kg 0.301 0.150 1 CI4-BZ#57 ND ug/kg 0.301 0.150 1	Cl4-BZ#72	ND	ug/kg	0.301	0.150	1
Cl4-BZ#68/#64 ND ug/kg 0.601 0.301 1 Cl4-BZ#40 ND ug/kg 0.301 0.150 1 Cl3-BZ#37 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#94 ND ug/kg 0.301 0.150 1 Cl4-BZ#57 ND ug/kg 0.301 0.150 1	CI5-BZ#96	ND	ug/kg	0.301	0.150	1
Cl4-BZ#40NDug/kg0.3010.1501Cl3-BZ#37NDug/kg0.3010.1501Cl5-BZ#100NDug/kg0.3010.1501Cl5-BZ#94NDug/kg0.3010.1501Cl4-BZ#57NDug/kg0.3010.1501	CI5-BZ#103	ND	ug/kg	0.301	0.150	1
Cl3-BZ#37 ND ug/kg 0.301 0.150 1 Cl5-BZ#100 ND ug/kg 0.301 0.150 1 Cl5-BZ#94 ND ug/kg 0.301 0.150 1 Cl4-BZ#57 ND ug/kg 0.301 0.150 1	Cl4-BZ#68/#64	ND	ug/kg	0.601	0.301	1
CI5-BZ#100 ND ug/kg 0.301 0.150 1 CI5-BZ#94 ND ug/kg 0.301 0.150 1 CI4-BZ#57 ND ug/kg 0.301 0.150 1	Cl4-BZ#40	ND	ug/kg	0.301	0.150	1
CI5-BZ#94 ND ug/kg 0.301 0.150 1 CI4-BZ#57 ND ug/kg 0.301 0.150 1	Cl3-BZ#37	ND	ug/kg	0.301	0.150	1
Cl4-BZ#57 ND ug/kg 0.301 0.150 1	CI5-BZ#100	ND	ug/kg	0.301	0.150	1
	CI5-BZ#94	ND	ug/kg	0.301	0.150	1
Cl4-BZ#67/#58 ND ug/kg 0.601 0.301 1	Cl4-BZ#57	ND	ug/kg	0.301	0.150	1
	Cl4-BZ#67/#58	ND	ug/kg	0.601	0.301	1

					Serial_No:01112217:20						
Project Name:	LITTLE ASSAWOMAN	BAY, FENV	VICK		Lab Number:		L2157780				
Project Number:	192069-01.01				Report	Date:	01/11/22				
	SAMPLE RESULTS										
Lab ID:	L2157780-08				Date Col	lected:	10/19/21 13:00				
Client ID:	FI-2021-SOUTH-20211019				Date Received:		10/21/21				
Sample Location:	LITTLE ASSAWOMAN BAY			Field Pre	p:	Not Specified					
Sample Depth:											
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor				
PCB Congeners/H	omologs - Mansfield Lab										
					0.004	0 4 5 0	4				
CI5-BZ#102		ND		ug/kg	0.301	0.150	1				
Cl5-BZ#102 Cl4-BZ#61		ND ND		ug/kg ug/kg	0.301 0.301	0.150 0.150	1				

0.301

0.301

0.301

0.902

0.301

0.301

0.301

0.301

0.301

0.301

0.301

0.301

0.601

0.601

0.301

0.301

0.301

0.301

0.301

0.301

0.301

0.902

0.601

0.301

0.301

0.301

0.301

0.301

0.301

0.301

0.601

0.301

0.301

0.301

ug/kg

0.150

0.150

0.150

0.451

0.150

0.150

0.150

0.150

0.150

0.150

0.150

0.150

0.301

0.301

0.150

0.150

0.150

0.150

0.150

0.150

0.150

0.451

0.301

0.150

0.150

0.150

0.150

0.150

0.150

0.150

0.301

0.150

0.150

0.150

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ND

and the
A
ALPHA
ANALYTICAL

CI4-BZ#76

CI5-BZ#93

CI4-BZ#63

CI4-BZ#74

CI6-BZ#155

CI4-BZ#70

CI5-BZ#91

CI4-BZ#66

Cl4-BZ#80

CI4-BZ#55

CI5-BZ#92

CI4-BZ#56

CI5-BZ#113

CI5-BZ#99

Cl6-BZ#150

CI4-BZ#60

Cl6-BZ#152

CI5-BZ#119

Cl6-BZ#145

CI5-BZ#97

Cl6-BZ#148

Cl4-BZ#79

CI5-BZ#116

CI4-BZ#78

Cl6-BZ#136

CI5-BZ#117

Cl5-BZ#115

Cl6-BZ#154-Cal

CI5-BZ#87/#111

Cl5-BZ#83/#125/#112

CI5-BZ#86/#109

CI5-BZ#89/#84

CI5-BZ#101/#90

CI5-BZ#121/#95/#88

					Serial_No:01112217:20				
Project Name:	LITTLE ASSAWOMAN BA	Y, FENV	VICK		Lab Number:		L2157780		
Project Number:	192069-01.01				Report	Date:	01/11/22		
		SAMP	LE RESULTS	6					
Lab ID:	L2157780-08				Date Col	lected:	10/19/21 13:00		
Client ID:	FI-2021-SOUTH-20211019				Date Ree	ceived:	10/21/21		
Sample Location:	LITTLE ASSAWOMAN B	AY			Field Pre	ep:	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
PCB Congeners/H	omologs - Mansfield Lab								
CI5-BZ#85		ND		ug/kg	0.301	0.150	1		
CI5-BZ#120		ND		ua/ka	0.301	0.150	1		

CI5-BZ#85	ND	ug/kg	0.301	0.150	1	
CI5-BZ#120	ND	ug/kg	0.301	0.150	1	
CI5-BZ#110	ND	ug/kg	0.301	0.150	1	
Cl4-BZ#81	ND	ug/kg	0.301	0.150	1	
CI6-BZ#151	ND	ug/kg	0.301	0.150	1	
CI6-BZ#135	ND	ug/kg	0.301	0.150	1	
CI5-BZ#82	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#144	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#147/#149	ND	ug/kg	0.601	0.301	1	
Cl4-BZ#77	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#143/#139	ND	ug/kg	0.601	0.301	1	
Cl5-BZ#124	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#140	ND	ug/kg	0.301	0.150	1	
CI5-BZ#108	ND	ug/kg	0.301	0.150	1	
CI5-BZ#107/#123	ND	ug/kg	0.601	0.301	1	
CI7-BZ#188-Cal/RTW	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#134	ND	ug/kg	0.301	0.150	1	
CI5-BZ#106	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#133	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#142	ND	ug/kg	0.301	0.150	1	
CI5-BZ#118	ND	ug/kg	0.301	0.150	1	
CI6-BZ#131	ND	ug/kg	0.301	0.150	1	
CI7-BZ#184	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#165	ND	ug/kg	0.301	0.150	1	
CI6-BZ#146	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#161	ND	ug/kg	0.301	0.150	1	
CI5-BZ#122	ND	ug/kg	0.301	0.150	1	
CI6-BZ#168	ND	ug/kg	0.301	0.150	1	
CI5-BZ#114	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#153	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#132	ND	ug/kg	0.301	0.150	1	
CI7-BZ#179	ND	ug/kg	0.301	0.150	1	
Cl6-BZ#141	ND	ug/kg	0.301	0.150	1	
CI7-BZ#176	ND	ug/kg	0.301	0.150	1	
CI5-BZ#105	ND	ug/kg	0.301	0.150	1	
	ND	ug/kg	0.301	0.150	1	
CI6-BZ#137		- 3- 3				

					:	Serial_No	No:01112217:20	
Project Name:	LITTLE ASSAWOMAN BA	Y, FENV	WICK		Lab Nu	mber:	L2157780	
Project Number:	192069-01.01				Report	Date:	01/11/22	
-		SAMP		S	-			
Lab ID:	L2157780-08				Date Col	lected:	10/19/21 13:00	
Client ID:	FI-2021-SOUTH-202110 ⁷	FI-2021-SOUTH-20211019			Date Re	ceived:	10/21/21	
Sample Location:	LITTLE ASSAWOMAN B	AY			Field Prep:		Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
PCB Congeners/H	lomologs - Mansfield Lab							
CI7-BZ#186		ND		ug/kg	0.301	0.150	1	
CI6-BZ#130/#164		ND		ug/kg	0.601	0.301	1	
CI7-BZ#178		ND		ug/kg	0.301	0.150	1	
CI6-B7#138		ND		ua/ka	0.301	0.150	1	

PCB Congeners/Homologs - M	lansfield Lab				
CI7-BZ#186	ND	ug/kg	0.301	0.150	1
CI6-BZ#130/#164	ND	ug/kg	0.601	0.301	1
CI7-BZ#178	ND	ug/kg	0.301	0.150	1
CI6-BZ#138	ND	ug/kg	0.301	0.150	1
CI6-BZ#163/#160	ND	ug/kg	0.601	0.301	1
CI6-BZ#129/#158	ND	ug/kg	0.601	0.301	1
CI7-BZ#182/#175	ND	ug/kg	0.601	0.301	1
CI7-BZ#187	ND	ug/kg	0.301	0.150	1
CI7-BZ#183	ND	ug/kg	0.301	0.150	1
CI6-BZ#166	ND	ug/kg	0.301	0.150	1
CI6-BZ#159	ND	ug/kg	0.301	0.150	1
CI5-BZ#126	ND	ug/kg	0.301	0.150	1
CI7-BZ#185	ND	ug/kg	0.301	0.150	1
CI6-BZ#162	ND	ug/kg	0.301	0.150	1
CI7-BZ#174	ND	ug/kg	0.301	0.150	1
CI6-BZ#128	ND	ug/kg	0.301	0.150	1
CI8-BZ#202	ND	ug/kg	0.301	0.150	1
CI6-BZ#167	ND	ug/kg	0.301	0.150	1
CI7-BZ#181	ND	ug/kg	0.301	0.150	1
CI7-BZ#177	ND	ug/kg	0.301	0.150	1
CI8-BZ#204/#200-CAL	ND	ug/kg	0.601	0.301	1
CI7-BZ#171	ND	ug/kg	0.301	0.150	1
CI7-BZ#173	ND	ug/kg	0.301	0.150	1
CI8-BZ#197	ND	ug/kg	0.301	0.150	1
CI7-BZ#172	ND	ug/kg	0.301	0.150	1
CI7-BZ#192	ND	ug/kg	0.301	0.150	1
CI6-BZ#156	ND	ug/kg	0.301	0.150	1
CI6-BZ#157	ND	ug/kg	0.301	0.150	1
CI7-BZ#180	ND	ug/kg	0.301	0.150	1
CI7-BZ#193	ND	ug/kg	0.301	0.150	1
CI8-BZ#199	ND	ug/kg	0.301	0.150	1
CI7-BZ#191	ND	ug/kg	0.301	0.150	1
CI8-BZ#198	ND	ug/kg	0.301	0.150	1
CI8-BZ#201	ND	ug/kg	0.301	0.150	1
CI7-BZ#170	ND	ug/kg	0.301	0.150	1
CI7-BZ#190	ND	ug/kg	0.301	0.150	1
CI8-BZ#196	ND	ug/kg	0.301	0.150	1

Serial_No:01112217:20										
Project Name:	LITTLE ASSAWOMAN E	BAY, FENV	Lab Number:		L2157780					
Project Number:	192069-01.01				Report	Date:	01/11/22			
	SAMPLE RESULTS									
Lab ID:	L2157780-08				Date Co	llected:	10/19/21 13:00			
Client ID:	FI-2021-SOUTH-20211	1019			Date Re	ceived:	10/21/21			
Sample Location:	LITTLE ASSAWOMAN	BAY			Field Pre	ep:	Not Specified			
Sample Depth:										
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
PCB Congeners/H	omologs - Mansfield Lab									

Parameter	Result	Quanner Onits		WDL	Difution Factor
PCB Congeners/Homologs - Mansfie	eld Lab				
CI8-BZ#203	ND	ug/kg	g 0.301	0.150	1
Cl6-BZ#169	ND	ug/kg	j 0.301	0.150	1
CI9-BZ#208	ND	ug/kg	g 0.301	0.150	1
CI9-BZ#207	ND	ug/kg	g 0.301	0.150	1
CI7-BZ#189	ND	ug/ko	g 0.301	0.150	1
Cl8-BZ#195	ND	ug/kg	j 0.301	0.150	1
Cl8-BZ#194	ND	ug/kg	g 0.301	0.150	1
Cl8-BZ#205	ND	ug/kg	j 0.301	0.150	1
Cl9-BZ#206-Cal/RTW	ND	ug/kg	j 0.301	0.150	1
CI10-BZ#209-Cal/RTW	ND	ug/kg	j 0.301	0.150	1
Monochlorobiphenyls	ND	ug/kg	j 0.301	0.150	1
Dichlorobiphenyls	ND	ug/kg	j 0.301	0.150	1
Trichlorobiphenyls	ND	ug/kg	j 0.301	0.150	1
Tetrachlorobiphenyls	ND	ug/kg	g 0.301	0.150	1
Pentachlorobiphenyls	ND	ug/kg	j 0.301	0.150	1
Hexachlorobiphenyls	ND	ug/kg	j 0.301	0.150	1
Heptachlorobiphenyls	ND	ug/kg	j 0.301	0.150	1
Octachlorobiphenyls	ND	ug/kg	g 0.301	0.150	1
Nonachlorobiphenyls	ND	ug/kg	j 0.301	0.150	1
Decachlorobiphenyl	ND	ug/kg	j 0.301	0.150	1
Total PCB	ND	ug/kg	0.301	NA	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
CI3-BZ#19-C13 (surr)	63		50-125	
Cl8-BZ#202-C13 (surr)	73		50-125	

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:	105,8270D-SIM/680(M)
Analytical Date:	12/10/21 14:26
Analyst:	MJS

arameter	Result Qua	lifier Units	RL	MDL
CB Congeners/Homologs ·	Mansfield Lab for samp	le(s): 07-08	Batch: V	/G1580108-1
CI1-BZ#1-Cal/RTW	ND	ug/kg	0.200	0.100
CI1-BZ#2	ND	ug/kg	0.200	0.100
CI1-BZ#3	ND	ug/kg	0.200	0.100
CI2-BZ#4/#10	ND	ug/kg	0.400	0.200
CI2-BZ#9	ND	ug/kg	0.200	0.100
CI2-BZ#7	ND	ug/kg	0.200	0.100
CI2-BZ#6	ND	ug/kg	0.200	0.100
CI2-BZ#5	ND	ug/kg	0.200	0.100
CI2-BZ#8	ND	ug/kg	0.200	0.100
CI3-BZ#19	ND	ug/kg	0.200	0.100
Cl2-BZ#14	ND	ug/kg	0.200	0.100
CI3-BZ#30	ND	ug/kg	0.200	0.100
CI3-BZ#18	ND	ug/kg	0.200	0.100
Cl2-BZ#11	ND	ug/kg	0.200	0.100
CI3-BZ#17	ND	ug/kg	0.200	0.100
Cl2-BZ#12	ND	ug/kg	0.200	0.100
CI3-BZ#27	ND	ug/kg	0.200	0.100
Cl2-BZ#13	ND	ug/kg	0.400	0.200
CI3-BZ#24	ND	ug/kg	0.200	0.100
Cl3-BZ#16	ND	ug/kg	0.200	0.100
CI3-BZ#32	ND	ug/kg	0.200	0.100
Cl2-BZ#15	ND	ug/kg	0.200	0.100
CI3-BZ#34	ND	ug/kg	0.200	0.100
CI3-BZ#23	ND	ug/kg	0.200	0.100
CI4-BZ#54	ND	ug/kg	0.200	0.100
CI3-BZ#29-Cal	ND	ug/kg	0.200	0.100
CI4-BZ#50-Cal	ND	ug/kg	0.200	0.100
CI3-BZ#26	ND	ug/kg	0.200	0.100
CI3-BZ#25	ND	ug/kg	0.200	0.100

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:	105,8270D-SIM/680(M)
Analytical Date:	12/10/21 14:26
Analyst:	MJS

Parameter	Result Qualifier	Units	RL	MDL
CB Congeners/Homologs	- Mansfield Lab for sample(s)	: 07-08	Batch: V	VG1580108-1
CI4-BZ#53	ND	ug/kg	0.200	0.100
Cl3-BZ#-31	ND	ug/kg	0.200	0.100
CI3-BZ#28	ND	ug/kg	0.200	0.100
CI3-BZ#33	ND	ug/kg	0.200	0.100
CI4-BZ#51	ND	ug/kg	0.200	0.100
CI3-BZ#21/#20	ND	ug/kg	0.400	0.200
CI4-BZ#45	ND	ug/kg	0.200	0.100
CI3-BZ#22	ND	ug/kg	0.200	0.100
CI4-BZ#73/#46	ND	ug/kg	0.400	0.200
CI4-BZ#69	ND	ug/kg	0.200	0.100
CI4-BZ#43	ND	ug/kg	0.200	0.100
CI3-BZ#36	ND	ug/kg	0.200	0.100
CI4-BZ#52	ND	ug/kg	0.200	0.100
CI4-BZ#48	ND	ug/kg	0.200	0.100
CI4-BZ#49	ND	ug/kg	0.200	0.100
CI5-BZ#104	ND	ug/kg	0.200	0.100
CI4-BZ#47	ND	ug/kg	0.200	0.100
CI4-BZ#65/#75/#62	ND	ug/kg	0.600	0.300
CI3-BZ#39	ND	ug/kg	0.200	0.100
CI3-BZ#38	ND	ug/kg	0.200	0.100
CI4-BZ#44	ND	ug/kg	0.200	0.100
CI4-BZ#59	ND	ug/kg	0.200	0.100
CI4-BZ#42	ND	ug/kg	0.200	0.100
CI4-BZ#71	ND	ug/kg	0.200	0.100
CI3-BZ#35	ND	ug/kg	0.200	0.100
CI4-BZ#41	ND	ug/kg	0.200	0.100
CI4-BZ#72	ND	ug/kg	0.200	0.100
CI5-BZ#96	ND	ug/kg	0.200	0.100
CI5-BZ#103	ND	ug/kg	0.200	0.100

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:105,8270D-SIM/680(M)Analytical Date:12/10/21 14:26Analyst:MJS

Parameter	Result Qualifier	Units	RL	MDL	
CB Congeners/Homologs	• Mansfield Lab for sample(s):	07-08	Batch: WG1	580108-1	
CI4-BZ#68/#64	ND	ug/kg	0.400	0.200	
CI4-BZ#40	ND	ug/kg	0.200	0.100	
CI3-BZ#37	ND	ug/kg	0.200	0.100	
CI5-BZ#100	ND	ug/kg	0.200	0.100	
CI5-BZ#94	ND	ug/kg	0.200	0.100	
CI4-BZ#57	ND	ug/kg	0.200	0.100	
CI4-BZ#67/#58	ND	ug/kg	0.400	0.200	
CI5-BZ#102	ND	ug/kg	0.200	0.100	
CI4-BZ#61	ND	ug/kg	0.200	0.100	
CI5-BZ#98	ND	ug/kg	0.200	0.100	
CI4-BZ#76	ND	ug/kg	0.200	0.100	
CI5-BZ#93	ND	ug/kg	0.200	0.100	
CI4-BZ#63	ND	ug/kg	0.200	0.100	
CI5-BZ#121/#95/#88	ND	ug/kg	0.600	0.300	
CI4-BZ#74	ND	ug/kg	0.200	0.100	
CI6-BZ#155	ND	ug/kg	0.200	0.100	
CI4-BZ#70	ND	ug/kg	0.200	0.100	
CI5-BZ#91	ND	ug/kg	0.200	0.100	
CI4-BZ#66	ND	ug/kg	0.200	0.100	
CI4-BZ#80	ND	ug/kg	0.200	0.100	
CI4-BZ#55	ND	ug/kg	0.200	0.100	
CI5-BZ#92	ND	ug/kg	0.200	0.100	
CI5-BZ#89/#84	ND	ug/kg	0.400	0.200	
CI5-BZ#101/#90	ND	ug/kg	0.400	0.200	
CI4-BZ#56	ND	ug/kg	0.200	0.100	
CI5-BZ#113	ND	ug/kg	0.200	0.100	
CI5-BZ#99	ND	ug/kg	0.200	0.100	
CI6-BZ#150	ND	ug/kg	0.200	0.100	
CI4-BZ#60	ND	ug/kg	0.200	0.100	

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:105,8270D-SIM/680(M)Analytical Date:12/10/21 14:26Analyst:MJS

Parameter	Result Qualifier	Units	RL	MDL
CB Congeners/Homologs	- Mansfield Lab for sample(s):	07-08	Batch: WG	1580108-1
Cl6-BZ#152	ND	ug/kg	0.200	0.100
CI5-BZ#119	ND	ug/kg	0.200	0.100
CI5-BZ#83/#125/#112	ND	ug/kg	0.600	0.300
CI5-BZ#86/#109	ND	ug/kg	0.400	0.200
Cl6-BZ#145	ND	ug/kg	0.200	0.100
CI5-BZ#97	ND	ug/kg	0.200	0.100
CI6-BZ#148	ND	ug/kg	0.200	0.100
CI4-BZ#79	ND	ug/kg	0.200	0.100
CI5-BZ#116	ND	ug/kg	0.200	0.100
Cl6-BZ#154-Cal	ND	ug/kg	0.200	0.100
CI4-BZ#78	ND	ug/kg	0.200	0.100
CI5-BZ#87/#111	ND	ug/kg	0.400	0.200
CI6-BZ#136	ND	ug/kg	0.200	0.100
CI5-BZ#117	ND	ug/kg	0.200	0.100
CI5-BZ#115	ND	ug/kg	0.200	0.100
CI5-BZ#85	ND	ug/kg	0.200	0.100
CI5-BZ#120	ND	ug/kg	0.200	0.100
CI5-BZ#110	ND	ug/kg	0.200	0.100
CI4-BZ#81	ND	ug/kg	0.200	0.100
Cl6-BZ#151	ND	ug/kg	0.200	0.100
Cl6-BZ#135	ND	ug/kg	0.200	0.100
CI5-BZ#82	ND	ug/kg	0.200	0.100
Cl6-BZ#144	ND	ug/kg	0.200	0.100
Cl6-BZ#147/#149	ND	ug/kg	0.400	0.200
CI4-BZ#77	ND	ug/kg	0.200	0.100
Cl6-BZ#143/#139	ND	ug/kg	0.400	0.200
CI5-BZ#124	ND	ug/kg	0.200	0.100
Cl6-BZ#140	ND	ug/kg	0.200	0.100
CI5-BZ#108	ND	ug/kg	0.200	0.100

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:105,8270D-SIM/680(M)Analytical Date:12/10/21 14:26Analyst:MJS

arameter	Result Qualifie	r Units	RL	MDL
CB Congeners/Homologs	 Mansfield Lab for sample(state) 	s): 07-08	Batch: W	G1580108-1
CI5-BZ#107/#123	ND	ug/kg	0.400	0.200
CI7-BZ#188-Cal/RTW	ND	ug/kg	0.200	0.100
Cl6-BZ#134	ND	ug/kg	0.200	0.100
CI5-BZ#106	ND	ug/kg	0.200	0.100
Cl6-BZ#133	ND	ug/kg	0.200	0.100
Cl6-BZ#142	ND	ug/kg	0.200	0.100
CI5-BZ#118	ND	ug/kg	0.200	0.100
CI6-BZ#131	ND	ug/kg	0.200	0.100
CI7-BZ#184	ND	ug/kg	0.200	0.100
CI6-BZ#165	ND	ug/kg	0.200	0.100
CI6-BZ#146	ND	ug/kg	0.200	0.100
CI6-BZ#161	ND	ug/kg	0.200	0.100
CI5-BZ#122	ND	ug/kg	0.200	0.100
CI6-BZ#168	ND	ug/kg	0.200	0.100
CI5-BZ#114	ND	ug/kg	0.200	0.100
CI6-BZ#153	ND	ug/kg	0.200	0.100
CI6-BZ#132	ND	ug/kg	0.200	0.100
CI7-BZ#179	ND	ug/kg	0.200	0.100
CI6-BZ#141	ND	ug/kg	0.200	0.100
CI7-BZ#176	ND	ug/kg	0.200	0.100
CI5-BZ#105	ND	ug/kg	0.200	0.100
CI6-BZ#137	ND	ug/kg	0.200	0.100
CI5-BZ#127	ND	ug/kg	0.200	0.100
CI7-BZ#186	ND	ug/kg	0.200	0.100
CI6-BZ#130/#164	ND	ug/kg	0.400	0.200
CI7-BZ#178	ND	ug/kg	0.200	0.100
CI6-BZ#138	ND	ug/kg	0.200	0.100
CI6-BZ#163/#160	ND	ug/kg	0.400	0.200
Cl6-BZ#129/#158	ND	ug/kg	0.400	0.200

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:105,8270D-SIM/680(M)Analytical Date:12/10/21 14:26Analyst:MJS

Parameter	Result Qualifier	Units	RL	MDL
PCB Congeners/Homologs -	• Mansfield Lab for sample(s):	07-08	Batch: WG1	580108-1
CI7-BZ#182/#175	ND	ug/kg	0.400	0.200
CI7-BZ#187	ND	ug/kg	0.200	0.100
CI7-BZ#183	ND	ug/kg	0.200	0.100
CI6-BZ#166	ND	ug/kg	0.200	0.100
Cl6-BZ#159	ND	ug/kg	0.200	0.100
CI5-BZ#126	ND	ug/kg	0.200	0.100
CI7-BZ#185	ND	ug/kg	0.200	0.100
CI6-BZ#162	ND	ug/kg	0.200	0.100
CI7-BZ#174	ND	ug/kg	0.200	0.100
CI6-BZ#128	ND	ug/kg	0.200	0.100
Cl8-BZ#202	ND	ug/kg	0.200	0.100
CI6-BZ#167	ND	ug/kg	0.200	0.100
CI7-BZ#181	ND	ug/kg	0.200	0.100
CI7-BZ#177	ND	ug/kg	0.200	0.100
CI8-BZ#204/#200-CAL	ND	ug/kg	0.400	0.200
CI7-BZ#171	ND	ug/kg	0.200	0.100
CI7-BZ#173	ND	ug/kg	0.200	0.100
CI8-BZ#197	ND	ug/kg	0.200	0.100
CI7-BZ#172	ND	ug/kg	0.200	0.100
CI7-BZ#192	ND	ug/kg	0.200	0.100
CI6-BZ#156	ND	ug/kg	0.200	0.100
Cl6-BZ#157	ND	ug/kg	0.200	0.100
CI7-BZ#180	ND	ug/kg	0.200	0.100
CI7-BZ#193	ND	ug/kg	0.200	0.100
CI8-BZ#199	ND	ug/kg	0.200	0.100
CI7-BZ#191	ND	ug/kg	0.200	0.100
CI8-BZ#198	ND	ug/kg	0.200	0.100
CI8-BZ#201	ND	ug/kg	0.200	0.100
CI7-BZ#170	ND	ug/kg	0.200	0.100

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:105,8270D-SIM/680(M)Analytical Date:12/10/21 14:26Analyst:MJS

arameter	Result	Qualifier	Units	RL	MDL
CB Congeners/Homologs - N	Aansfield Lab for s	ample(s):	07-08	Batch:	WG1580108-1
CI7-BZ#190	ND		ug/kg	0.20	0 0.100
CI8-BZ#196	ND		ug/kg	0.20	0 0.100
CI8-BZ#203	ND		ug/kg	0.20	0 0.100
CI6-BZ#169	ND		ug/kg	0.20	0 0.100
CI9-BZ#208	ND		ug/kg	0.20	0 0.100
CI9-BZ#207	ND		ug/kg	0.20	0 0.100
CI7-BZ#189	ND		ug/kg	0.20	0 0.100
CI8-BZ#195	ND		ug/kg	0.20	0 0.100
CI8-BZ#194	ND		ug/kg	0.20	0 0.100
CI8-BZ#205	ND		ug/kg	0.20	0 0.100
CI9-BZ#206-Cal/RTW	ND		ug/kg	0.20	0 0.100
CI10-BZ#209-Cal/RTW	ND		ug/kg	0.20	0 0.100
Monochlorobiphenyls	ND		ug/kg	0.20	0 0.100
Dichlorobiphenyls	ND		ug/kg	0.20	0 0.100
Trichlorobiphenyls	ND		ug/kg	0.20	0 0.100
Tetrachlorobiphenyls	ND		ug/kg	0.20	0 0.100
Pentachlorobiphenyls	ND		ug/kg	0.20	0 0.100
Hexachlorobiphenyls	ND		ug/kg	0.20	0 0.100
Heptachlorobiphenyls	ND		ug/kg	0.20	0 0.100
Octachlorobiphenyls	ND		ug/kg	0.20	0 0.100
Nonachlorobiphenyls	ND		ug/kg	0.20	0 0.100
Decachlorobiphenyl	ND		ug/kg	0.20	0 0.100
Total PCB	ND		ug/kg	0.20	0 NA

Surrogate	%Recovery Qualifie	Acceptance r Criteria
Cl3-BZ#19-C13 (surr)	85	50-125
Cl8-BZ#202-C13 (surr)	91	50-125

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits %Recovery Qual Parameter Qual Qual PCB Congeners/Homologs - Mansfield Lab Associated sample(s): 07-08 Batch: WG1580108-2 WG1580108-3 CI1-BZ#1 83 78 30 40-140 6 CI1-BZ#2 80 84 40-140 5 30 CI1-BZ#3 82 78 40-140 5 30 Cl2-BZ#4/#10 78 75 40-140 30 4 CI2-BZ#9 81 40-140 30 86 6 CI2-BZ#7 84 80 40-140 5 30 CI2-BZ#6 92 88 40-140 30 4 CI2-BZ#5 87 84 40-140 4 30 Cl2-BZ#8 83 80 40-140 4 30 77 30 Cl3-BZ#19 80 40-140 4 Cl2-BZ#14 86 83 40-140 4 30 CI3-BZ#30 88 84 40-140 5 30 CI3-BZ#18 87 84 40-140 4 30 Cl2-BZ#11 78 40-140 30 80 3 Cl3-BZ#17 81 79 40-140 3 30 CI2-BZ#12 87 85 40-140 2 30 Cl3-BZ#27 83 81 40-140 2 30 Cl2-BZ#13 84 40-140 2 30 86 CI3-BZ#24 40-140 30 82 80 2 Cl3-BZ#16 84 82 40-140 2 30 CI3-BZ#32 85 82 40-140 4 30 Cl2-BZ#15 74 70 30 40-140 6 CI3-BZ#34 2 30 83 81 40-140

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual PCB Congeners/Homologs - Mansfield Lab Associated sample(s): 07-08 Batch: WG1580108-2 WG1580108-3 Cl3-BZ#23 87 85 2 30 40-140 CI4-BZ#54 76 78 40-140 3 30 CI3-BZ#29-Cal 86 85 40-140 30 1 CI4-BZ#50-Cal 80 78 40-140 3 30 CI3-BZ#26 87 85 40-140 30 2 Cl3-BZ#25 88 86 40-140 2 30 CI4-BZ#53 90 89 40-140 30 1 CI3-BZ#-31 96 94 40-140 2 30 Cl3-BZ#28 89 85 40-140 5 30 77 CI3-BZ#33 79 40-140 3 30 CI4-BZ#51 84 82 40-140 2 30 CI3-BZ#21/#20 93 90 40-140 3 30 CI4-BZ#45 90 88 40-140 2 30 CI3-BZ#22 89 40-140 30 90 1 CI4-BZ#73/#46 88 86 40-140 2 30 CI4-BZ#69 94 93 40-140 30 1 CI4-BZ#43 89 88 40-140 30 1 CI3-BZ#36 40-140 2 30 104 102 CI4-BZ#52 84 40-140 30 85 1 CI4-BZ#48 90 97 40-140 7 30 CI4-BZ#49 89 92 40-140 3 30 CI5-BZ#104 2 30 86 88 40-140 CI4-BZ#47 92 93 40-140 1 30

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
PCB Congeners/Homologs - Mansfield I	Lab Associated sam	ole(s): 07-08	Batch: WG1	580108-2	WG1580108-3			
Cl4-BZ#65/#75/#62	89		88		40-140	1	30	
CI3-BZ#39	88		87		40-140	1	30	
CI3-BZ#38	87		86		40-140	1	30	
CI4-BZ#44	93		93		40-140	0	30	
CI4-BZ#59	91		91		40-140	0	30	
CI4-BZ#42	93		92		40-140	1	30	
CI4-BZ#71	92		93		40-140	1	30	
CI3-BZ#35	95		96		40-140	1	30	
Cl4-BZ#41	87		87		40-140	0	30	
CI4-BZ#72	107		107		40-140	0	30	
CI5-BZ#96	87		86		40-140	1	30	
CI5-BZ#103	93		91		40-140	2	30	
CI4-BZ#68/#64	94		94		40-140	0	30	
CI4-BZ#40	93		90		40-140	3	30	
Cl3-BZ#37	92		91		40-140	1	30	
CI5-BZ#100	90		89		40-140	1	30	
CI5-BZ#94	90		88		40-140	2	30	
CI4-BZ#57	91		91		40-140	0	30	
Cl4-BZ#67/#58	94		94		40-140	0	30	
CI5-BZ#102	86		86		40-140	0	30	
CI4-BZ#61	89		89		40-140	0	30	
CI5-BZ#98	97		98		40-140	1	30	
Cl4-BZ#76	91		92		40-140	1	30	

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
CB Congeners/Homologs - Mansfield L	ab Associated samp	ole(s): 07-08	Batch: WG15	80108-2	WG1580108-3			
CI5-BZ#93	84		88		40-140	5	30	
Cl4-BZ#63	96		94		40-140	2	30	
CI5-BZ#121/#95/#88	97		95		40-140	2	30	
Cl4-BZ#74	98		97		40-140	1	30	
CI6-BZ#155	92		90		40-140	2	30	
CI4-BZ#70	94		95		40-140	1	30	
Cl5-BZ#91	92		92		40-140	0	30	
CI4-BZ#66	93		95		40-140	2	30	
CI4-BZ#80	99		100		40-140	1	30	
CI4-BZ#55	101		101		40-140	0	30	
CI5-BZ#92	92		92		40-140	0	30	
CI5-BZ#89/#84	99		96		40-140	3	30	
CI5-BZ#101/#90	94		96		40-140	2	30	
CI4-BZ#56	88		87		40-140	1	30	
CI5-BZ#113	95		99		40-140	4	30	
CI5-BZ#99	98		98		40-140	0	30	
Cl6-BZ#150	91		91		40-140	0	30	
CI4-BZ#60	93		92		40-140	1	30	
Cl6-BZ#152	103		103		40-140	0	30	
Cl5-BZ#119	93		96		40-140	3	30	
CI5-BZ#83/#125/#112	96		97		40-140	1	30	
CI5-BZ#86/#109	92		92		40-140	0	30	
Cl6-BZ#145	86		84		40-140	2	30	

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
PCB Congeners/Homologs - Mansfield Lab	Associated sam	ple(s): 07-08	Batch: WG18	580108-2	WG1580108-3			
CI5-BZ#97	92		93		40-140	1	30	
Cl6-BZ#148	95		96		40-140	1	30	
CI4-BZ#79	107		101		40-140	6	30	
CI5-BZ#116	106		110		40-140	4	30	
Cl6-BZ#154-Cal	94		93		40-140	1	30	
CI4-BZ#78	93		97		40-140	4	30	
CI5-BZ#87/#111	96		96		40-140	0	30	
Cl6-BZ#136	90		90		40-140	0	30	
CI5-BZ#117	87		89		40-140	2	30	
CI5-BZ#115	96		97		40-140	1	30	
CI5-BZ#85	93		98		40-140	5	30	
Cl5-BZ#120	99		95		40-140	4	30	
Cl5-BZ#110	97		96		40-140	1	30	
Cl4-BZ#81	103		104		40-140	1	30	
Cl6-BZ#151	85		82		40-140	4	30	
Cl6-BZ#135	76		75		40-140	1	30	
CI5-BZ#82	78		77		40-140	1	30	
Cl6-BZ#144	75		74		40-140	1	30	
Cl6-BZ#147/#149	82		83		40-140	1	30	
CI4-BZ#77	89		85		40-140	5	30	
CI6-BZ#143/#139	77		77		40-140	0	30	
CI5-BZ#124	86		84		40-140	2	30	
CI6-BZ#140	79		76		40-140	4	30	

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
PCB Congeners/Homologs - Mansfield L	ab Associated samp	ole(s): 07-08	Batch: WG1	580108-2	WG1580108-3			
CI5-BZ#108	97		98		40-140	1	30	
CI5-BZ#107/#123	86		84		40-140	2	30	
CI7-BZ#188-Cal/RTW	85		81		40-140	5	30	
Cl6-BZ#134	85		86		40-140	1	30	
CI5-BZ#106	82		80		40-140	2	30	
Cl6-BZ#133	78		76		40-140	3	30	
Cl6-BZ#142	90		89		40-140	1	30	
CI5-BZ#118	80		77		40-140	4	30	
Cl6-BZ#131	83		80		40-140	4	30	
CI7-BZ#184	72		71		40-140	1	30	
CI6-BZ#165	85		82		40-140	4	30	
Cl6-BZ#146	81		79		40-140	3	30	
CI6-BZ#161	80		77		40-140	4	30	
CI5-BZ#122	88		83		40-140	6	30	
CI6-BZ#168	110		108		40-140	2	30	
CI5-BZ#114	81		78		40-140	4	30	
CI6-BZ#153	64		62		40-140	3	30	
Cl6-BZ#132	87		83		40-140	5	30	
CI7-BZ#179	80		81		40-140	1	30	
Cl6-BZ#141	92		90		40-140	2	30	
CI7-BZ#176	82		83		40-140	1	30	
CI5-BZ#105	91		87		40-140	4	30	
Cl6-BZ#137	92		90		40-140	2	30	

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
PCB Congeners/Homologs - Mansfield La	ab Associated sample	le(s): 07-08	Batch: WG1	580108-2	WG1580108-3			
CI5-BZ#127	86		82		40-140	5	30	
CI7-BZ#186	80		79		40-140	1	30	
Cl6-BZ#130/#164	89		87		40-140	2	30	
CI7-BZ#178	83		82		40-140	1	30	
Cl6-BZ#138	88		98		40-140	11	30	
Cl6-BZ#163/#160	93		86		40-140	8	30	
Cl6-BZ#129/#158	87		86		40-140	1	30	
CI7-BZ#182/#175	86		83		40-140	4	30	
CI7-BZ#187	84		84		40-140	0	30	
CI7-BZ#183	90		88		40-140	2	30	
Cl6-BZ#166	101		102		40-140	1	30	
Cl6-BZ#159	102		101		40-140	1	30	
CI5-BZ#126	86		87		40-140	1	30	
CI7-BZ#185	86		86		40-140	0	30	
CI6-BZ#162	96		94		40-140	2	30	
CI7-BZ#174	83		80		40-140	4	30	
CI6-BZ#128	83		84		40-140	1	30	
CI8-BZ#202	79		79		40-140	0	30	
Cl6-BZ#167	91		90		40-140	1	30	
CI7-BZ#181	80		80		40-140	0	30	
CI7-BZ#177	87		85		40-140	2	30	
CI8-BZ#204/#200-CAL	88		85		40-140	3	30	
CI7-BZ#171	87		90		40-140	3	30	

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Parameter	LCS %Recovery 0	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
PCB Congeners/Homologs - Mansfield L	_ab Associated sample(s	s): 07-08	Batch: WG15	80108-2	WG1580108-3			
CI7-BZ#173	80		78		40-140	3	30	
CI8-BZ#197	79		79		40-140	0	30	
CI7-BZ#172	92		87		40-140	6	30	
CI7-BZ#192	92		89		40-140	3	30	
CI6-BZ#156	89		87		40-140	2	30	
Cl6-BZ#157	80		77		40-140	4	30	
CI7-BZ#180	76		69		40-140	10	30	
CI7-BZ#193	77		75		40-140	3	30	
Cl8-BZ#199	78		79		40-140	1	30	
CI7-BZ#191	84		83		40-140	1	30	
CI8-BZ#198	90		88		40-140	2	30	
Cl8-BZ#201	96		95		40-140	1	30	
CI7-BZ#170	82		78		40-140	5	30	
CI7-BZ#190	94		92		40-140	2	30	
CI8-BZ#196	91		89		40-140	2	30	
CI8-BZ#203	82		80		40-140	2	30	
Cl6-BZ#169	91		88		40-140	3	30	
CI9-BZ#208	100		96		40-140	4	30	
Cl9-BZ#207	89		89		40-140	0	30	
CI7-BZ#189	99		98		40-140	1	30	
Cl8-BZ#195	83		82		40-140	1	30	
Cl8-BZ#194	96		92		40-140	4	30	
Cl8-BZ#205	97		93		40-140	4	30	

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
PCB Congeners/Homologs - Mansfield Lab	Associated samp	ole(s): 07-08	Batch: WG15	80108-2 \	WG1580108-3				
CI9-BZ#206-Cal/RTW	88		85		40-140	3		30	
CI10-BZ#209-Cal/RTW	85		79		40-140	7		30	

Surrogate	LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria	
Cl3-BZ#19-C13 (surr)	79	77	50-125	
Cl8-BZ#202-C13 (surr)	88	85	50-125	

PESTICIDES

		Serial_No	:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-07	Date Collected:	10/19/21 11:20
Client ID:	FI-2021-NORTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Sediment	Extraction Method	l: EPA 3570
Analytical Method:	1,8081B	Extraction Date:	12/07/21 10:41
Analytical Date:	01/10/22 18:52	Cleanup Method:	EPA 3630
Analyst:	DP	Cleanup Date:	12/10/21
Percent Solids:	68%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by G	GC - Mansfield Lab						
alpha-BHC	ND		ug/kg	0.147	0.147	1	А
Hexachlorobenzene	ND		ug/kg	0.294	0.294	1	А
beta-BHC	ND		ug/kg	0.147	0.147	1	А
gamma-BHC	ND		ug/kg	0.147	0.147	1	А
delta-BHC	ND		ug/kg	0.147	0.147	1	А
Heptachlor	ND		ug/kg	0.147	0.147	1	А
Aldrin	ND		ug/kg	0.147	0.147	1	А
Heptachlor epoxide (B)	ND		ug/kg	0.294	0.294	1	В
Oxychlordane	ND		ug/kg	0.294	0.294	1	В
gamma-Chlordane	ND		ug/kg	0.147	0.147	1	А
2,4'-DDE	ND		ug/kg	0.147	0.147	1	А
Endosulfan I	ND		ug/kg	0.147	0.147	1	А
alpha-Chlordane	ND		ug/kg	0.147	0.147	1	А
trans-Nonachlor	ND		ug/kg	0.147	0.147	1	А
4,4'-DDE	0.995		ug/kg	0.147	0.147	1	В
Dieldrin	ND		ug/kg	0.147	0.147	1	А
2,4'-DDD	ND		ug/kg	0.147	0.147	1	А
Endrin	ND		ug/kg	0.147	0.147	1	А
Endosulfan II	ND		ug/kg	0.147	0.147	1	А
4,4'-DDD	0.555		ug/kg	0.147	0.147	1	В
2,4'-DDT	ND		ug/kg	0.147	0.147	1	А
cis-Nonachlor	ND		ug/kg	0.147	0.147	1	А
Endrin aldehyde	ND		ug/kg	0.440	0.440	1	А
Endosulfan sulfate	ND		ug/kg	0.147	0.147	1	А
4,4'-DDT	ND		ug/kg	0.147	0.147	1	В
Endrin ketone	ND		ug/kg	0.147	0.147	1	А
Methoxychlor	ND		ug/kg	1.47	1.47	1	А
Mirex	ND		ug/kg	0.147	0.147	1	А

				Serial_No:01112217:20			
Project Name:	LITTLE ASSAWOMAN BAY, FEN	NICK		Lab Nu	ımber:	L2157780	
Project Number:	192069-01.01			Report Date:		01/11/22	
	SAMF	LE RESULT	6				
Lab ID:	L2157780-07			Date Co	llected:	10/19/21 11:20	
Client ID:	FI-2021-NORTH-20211019			Date Received:		10/21/21	
Sample Location:	LITTLE ASSAWOMAN BAY			Field Prep:		Not Specified	
Sample Depth:							
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pe	sticides by GC - Mansfield Lab						
Toxaphene	ND		ug/kg	7.37	7.37	1	А
Chlordane	ND		ug/kg	7.37	7.37	1	А

Surrogata	N/ Decouvery	Qualifian	Acceptance	0.1
Surrogate	% Recovery	Qualifier	Criteria	Column
TMX - Surrogate	68		30-150	А
DCB - Surrogate	66		30-150	А
TMX - Surrogate	139		30-150	В
DCB - Surrogate	56		30-150	В

		Serial_No	:01112217:20
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	SAMPLE RESULTS		
Lab ID:	L2157780-08 D	Date Collected:	10/19/21 13:00
Client ID:	FI-2021-SOUTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Sediment	Extraction Method	: EPA 3570
Analytical Method:	1,8081B	Extraction Date:	12/07/21 10:41
Analytical Date:	01/11/22 13:19	Cleanup Method:	EPA 3630
Analyst:	DP	Cleanup Date:	12/10/21
Percent Solids:	62%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GO	C - Mansfield Lab						
alpha-BHC	ND		ug/kg	0.736	0.736	5	A
Hexachlorobenzene	ND		ug/kg	1.47	1.47	5	А
beta-BHC	ND		ug/kg	0.736	0.736	5	А
gamma-BHC	ND		ug/kg	0.736	0.736	5	А
delta-BHC	ND		ug/kg	0.736	0.736	5	А
Heptachlor	ND		ug/kg	0.736	0.736	5	А
Aldrin	ND		ug/kg	0.736	0.736	5	А
Heptachlor epoxide (B)	ND		ug/kg	1.47	1.47	5	В
Oxychlordane	ND		ug/kg	1.47	1.47	5	В
gamma-Chlordane	ND		ug/kg	0.736	0.736	5	А
2,4'-DDE	ND		ug/kg	0.736	0.736	5	А
Endosulfan I	ND		ug/kg	0.736	0.736	5	В
alpha-Chlordane	ND		ug/kg	0.736	0.736	5	В
trans-Nonachlor	ND		ug/kg	0.736	0.736	5	А
4,4'-DDE	ND		ug/kg	0.736	0.736	5	А
Dieldrin	ND		ug/kg	0.736	0.736	5	А
2,4'-DDD	ND		ug/kg	0.736	0.736	5	А
Endrin	ND		ug/kg	0.736	0.736	5	А
Endosulfan II	ND		ug/kg	0.736	0.736	5	А
4,4'-DDD	ND		ug/kg	0.736	0.736	5	А
2,4'-DDT	ND		ug/kg	0.736	0.736	5	А
cis-Nonachlor	ND		ug/kg	0.736	0.736	5	А
Endrin aldehyde	ND		ug/kg	2.21	2.21	5	А
Endosulfan sulfate	ND		ug/kg	0.736	0.736	5	А
4,4'-DDT	ND		ug/kg	0.736	0.736	5	А
Endrin ketone	ND		ug/kg	0.736	0.736	5	А
Methoxychlor	ND		ug/kg	7.36	7.36	5	А
Mirex	ND		ug/kg	0.736	0.736	5	А

		Se	rial_No	:01112217:2	20				
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK				Lab Num	ber:	L21577	80	
Project Number:	192069-01.01				Report D	ate:	01/11/2	2	
		SAMP	LE RESULT	S					
Lab ID:	L2157780-08 [)			Date Collec	cted:	10/19/21 1	3:00	
Client ID:	FI-2021-SOUTH-20211019				Date Recei	ved:	10/21/21		
Sample Location:	LITTLE ASSAWOMAN	LITTLE ASSAWOMAN BAY			Field Prep:	Not Specified			
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Fa	ctor	Column
Organochlorine Pe	sticides by GC - Mansfiel	d Lab							
Toxaphene		ND		ug/kg	36.9	36.9	5		А
Chlordane		ND		ug/kg	36.9	36.9	5		А
Surrogate				% Recovery	Qualifier	Acceptance Criteria C		Colur	nn
TMX - Surrogate				80			30-150	А	

84

98

66

30-150

30-150

30-150

А

В

В

DCB - Surrogate

TMX - Surrogate

DCB - Surrogate

L2157780

01/11/22

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:
Project Number:	192069-01.01	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8081B 01/10/22 17:11 DP Extraction Method:EPA 3570Extraction Date:12/07/21 10:41Cleanup Method:EPA 3630Cleanup Date:12/10/21

arameter	Result	Qualifier Units	RL	MDL	Colum
rganochlorine Pesticides by G	C - Mansfield L	ab for sample(s):	07-08 Batch:	WG1580105-1	[
alpha-BHC	ND	ug/kg	0.100	0.100	А
Hexachlorobenzene	ND	ug/kg	0.200	0.200	А
beta-BHC	ND	ug/kg	0.100	0.100	А
gamma-BHC	ND	ug/kg	0.100	0.100	А
delta-BHC	ND	ug/kg	0.100	0.100	А
Heptachlor	ND	ug/kg	0.100	0.100	А
Aldrin	ND	ug/kg	0.100	0.100	А
gamma-Chlordane	ND	ug/kg	0.100	0.100	А
2,4'-DDE	ND	ug/kg	0.100	0.100	А
Endosulfan I	ND	ug/kg	0.100	0.100	А
alpha-Chlordane	ND	ug/kg	0.100	0.100	А
trans-Nonachlor	ND	ug/kg	0.100	0.100	А
4,4'-DDE	ND	ug/kg	0.100	0.100	А
Dieldrin	ND	ug/kg	0.100	0.100	А
2,4'-DDD	ND	ug/kg	0.100	0.100	А
Endrin	ND	ug/kg	0.100	0.100	А
Endosulfan II	ND	ug/kg	0.100	0.100	А
4,4'-DDD	ND	ug/kg	0.100	0.100	А
2,4'-DDT	ND	ug/kg	0.100	0.100	А
cis-Nonachlor	ND	ug/kg	0.100	0.100	А
Endrin aldehyde	ND	ug/kg	0.300	0.300	А
Endosulfan sulfate	ND	ug/kg	0.100	0.100	А
4,4'-DDT	ND	ug/kg	0.100	0.100	А
Endrin ketone	ND	ug/kg	0.100	0.100	А
Methoxychlor	ND	ug/kg	1.00	1.00	А
Mirex	ND	ug/kg	0.100	0.100	А
Toxaphene	ND	ug/kg	5.02	5.02	А
Chlordane	ND	ug/kg	5.02	5.02	А
Heptachlor epoxide (B)	ND	ug/kg	0.200	0.200	В

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22
	Mothod Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8081B
Analytical Date:	01/10/22 17:11
Analyst:	DP

Extraction Method:	EPA 3570
Extraction Date:	12/07/21 10:41
Cleanup Method:	EPA 3630
Cleanup Date:	12/10/21

Parameter	Result	Qualifier	Units		RL	MDL	Column
Organochlorine Pesticides by GC -	Mansfield L	ab for samp	ole(s):	07-08	Batch:	WG1580105-	1
Oxychlordane	ND		ug/kg	0	.200	0.200	В

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
TMX - Surrogate	61		30-150	А	
DCB - Surrogate	65		30-150	А	
TMX - Surrogate	117		30-150	В	
DCB - Surrogate	63		30-150	В	

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

LCSD LCS %Recovery RPD %Recovery RPD Column %Recovery Limits Limits Parameter Qual Qual Qual Organochlorine Pesticides by GC - Mansfield Lab Associated sample(s): 07-08 Batch: WG1580105-2 WG1580105-3 alpha-BHC 73 68 40-140 7 50 А 65 2 Hexachlorobenzene 64 40-140 50 А beta-BHC 64 63 40-140 2 50 А gamma-BHC 70 72 40-140 50 А 3 delta-BHC 59 40-140 50 54 9 А Heptachlor 64 65 40-140 2 50 А Aldrin 69 70 40-140 50 А 1 gamma-Chlordane 69 70 40-140 1 50 А 2,4'-DDE 63 65 40-140 3 50 А Endosulfan I 66 69 40-140 4 50 А alpha-Chlordane 68 69 40-140 1 50 А trans-Nonachlor 67 68 40-140 1 50 А 4,4'-DDE 72 74 40-140 3 50 А 40-140 50 Dieldrin 75 78 4 А 2,4'-DDD 70 71 40-140 1 50 А Endrin 66 69 40-140 4 50 А Endosulfan II 70 40-140 6 50 А 66 4,4'-DDD 74 40-140 50 А 70 6 2,4'-DDT 40-140 74 78 5 50 А cis-Nonachlor 68 70 40-140 3 50 А Endrin aldehyde 53 60 40-140 12 50 А Endosulfan sulfate 68 74 40-140 8 50 А 4,4'-DDT 72 75 40-140 4 50 А

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

	LCS		L	CSD	c 2	%Recovery			RPD	
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	
Organochlorine Pesticides by GC - Mar	nsfield Lab Associated	sample(s):	07-08	Batch:	WG1580105-2	WG1580105-3				
Endrin ketone	80			88		40-140	10		50	А
Methoxychlor	65			72		40-140	10		50	А
Mirex	57			58		40-140	2		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
TMX - Surrogate	67		67		30-150	А
DCB - Surrogate	64		66		30-150	А
TMX - Surrogate	195	Q	186	Q	30-150	В
DCB - Surrogate	60		59		30-150	В

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

	LCS		L	CSD	%	6Recovery			RPD	
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	Column
Organochlorine Pesticides by GC - Mansfield	Lab Associated	d sample(s):	07-08	Batch:	WG1580105-2	WG1580105-3				
Heptachlor epoxide (B)	63			62		40-140	3		50	В
Oxychlordane	67			66		40-140	3		50	В

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
TMX - Surrogate	67		67		30-150	А
DCB - Surrogate	64		66		30-150	A
TMX - Surrogate	195	Q	186	Q	30-150	В
DCB - Surrogate	60		59		30-150	В

METALS

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780						
Project Number:	192069-01.01	Report Date:	01/11/22						
SAMPLE RESULTS									
Lab ID:	L2157780-07	Date Collected:	10/19/21 11:20						
Client ID:	FI-2021-NORTH-20211019	Date Received:	10/21/21						
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified						

Sample Depth:

Matrix: Sediment Percent Solids: 68%

Percent Solids:	68%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Mans	sfield Lab										
Aluminum, Total	6100		mg/kg	142	21.1	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Antimony, Total	ND		mg/kg	2.28	0.192	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Arsenic, Total	3.63		mg/kg	0.712	0.094	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Barium, Total	12.6		mg/kg	4.27	0.301	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Beryllium, Total	0.291	J	mg/kg	0.427	0.124	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Cadmium, Total	0.151	J	mg/kg	0.285	0.038	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Calcium, Total	1090		mg/kg	712	86.6	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Chromium, Total	14.0		mg/kg	2.85	0.667	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Cobalt, Total	3.33		mg/kg	0.712	0.076	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Copper, Total	6.43		mg/kg	2.85	0.276	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Iron, Total	8540		mg/kg	285	29.3	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Lead, Total	9.45		mg/kg	0.855	0.208	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Magnesium, Total	2630		mg/kg	142	17.5	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Manganese, Total	71.9		mg/kg	2.85	0.632	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Mercury, Total	0.011		mg/kg	0.004	0.0005	1	12/18/21 11:37	12/23/21 13:05	EPA 7474	1,7474	ML
Nickel, Total	7.45		mg/kg	1.42	0.381	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Potassium, Total	1190		mg/kg	142	22.6	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Selenium, Total	1.51	J	mg/kg	2.85	1.08	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Silver, Total	ND		mg/kg	0.712	0.070	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Sodium, Total	4400		mg/kg	214	16.7	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Thallium, Total	0.258	J	mg/kg	1.14	0.074	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Vanadium, Total	15.3		mg/kg	1.42	0.540	10	12/22/21 23:35	12/23/21 11:53	EPA 3050B	1,6020B	CD
Zinc, Total	36.7		mg/kg	14.2	3.70	10	12/22/21 23:35	10/00/01 11 50		1,6020B	CD

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780						
Project Number:	192069-01.01	Report Date:	01/11/22						
SAMPLE RESULTS									
Lab ID:	L2157780-08	Date Collected:	10/19/21 13:00						
Client ID:	FI-2021-SOUTH-20211019	Date Received:	10/21/21						
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified						

Sample Depth:

Matrix: Sediment Percent Solids: 62%

Percent Solids:	62%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Man	sfield Lab										
Aluminum, Total	7430		mg/kg	153	22.7	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Antimony, Total	ND		mg/kg	2.45	0.207	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Arsenic, Total	4.62		mg/kg	0.766	0.101	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Barium, Total	17.1		mg/kg	4.60	0.324	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Beryllium, Total	0.365	J	mg/kg	0.460	0.134	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Cadmium, Total	0.115	J	mg/kg	0.306	0.041	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Calcium, Total	10400		mg/kg	766	93.2	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Chromium, Total	18.8		mg/kg	3.06	0.717	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Cobalt, Total	4.27		mg/kg	0.766	0.082	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Copper, Total	6.16		mg/kg	3.06	0.297	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Iron, Total	11900		mg/kg	306	31.6	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Lead, Total	5.58		mg/kg	0.920	0.224	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Magnesium, Total	3570		mg/kg	153	18.9	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Manganese, Total	109		mg/kg	3.06	0.680	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Mercury, Total	0.010	J	mg/kg	0.018	0.002	5	12/18/21 11:37	12/23/21 13:07	EPA 7474	1,7474	ML
Nickel, Total	10.3		mg/kg	1.53	0.410	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Potassium, Total	1640		mg/kg	153	24.3	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Selenium, Total	1.92	J	mg/kg	3.06	1.16	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Silver, Total	ND		mg/kg	0.766	0.075	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Sodium, Total	4190		mg/kg	230	18.0	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Thallium, Total	0.251	J	mg/kg	1.23	0.079	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Vanadium, Total	21.3		mg/kg	1.53	0.581	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD
Zinc, Total	32.0		mg/kg	15.3	3.98	10	12/22/21 23:35	12/23/21 11:58	EPA 3050B	1,6020B	CD

Project Name:LITTLE ASSAWOMAN BAY, FENWICKProject Number:192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	07-08 Ba	atch: WO	G158429	97-1				
Mercury, Total	ND	mg/kg	0.013	0.002	5	12/18/21 11:37	12/23/21 11:55	1,7474	ML

Prep Information

Digestion Method: EPA 7474

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	07-08 B	atch: W	G158684	13-1				
Aluminum, Total	ND	mg/kg	100	14.8	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Antimony, Total	ND	mg/kg	1.60	0.135	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Arsenic, Total	ND	mg/kg	0.500	0.066	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Barium, Total	ND	mg/kg	3.00	0.211	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Beryllium, Total	ND	mg/kg	0.300	0.087	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Cadmium, Total	ND	mg/kg	0.200	0.026	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Calcium, Total	ND	mg/kg	500	60.8	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Chromium, Total	ND	mg/kg	2.00	0.468	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Cobalt, Total	ND	mg/kg	0.500	0.053	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Copper, Total	ND	mg/kg	2.00	0.194	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Iron, Total	ND	mg/kg	200	20.6	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Lead, Total	ND	mg/kg	0.600	0.146	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Magnesium, Total	ND	mg/kg	100	12.3	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Manganese, Total	ND	mg/kg	2.00	0.444	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Nickel, Total	ND	mg/kg	1.00	0.267	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Potassium, Total	ND	mg/kg	100	15.9	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Selenium, Total	ND	mg/kg	2.00	0.756	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Silver, Total	ND	mg/kg	0.500	0.049	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Sodium, Total	ND	mg/kg	150	11.7	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Thallium, Total	0.052 J	mg/kg	0.800	0.052	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Vanadium, Total	ND	mg/kg	1.00	0.379	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD
Zinc, Total	ND	mg/kg	10.0	2.60	10	12/22/21 23:35	12/23/21 11:19	1,6020B	CD

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sa	ample(s): 07-08 Batc	h: WG15	84297-2 SRM	Lot Number:	D113-540				
Mercury, Total	127		-		60-140	-		20	

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01 Lab Number: L2157780 Report Date: 01/11/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated	d sample(s): 07-08 Batch: W	/G1586843-2 SRM Lot Nu	mber: D113-540		
Aluminum, Total	76	-	51-149	-	20
Antimony, Total	154	-	20-250	-	20
Arsenic, Total	106	-	70-130	-	20
Barium, Total	98	-	75-125	-	20
Beryllium, Total	111	-	75-125	-	20
Cadmium, Total	109	-	75-125	-	20
Calcium, Total	102	-	73-128	-	20
Chromium, Total	103	-	70-130	-	20
Cobalt, Total	107	-	75-125	-	20
Copper, Total	102	-	75-125	-	20
Iron, Total	94	-	36-164	-	20
Lead, Total	99	-	72-128	-	20
Magnesium, Total	97		63-138	-	20
Manganese, Total	103	-	77-123	-	20
Nickel, Total	106		70-130	-	20
Potassium, Total	92	-	59-141	-	20
Selenium, Total	105		66-134	-	20
Silver, Total	106	-	70-131	-	20
Sodium, Total	103	-	35-164	-	20
Thallium, Total	108	-	70-130	-	20
Vanadium, Total	98	-	74-126	-	20

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Parameter	LCS %Recovery	LCSD %Recov		y RPD	RPD Limits
Total Metals - Mansfield Lab Asso	ociated sample(s): 07-08 Ba	atch: WG1586843-2 S	RM Lot Number: D113-540		
Zinc, Total	103		70-130	-	20

		Matrix Spike Analysis Batch Quality Control		
Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Baton Quanty Control	Lab Number:	L2157780
Project Number:	192069-01.01		Report Date:	01/11/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lat	o Associated san	nple(s): 07-08	QC Bat	ch ID: WG158	4297-3	WG158429	7-4 QC Sam	ple: L21	57854-06	Client	t ID: MS Sample
Mercury, Total	0.456	1.47	2.47	137	Q	2.43	130	Q	80-120	2	20

Matrix Spike Analysis Batch Quality Control

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Project Number: 192069-01.01

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recove Limits		RPD Limits
Total Metals - Mansfield I	Lab Associated sar	nple(s): 07-08	QC Ba	tch ID: WG158	6843-3	WG158684	3-4 QC Sam	nple: L2157854-0	6 Client I	ID: MS Sample
Aluminum, Total	12800	325	13800	308	Q	13400	177	Q 75-125	3	20
Antimony, Total	0.793J	81.2	74.0	91		76.2	90	75-125	3	20
Arsenic, Total	21.2	19.5	39.4	93		41.2	98	75-125	4	20
Barium, Total	35.1	325	369	103		384	103	75-125	4	20
Beryllium, Total	0.955	8.12	9.56	106		9.88	105	75-125	3	20
Cadmium, Total	0.414	8.6	9.08	101		9.40	100	75-125	3	20
Calcium, Total	3650	1620	5860	136	Q	6510	168	Q 75-125	11	20
Chromium, Total	39.4	32.5	71.7	99		70.8	92	75-125	1	20
Cobalt, Total	10.1	81.2	89.9	98		91.6	96	75-125	2	20
Copper, Total	57.5	40.6	90.5	81		90.2	77	75-125	0	20
Iron, Total	36400	162	36300	0	Q	35000	0	Q 75-125	4	20
Lead, Total	45.2	86	127	95		132	96	75-125	4	20
Magnesium, Total	7830	1620	9780	120		9240	83	75-125	6	20
Manganese, Total	420	81.2	508	108		492	85	75-125	3	20
Nickel, Total	25.4	81.2	105	98		107	96	75-125	2	20
Potassium, Total	3000	1620	4810	112		4700	100	75-125	2	20
Selenium, Total	4.20	19.5	23.2	98		24.4	99	75-125	5	20
Silver, Total	0.666J	48.7	50.8	104		53.4	105	75-125	5	20
Sodium, Total	8760	1620	11300	156	Q	10800	120	75-125	5	20
Thallium, Total	0.521J	19.5	20.2	104		20.6	101	75-125	2	20
Vanadium, Total	38.9	81.2	123	104		121	97	75-125	2	20

Project Name: Project Number:	LITTLE ASSAWO 192069-01.01	MAN BAY, I	FENWICK		x Spike Analy ch Quality Contro		Lab Number: Report Date:	L2157780 01/11/22
	Native	MS	MS	MS	MSD	MSD	Recovery	RPD

Parameter	Sample	Added	Found	%Recovery	Found	%Recovery	Limits	RPD	Limits
Total Metals - Mansfield La	b Associated sam	ple(s): 07-08	QC Bat	tch ID: WG1586843-	3 WG158684	3-4 QC Sampl	le: L2157854-06	Client ID): MS Sample
Zinc, Total	129	81.2	197	84	199	82	75-125	1	20

Project Name:LITTLE ASSAWOMAN BAY, FENWICKLab Serial Dilution
AnalysisLab Number:L2157780Project Number:192069-01.01Batch Quality ControlReport Date:01/11/22

Parameter	Native Sample	Serial Dilution	Units	% D	Qual I	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 07-08	3 QC Batch ID:	WG1586843-6 QC Sample:	L2157854-06	Client ID:	DUP Sampl	e
Aluminum, Total	12800	13000	mg/kg	2		20
Iron, Total	36400	37200	mg/kg	2		20
Lead, Total	45.2	45.1	mg/kg	0		20
Magnesium, Total	7830	7790	mg/kg	1		20
Manganese, Total	420	428	mg/kg	2		20
Sodium, Total	8760	8870	mg/kg	1		20

INORGANICS & MISCELLANEOUS

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK
Project Number:	192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-01	Date Collected:	10/19/21 10:00
Client ID:	FI-2021-01-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Grain Size Analysis - I	Mansfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Sand	0.400		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Medium Sand	3.00		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Sand	51.3		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Silt Fine	34.5		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Clay Fine	10.8		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	

Project Number: 192069-01.01

Report Date:

Lab Number: L2157780 Report Date: 01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-02	Date Collected:	10/19/21 10:40
Client ID:	FI-2021-02-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Grain Size Analysis -	Mansfield Lab								
Cobbles	ND	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Gravel	ND	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Gravel	ND	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Sand	0.100	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Medium Sand	3.00	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Sand	82.2	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Silt Fine	11.3	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Clay Fine	3.40	%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Clay Fine	-				1	-		,	

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	

Project Number: 192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-03	Date Collected:	10/19/21 11:15
Client ID:	FI-2021-03-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Grain Size Analysis - M	Mansfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Gravel	0.200		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Sand	3.20		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Medium Sand	6.80		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Sand	41.0		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Silt Fine	37.4		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Clay Fine	11.4		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK
Project Number:	192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-04	Date Collected:	10/19/21 11:52
Client ID:	FI-2021-04-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Grain Size Analysis - N	Mansfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Sand	1.30		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Medium Sand	4.80		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Sand	50.5		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Silt Fine	33.0		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Clay Fine	10.4		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK
Project Number:	192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-05	Date Collected:	10/19/21 12:30
Client ID:	FI-2021-05-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Grain Size Analysis - M	lansfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Gravel	0.900		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Sand	3.30		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Medium Sand	11.6		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Sand	61.0		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Silt Fine	16.8		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Clay Fine	6.40		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK
Project Number:	192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-06	Date Collected:	10/19/21 12:55
Client ID:	FI-2021-06-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Grain Size Analysis - M	ansfield Lab									
Cobbles	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Gravel	ND		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Coarse Sand	4.60		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Medium Sand	7.20		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Fine Sand	47.0		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Silt Fine	18.6		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM
% Clay Fine	22.6		%	0.100	NA	1	-	12/15/21 11:43	12,D6913/D7928	CM

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Number:	L2157780
Project Number:	192069-01.01	Report Date:	01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-07	Date Collected:	10/19/21 11:20
Client ID:	FI-2021-NORTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	1.06		%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
Total Organic Carbon (Rep2)	0.917		%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
Total Organic Carbon (Average)	0.990		%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
General Chemistry - Mansfi	eld Lab									
Solids, Total	67.5		%	0.100	0.100	1	-	12/15/21 12:13	121,2540G	AE
Moisture	32.5		%	0.100	0.100	1	-	12/15/21 12:13	121,2540G	AE

Serial_No:01112217:20

Project Name:	LITTLE ASSAWOMAN BAY, FENWICK	Lab Numbe
Project Number:	192069-01.01	Report Date

 Number:
 L2157780

 oort Date:
 01/11/22

SAMPLE RESULTS

Lab ID:	L2157780-08	Date Collected:	10/19/21 13:00
Client ID:	FI-2021-SOUTH-20211019	Date Received:	10/21/21
Sample Location:	LITTLE ASSAWOMAN BAY	Field Prep:	Not Specified

Sample Depth: Matrix:

Sediment

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
sfield Lab									
1.29		%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
1.19		%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
1.24		%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
eld Lab									
62.4		%	0.100	0.100	1	-	12/15/21 12:13	121,2540G	AE
37.6		%	0.100	0.100	1	-	12/15/21 12:13	121,2540G	AE
	sfield Lab 1.29 1.19 1.24 eld Lab 62.4	sfield Lab 1.29 1.19 1.24 eld Lab 62.4	sfield Lab 1.29 % 1.19 % 1.24 % eld Lab %	sfield Lab 0.010 1.29 % 0.010 1.19 % 0.010 1.24 % 0.010 eld Lab % 0.100	sfield Lab 1.29 % 0.010 0.010 1.19 % 0.010 0.010 1.24 % 0.010 0.010 eld Lab % 0.100 0.100	Result Qualifier Units RL MDL Factor sfield Lab	Result Qualifier Units RL MDL Factor Prepared sfield Lab -	Result Qualifier Units RL MDL Factor Prepared Analyzed sfield Lab 1.29 % 0.010 0.010 1 - 12/22/21 17:32 1.19 % 0.010 0.010 1 - 12/22/21 17:32 1.24 % 0.010 0.010 1 - 12/22/21 17:32 eld Lab 0.010 0.010 1 - 12/22/21 17:32 62.4 % 0.100 0.100 1 - 12/15/21 12:13	Result Qualifier Units RL MDL Factor Prepared Analyzed Method sfield Lab 1.29 % 0.010 0.010 1 - 12/22/21 17:32 1,9060A 1.19 % 0.010 0.010 1 - 12/22/21 17:32 1,9060A 1.24 % 0.010 0.010 1 - 12/22/21 17:32 1,9060A 1.24 % 0.010 0.010 1 - 12/22/21 17:32 1,9060A eld Lab 0.100 0.100 1 - 12/22/21 17:32 1,9060A

Project Name:LITTLE ASSAWOMAN BAY, FENWICKProject Number:192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab for samp	ole(s): 07-	08 Bato	h: WG	1587625-1				
Total Organic Carbon (Rep1)	ND	%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
Total Organic Carbon (Rep2)	ND	%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP
Total Organic Carbon (Average)	ND	%	0.010	0.010	1	-	12/22/21 17:32	1,9060A	SP

Lab Control Sample Analysis Batch Quality Control

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Parameter	LCS %Recovery Q	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual RPD Limits	
Total Organic Carbon - Mansfield Lab A	ssociated sample(s): 07-	-08 Batch: WG158762	25-2				
Total Organic Carbon (Rep1)	104	-		75-125	-	25	
Total Organic Carbon (Rep2)	105	-		75-125	-	25	
Total Organic Carbon (Average)	104	-		75-125	-	25	

Lab Duplicate Analysis Batch Quality Control

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

 Lab Number:
 L2157780

 Report Date:
 01/11/22

Project Number: 192069-01.01

Parameter	Native S	ample	Duplicate San	nple Units	RPD	Qual	RPD Limits
General Chemistry - Mansfield Lab Associated sample(s):	07-08	QC Batch ID:	WG1583558-1	QC Sample: L21	63455-01 C	lient ID: D	UP Sample
Solids, Total	53.	9	53.1	%	1		10
Grain Size Analysis - Mansfield Lab Associated sample(s)	: 01-06	QC Batch ID:	WG1583676-1	QC Sample: L21	57780-01 (Client ID: 1	FI-2021-01-
Cobbles	NE)	ND	%	NC		20
% Coarse Gravel	NE)	ND	%	NC		20
% Fine Gravel	NE)	ND	%	NC		20
% Coarse Sand	0.40	00	0.800	%	67	Q	20
% Medium Sand	3.0	0	3.20	%	6		20
% Fine Sand	51.	3	49.5	%	4		20
% Silt Fine	34.	5	35.6	%	3		20
% Clay Fine	10.	8	10.9	%	1		20

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2157780-01A	Plastic 8oz unpreserved for Grain Size	A	NA		5.3	Y	Absent		A2-HYDRO-CGRAVEL(),A2-HYDRO- FSAND(),A2-HYDRO-CFINE(),A2-HYDRO- MSAND(),A2-HYDRO-CSAND(),A2-HYDRO- SFINE(),A2-HYDRO-COBBLES(),A2-HYDRO- FGRAVEL()
L2157780-02A	Plastic 8oz unpreserved for Grain Size	A	NA		5.3	Y	Absent		A2-HYDRO-CFINE(),A2-HYDRO-FSAND(),A2- HYDRO-CGRAVEL(),A2-HYDRO- MSAND(),A2-HYDRO-CSAND(),A2-HYDRO- SFINE(),A2-HYDRO-COBBLES(),A2-HYDRO- FGRAVEL()
L2157780-03A	Plastic 8oz unpreserved for Grain Size	A	NA		5.3	Y	Absent		A2-HYDRO-CGRAVEL(),A2-HYDRO- CFINE(),A2-HYDRO-FSAND(),A2-HYDRO- MSAND(),A2-HYDRO-CSAND(),A2-HYDRO- SFINE(),A2-HYDRO-COBBLES(),A2-HYDRO- FGRAVEL()
L2157780-04A	Plastic 8oz unpreserved for Grain Size	A	NA		5.3	Y	Absent		A2-HYDRO-CGRAVEL(),A2-HYDRO- FSAND(),A2-HYDRO-CFINE(),A2-HYDRO- MSAND(),A2-HYDRO-CSAND(),A2-HYDRO- SFINE(),A2-HYDRO-COBBLES(),A2-HYDRO- FGRAVEL()
L2157780-05A	Plastic 8oz unpreserved for Grain Size	A	NA		5.3	Y	Absent		A2-HYDRO-CGRAVEL(),A2-HYDRO- CFINE(),A2-HYDRO-FSAND(),A2-HYDRO- MSAND(),A2-HYDRO-SFINE(),A2-HYDRO- CSAND(),A2-HYDRO-FGRAVEL(),A2-HYDRO- COBBLES()
L2157780-06A	Plastic 8oz unpreserved for Grain Size	A	NA		5.3	Y	Absent		A2-HYDRO-FSAND(),A2-HYDRO- CGRAVEL(),A2-HYDRO-CFINE(),A2-HYDRO- MSAND(),A2-HYDRO-SFINE(),A2-HYDRO- CSAND(),A2-HYDRO-COBBLES(),A2-HYDRO- FGRAVEL()

Project Name: LITTLE ASSAWOMAN BAY, FENWICK Project Number: 192069-01.01

Serial_No:01112217:20 *Lab Number:* L2157780 *Report Date:* 01/11/22

Container Inf	formation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2157780-07A	Glass 250ml/8oz unpreserved	A	NA		5.3	Υ	Absent		A2-FE-6020T(180),A2-PB-6020T(180),A2- MOISTURE-2540(7),A2-BA-6020T(180),A2-NI- 6020T(180),A2-SB-6020T(180),A2-PEST- 8081(14),A2-ZN-6020T(180),A2-HG- 7474T(28),A2-ALKPAH(14),A2-K- 6020T(180),A2-TS(7),A2-CR-6020T(180),A2- TL-6020T(180),A2-TS(7),A2-CR-6020T(180),A2-CO- 6020T(180),A2-MN-6020T(180),A2-BE- 6020T(180),A2-V-6020T(180),A2-HGPREP- AF(28),A2-CD-6020T(180),A2-HGPREP- AF(28),A2-CD-6020T(180),A2-HGPREP- 3050:2T(180),A2-MG-6020T(180),A2-HGPREP- 3050:2T(180),A2-SE-6020T(180),A2-AG- 6020T(180),A2-CA-6020T(180),A2-PCB209- C/H-8270(14),A2-CU-6020T(180),A2-AL- 6020T(180)
L2157780-08A	Glass 250ml/8oz unpreserved	A	NA		5.3	Y	Absent		A2-FE-6020T(180),A2-PB-6020T(180),A2- MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN- 6020T(180),A2-BST-8081(14),A2-BA- 6020T(180),A2-SB-6020T(180),A2-HG- 7474T(28),A2-ALKPAH(14),A2-K- 6020T(180),A2-CR-6020T(180),A2-TL- 6020T(180),A2-CR-6020T(180),A2-TL- 6020T(180),A2-CO-6020T(180),A2-CD- 6020T(180),A2-BE-6020T(180),A2-V- 6020T(180),A2-HGPREP-AF(28),A2-SE- 6020T(180),A2-HGPREP-AF(28),A2-SE- 6020T(180),A2-HGPREP-AF(28),A2-SE- 6020T(180),A2-HGPREP-AF(28),A2-PREP- 3050:2T(180),A2-FOC29060-2REPS(28),A2- PREP-3050:1T(180),A2-PCB209-C/H- 8270(14),A2-NA-6020T(180),A2-AL- 6020T(180),A2-CU-6020T(180),A2-AG- 6020T(180),A2-CA-6020T(180)

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Lab Number: L2157780

Report Date: 01/11/22

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	 Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: LITTLE ASSAWOMAN BAY, FENWICK

Project Number: 192069-01.01

Lab Number: L2157780 Report Date: 01/11/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

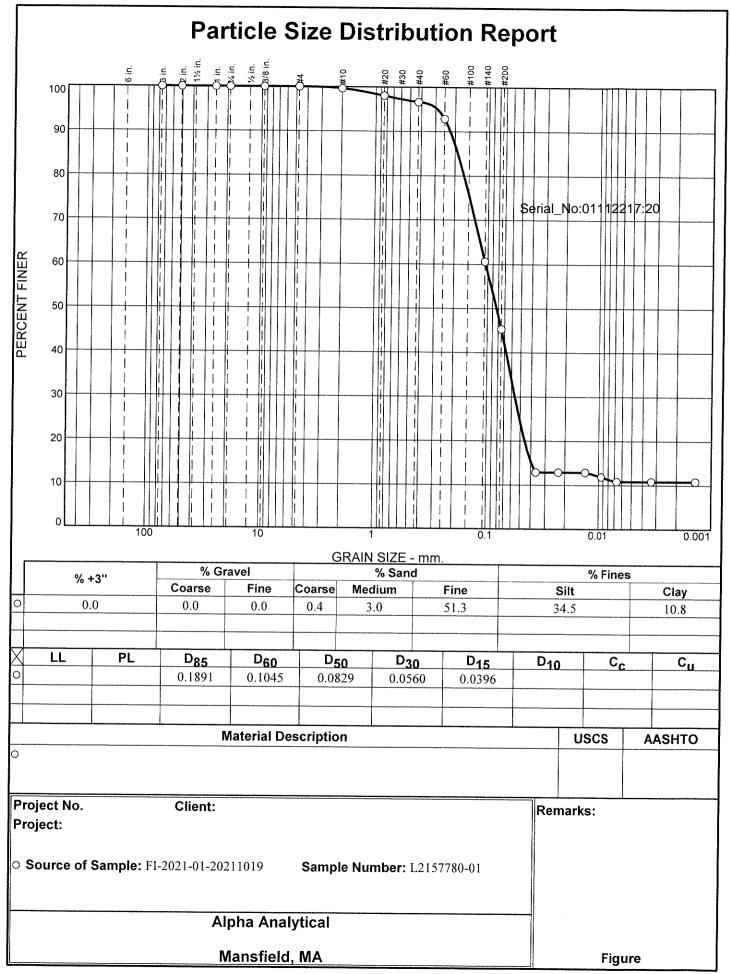
 Lab Number:
 L2157780

 Report Date:
 01/11/22

REFERENCES

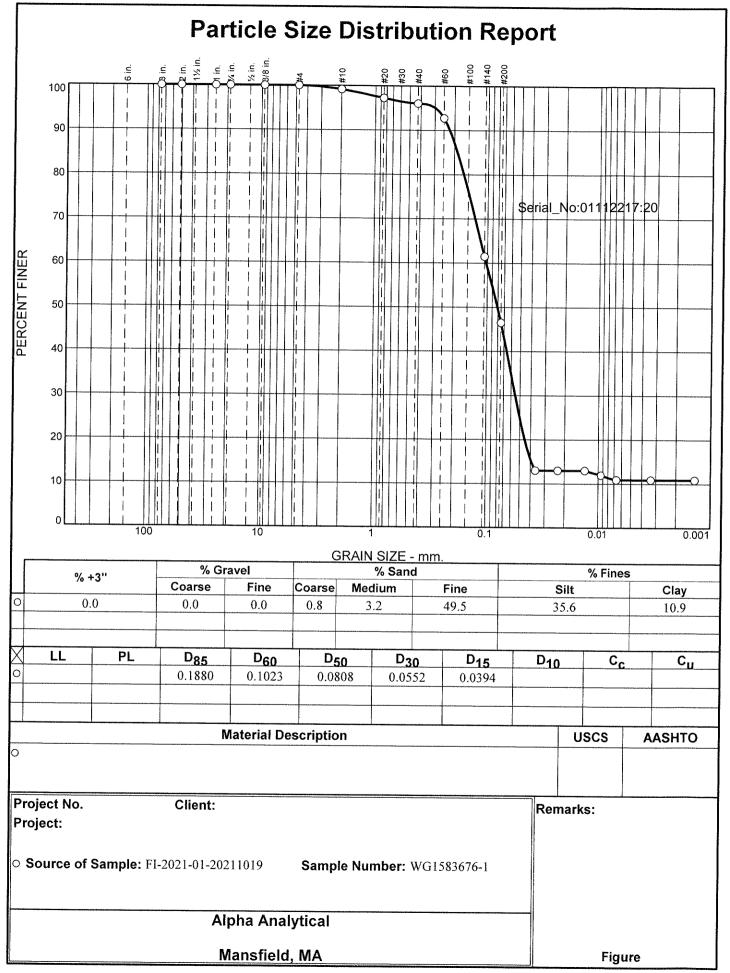
- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 12 Annual Book of ASTM Standards. (American Society for Testing and Materials) ASTM International.
- 105 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997 in conjunction with NOAA Technical Memorandum NMFS-NWFSC-59: Extraction, Cleanup and GC/MS Analysis of Sediments and Tissues for Organic Contaminants, March 2004 and the Determination of Pesticides and PCBs in Water and Oil/Sediment by GC/MS: Method 680, EPA 01A0005295, November 1985.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES


Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

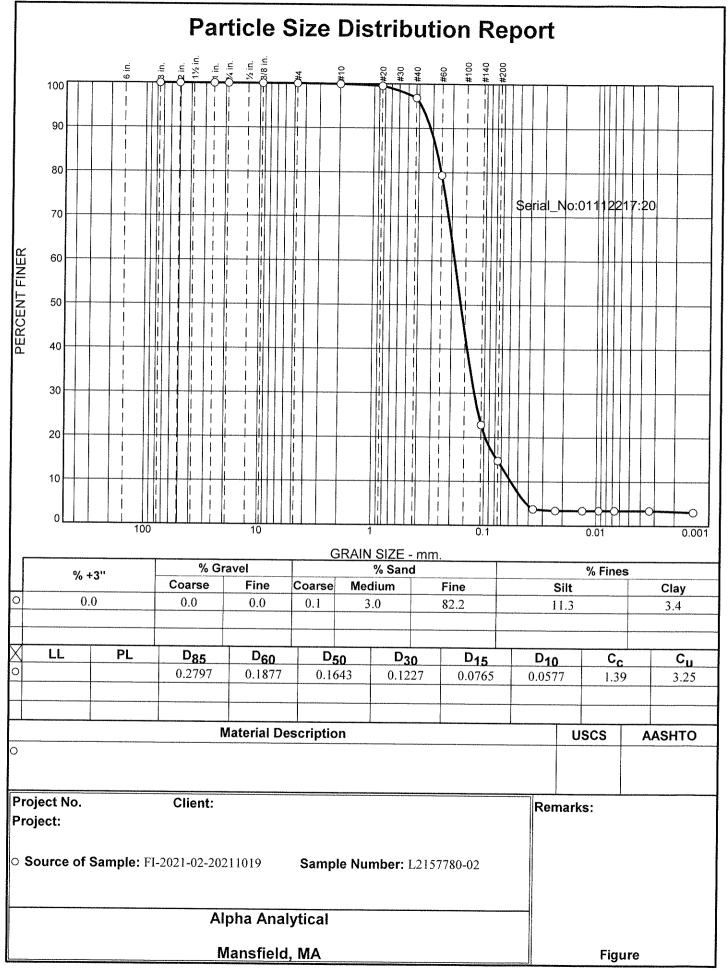
We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01112217:20


ASTM D6913/D7928 GRAIN SIZE ANALYSIS

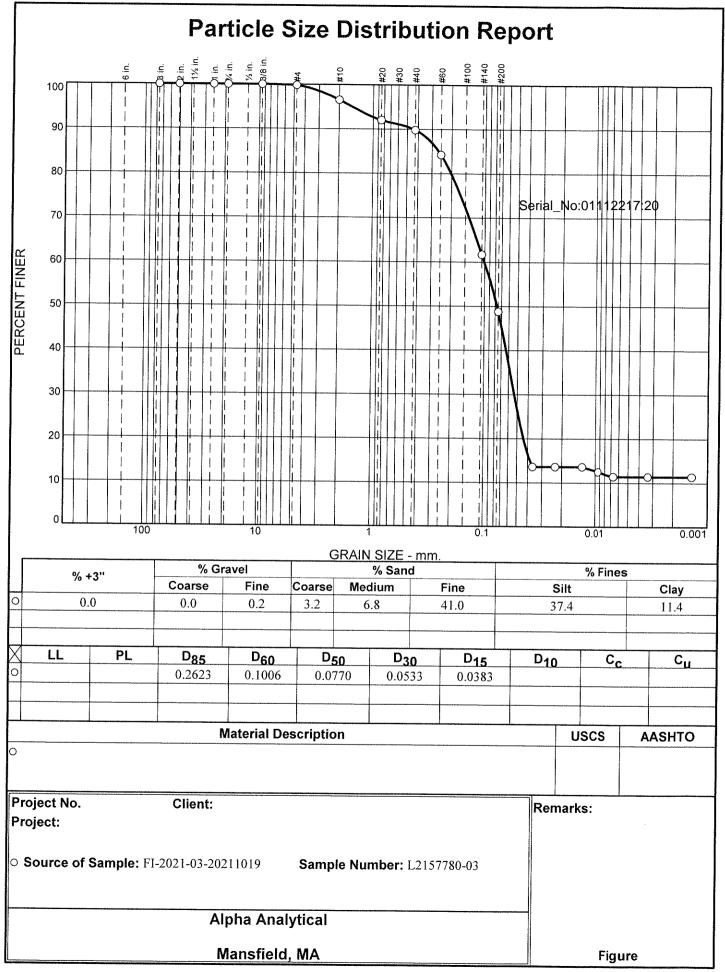
Location: FI-2021-01-20211019

Sample Number: L2157780-01


ost #200 Wa	ish Test W	/eights (gra	Tare	Sample and Wt. = 0.00 Is #200 from	Tare = 50							
Dry Sample and Tare (grams)	Tare (grams		Sieve Opening Size	Weight Retained (grams)	Siev Weig (gram	ht Pe	rcent iner		S	erial_No:(01112217	:20
50.05	0.0	0	3	0.00	0	00 1	00.0					
			2	0.00	0		00.0					
			1	0.00	0	00 1	0.00					
			.75	0.00	0.	00 1	0.00					
			.375	0.00	0.	00 1	0.00					
			#4	0.00	0.	00 1	0.00					
			#10	0.18	0.	00	99.6					
			#20	0.80	0.	00	98.0					
			#40	0.70	0.	00	96.6					
			#60	1.90			92.8					
			#140	16.14			50.6					
			#200	7.66	0.	00 4	15.3	interitsippints () anna 10				
tomatic terr	perature o	correction										
niscus corr ecific gravit drometer ty	correction rection onl ty of solids pe = 151H	(fluid dens y = 0.0 s = 2.65 depth equa c. Actr 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00	attion: L = 1 ual Co ding R 060 1 060 1 060 1 060 1 055 1 050 1	.0062 .0062 .0057 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm 6.0 6.0 6.0 5.5 5.0 5.0	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033	Percent Finer 12.9 12.9 12.9 11.9 10.8 10.8 10.8		
tomatic tem Composite in iscus correctific gravit drometer ty dydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	correction rection onl ty of solids pe = 151H • effective of (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid dens y = 0.0 s = 2.65 depth equa b. Actr 2.) Reac 1.00 1.00 1.00 1.00 1.00	attion: L = 1 ual Co ding R 060 1 060 1 060 1 060 1 055 1 050 1	6.294964 - 0 rrected eading .0062 .0062 .0062 .0057 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm 6.0 6.0 6.0 5.5 5.0 5.0 5.0 5.0	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067	Finer 12.9 12.9 12.9 11.9 10.8		
tomatic tem Composite in iscus correctific gravit drometer ty dydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	correction rection onl ty of solids pe = 151H • effective of (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid dens y = 0.0 s = 2.65 depth equa c. Actu 2.) Reac 1.00 1.00 1.00 1.00 1.00	ation: L = 10 ual Co ding Ro 060 1 060 1 060 1 055 1 050 1 050 1 050 1 050 1	6.294964 - 0 rrected eading .0062 .0062 .0062 .0057 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm 6.0 6.0 6.0 5.5 5.0 5.0 5.0 5.0	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033	Finer 12.9 12.9 12.9 11.9 10.8 10.8		
tomatic tem Composite niscus corr ecific gravit drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	correction rection onl ty of solids pe = 151H * effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid dens y = 0.0 s = 2.65 depth equa c. Actu 1.00 1.00 1.00 1.00 1.00 1.00	ation: L = 10 ual Co ding Rd 060 1 060 1 060 1 055 1 050 1 050 1 050 1 050 1	6.294964 - (rrected eading .0062 .0062 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 mectional	m 6.0 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 Compton Sand	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 0 15.0	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014	Finer 12.9 12.9 12.9 11.9 10.8 10.8 10.8	Fines	
tomatic tem Composite niscus corr ecific gravit drometer ty tydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	correction onl rection onl ty of solids pe = 151H • effective of 21.7 21	(fluid dens y = 0.0 s = 2.65 depth equa . Actr 2.) Reac 1.00	ation: L = 1 ual Co ding R 060 1 060 1 060 1 055 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0062 .0062 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractional rse Me	m Rm 6.0 6.0 5.5 5.0 5.0 5.0 Compose Sand dium	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 15.0 0010	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033	Finer 12.9 12.9 12.9 11.9 10.8 10.8	Fines Clay	Total
tomatic tem Composite niscus corr ecific gravit drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	correction rection onl ty of solids pe = 151H * effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid dens y = 0.0 s = 2.65 depth equa c. Actu 1.00 1.00 1.00 1.00 1.00 1.00	ation: L = 10 ual Co ding Rd 060 1 060 1 060 1 055 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0062 .0062 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractional rse Me	m 6.0 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 Compton Sand	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 0 15.0	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014	Finer 12.9 12.9 12.9 11.9 10.8 10.8 10.8		<u>Total</u> 45.3
tomatic tem Composite niscus corr ecific gravit drometer ty tydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	correction onl rection onl ty of solids pe = 151H • effective of 21.7 21	(fluid dens y = 0.0 s = 2.65 depth equa . Actr 2.) Reac 1.00	ation: L = 1 ual Co ding R 060 1 060 1 060 1 055 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0062 .0062 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractional rse Me	m Rm 6.0 6.0 5.5 5.0 5.0 5.0 Compose Sand dium	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 15.0 0010	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014	Finer 12.9 12.9 12.9 11.9 10.8 10.8 10.8 10.8	Clay	
tomatic tem Composite niscus corr ecific gravit drometer ty Hydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	correction rection onl ty of solids pe = 151H • effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid dens y = 0.0 s = 2.65 depth equa . Actu 1.00 1.	Attion: L = 10 ual Co ding Rd 060 1 060 1 060 1 055 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 0.0 0.0	6.294964 - (prrected eading .0062 .0062 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me 4	m Rm 6.0 6.0 5.5 5.0 5.0 5.0 Compton Sand dium 3.0	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 00000 50000 50000 51.3	(m 0.0 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014 Fotal 54.7 D ₈₀	Finer 12.9 12.9 12.9 11.9 10.8 10.8 10.8 Silt 34.5 D ₈₅	Clay 10.8 Dg0	45.3
tomatic tem Composite niscus corr ecific gravit drometer ty Hydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	correction rection onl ty of solids pe = 151H • effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid dens y = 0.0 s = 2.65 depth equa . Actu 1.00 1.	Ition: L = 10 ual Co ding Ri 060 1 060 1 060 1 055 1 050 1 050 1 050 1 050 1 050 1 050 1 0 0.0	6.294964 - (prrected eading .0062 .0062 .0052	D.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ratetional rse Me 4 D40	m Rm 6.0 6.0 5.5 5.0 5.0 5.0 Compose dium 3.0 D ₅₀	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 0 15.0 conts Fine 51.3	(m 0.0 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014 Fotal 54.7	Finer 12.9 12.9 12.9 11.9 10.8 10.8 10.8 Silt 34.5	Clay 10.8	45.3

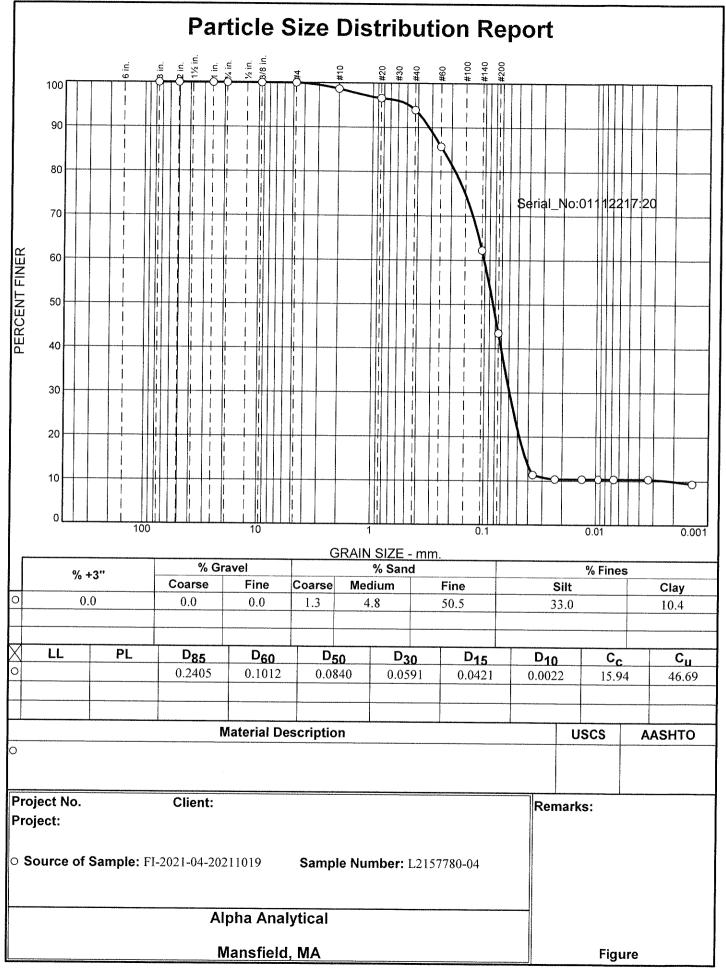
Location: FI-2021-01-20211019

Sample Number: WG1583676-1


ost #200 Wa	ash Test W	eights (gra	Tare	Sample and Wt. = 0.00 us #200 fror	Tare = 5(
Dry Sample and Tare (grams)	Tare (grams)		Sieve Opening Size	Weight Retained (grams)	Siev Weig (gran	ght Pe	ercent		S	Serial_No:(01112217:	20
50.70	0.0	0	3	0.00	().00 1	00.0					
			2	0.00	().00 1	00.0					
			1	0.00	().00 1	00.0					
			.75	0.00	(0.00 1	00.0					
			.375	0.00	0	0.00 1	00.0					
			#4	0.00	C).00 1	00.0					
			#10	0.43	C	0.00	99.2					
			#20	0.97	C	0.00	97.2					
			#40	0.61	0	0.00	96.0					
			#60	1.66	0	.00	92.8					
			#140	15.86	0	.00	61.5					
			#200	7.60	0	.00	46.5	more lange for a t				
omatic ten	nperature d	correction										
Composite niscus corr ecific gravi Irometer ty	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	tion: L = 1 ual Ca ding R 060 060 060 055 050	6.294964 - prrected eading 1.0062 1.0062 1.0062 1.0062 1.0057 1.0052 1.0052	0.2645 x I K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	Rm 6.0 6.0 5.5 5.0 5.0	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033	Percent Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9		
Composite niscus com ecific gravit frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	rection onl ty of solids pe = 151H • effective of (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00	tion: L = 1 ual Ca ding R 060 060 060 055 050	6.294964 - orrected eading 1.0062 1.0062 1.0062 1.0052 1.0052 1.0052	K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	Rm 6.0 6.0 6.0 5.5 5.0 5.0 5.0 5.0	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067	Finer 13.0 13.0 13.0 11.9 10.9		
Composite hiscus com- ecific gravit frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act .) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ntion: L = 1 ual Ca ding R 060 060 055 050 050 050	6.294964 - orrected eading 1.0062 1.0062 1.0062 1.0052 1.0052 1.0052	K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	Rm 6.0 6.0 5.5 5.0 5.0	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033	Finer 13.0 13.0 13.0 11.9 10.9 10.9	7	
Composite hiscus com- ecific gravit frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act .) Read 1.00 1.0	ation: L = 1 ual Ci ding R 060 060 060 055 050 1 050 1	6.294964 - prrected eading 1.0062 1.0062 1.0062 1.0052 1.0052 1.0052 1.0052 1.0052	K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractiona	Rm 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 San	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 vents	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014	Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9	Fines	
Cobbles	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.	Ition: L = 1 ual Cu ding R 060 060 055 050 050 150 1 I Tot	6.294964 - prrected eading 1.0062 1.0062 1.0062 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052	0.2645 x I K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 nactiona rse M	Rm 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 15.0 15.0 4 Mentes	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014 Fotal	Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9 10.9 Silt	Fines Clay	Total
omposite hiscus con cific gravit rometer ty ydrometer Elapsed me (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act .) Read 1.00 1.0	ation: L = 1 ual Ci ding R 060 060 060 055 050 1 050 1	6.294964 - prrected eading 1.0062 1.0062 1.0062 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052	0.2645 x I K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 nactiona rse M	Rm 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 San	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 vents	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014	Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9	Fines	Total 46.5
Cobbles	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.	Ition: L = 1 ual Cu ding R 060 060 055 050 050 150 1 I Tot	6.294964 - prrected eading 1.0062 1.0062 1.0062 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052	0.2645 x I K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 nactiona rse M	Rm 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 15.0 15.0 4 Mentes	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014 Fotal	Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9 10.9 Silt	Fines Clay	
Composite niscus composite niscus composite cific gravit frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act .) Read 1.00 1.00 1.00 1.00 1.00 1.00 0.0 Grave Fine 0.0 D ₁₅	Ition: L = 1 ual Cu ding R 060 060 055 050 050 150 1 I Tot	6.294964 - prrected eading 1.0062 1.0062 1.0062 1.0052	0.2645 x I K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 nactiona rse M	Rm 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 15.0 Ventes d Fine 49.5	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014 Fotal	Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9 10.9 Silt	Fines Clay	
Cobbles 0.0	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act . Read 1.00 1.00 1.00 1.00 1.00 1.00 0.00 Grave Fine 0.0	tion: L = 1 ual Cd ding R 060 060 055 050 050 1 1 Tot 0.0	6.294964 - prrected eading 1.0062 1.0062 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052 1.0052	0.2645 x I K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 maching rse M 8	Rm 6.0 6.0 5.5 5.0 5.0 1 Compose San edium 3.2 D ₅₀	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014 Fotal 53.5	Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9 10.9 Silt 35.6	Fines Clay 10.9	46.5
Cobbles 0.0	rection onl ty of solids pe = 151H effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	y = 0.0 = 2.65 depth equa . Act .) Read 1.00 1.00 1.00 1.00 1.00 1.00 0.0 Grave Fine 0.0 D ₁₅	tion: L = 1 ual Cd ding F 060 060 055 050 050 050 050 1 U U 0.0	6.294964 - prrected eading 1.0062 1.0062 1.0062 1.0052	0.2645 x I K 0.0134 0.014 0.014 0.014	Rm 6.0 6.0 5.5 5.0 5.0 5.0 10 compose San ledium 3.2	Eff. Depth 14.7 14.7 14.7 14.8 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0 0.0	m.) 362 229 132 094 067 033 014 Fotal 53.5 D 80	Finer 13.0 13.0 13.0 11.9 10.9 10.9 10.9 Silt 35.6 D ₈₅	Fines Clay 10.9 D90	46.5 D ₉₅

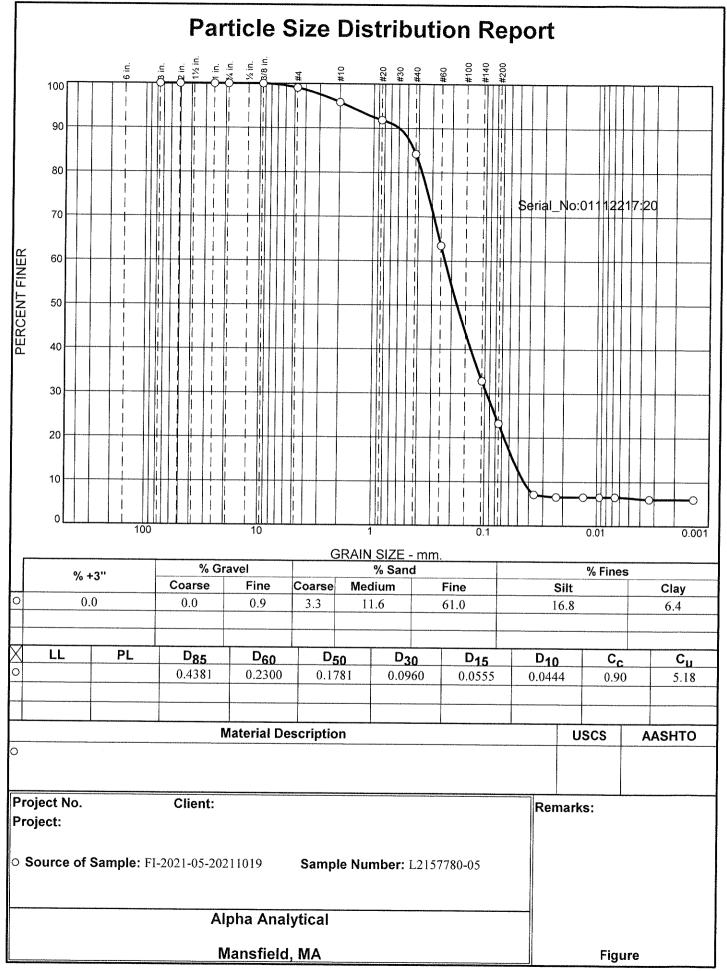
Location: FI-2021-02-20211019

Sample Number: L2157780-02


ost #200 Wa	ash Test W	/eights (gra	Tare	Sample and Wt. = 0.00 us #200 from							
Dry Sample and Tare (grams)	Tare (grams		Sieve Dpening Size	Weight Retained (grams)	Sieve Weigh (grams	nt Perc		ç	Serial_No:(01112217	2:20
122.15	0.0	0	3	0.00	0.	00 100	.0				
			2	0.00	0	00 100					
			1	0.00		00 100					
			.75	0.00	0.	00 100	.0				
			.375	0.00	0.	00 100	.0				
			#4	0.00	0.0	00 100	.0				
			#10	0.11	0.0	00 99.	.9				
			#20	0.47	0.0	00 99.	.5				
			#40	3.26	0.0	00 96.	.9				
			#60	21.41	0.0	00 79.	.3				
			#140	69.01	0.0	00 22.	8				
			#200	9.96	0.0	00 14.	7				
					Hydrome	ter Test Da	ita 👘				
tomatic ten Composite niscus cor ecific gravi drometer ty	nperature correctior rection on ty of solid pe = 151H	correction (fluid dens ly = 0.0 s = 2.65 [sity and m	eniscus heig		-					
tomatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed	nperature correction rection on ty of solid ype = 151H r effective Temp	correction (fluid density = 0.0 s = 2.65 (depth equation). Act	sity and me ation: L = 1 ual Co	6.294964 - (prrected	0.2645 x R	m			Percent		
tomatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed ïime (min.)	nperature correction rection on ty of solid ype = 151H r effective Temp (deg. (correction (fluid density = 0.0 s = 2.65 (depth equation) (C.) Read	sity and mo ation: L = 1 ual Co ding R	6.294964 - (prrected eading	0.2645 x Ri K	m E Rm De	epth (r	nm.)	Finer		
comatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed	nperature correction rection on ty of solid ype = 151H r effective Temp	correction (fluid density = 0.0 s = 2.65 (depth equation) (depth equation)	sity and mo ation: L = 1 ual Co ding R 055 1	6.294964 - (prrected eading .0057	0.2645 x R K 0.0134	m Rm De 5.5 1	epth (r 4.8 0.	nm.) 0364	Finer 3.7		
comatic ten Composite niscus cor ecific gravi frometer ty lydrometer Elapsed ime (min.) 2.00	nperature correction rection on ty of solid ype = 151H r effective Temp (deg. (21.7	correction (fluid density = 0.0 s = 2.65 (depth equation) (c) Read 1.00 1.00	sity and mo ation: L = 1 ual Co ding R 055 1 050 1	6.294964 - (prrected eading .0057 .0052	0.2645 x R i K 0.0134 0.0134	m Rm De 5.5 1 5.0 1	epth (r 4.8 0. 5.0 0.	nm.) 0364 0231	Finer 3.7 3.4		
comatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed ime (min.) 2.00 5.00	nperature of correction on ty of solid ype = 151H r effective Temp (deg. 0 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00	sity and me ation: L = 1 ual Co ding R 055 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052	0.2645 x R K 0.0134	m Rm De 5.5 1 5.0 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0.	nm.) 0364 0231 0133	Finer 3.7 3.4 3.4		
comatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00	nperature correction rection on ty of solid rpe = 151H r effective Temp (deg. (21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 1 ual Co ding R 055 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134	m E Rm De 5.5 1 5.0 1 5.0 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0.	nm.) 0364 0231 0133 0094	Finer 3.7 3.4 3.4 3.4 3.4		
tomatic ten Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	nperature correction rection on ity of solid ype = 151F r effective 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 1 ual Co ding R 055 1 050 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134	m E Rm De 5.5 1 5.0 1 5.0 1 5.0 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0.	nm.) 0364 0231 0133	Finer 3.7 3.4 3.4		
niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00	nperature correction rection on ty of solid ype = 151H r effective 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm De 5.5 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0.	nm.) 0364 0231 0133 0094 0067	Finer 3.7 3.4 3.4 3.4 3.4 3.4		
tomatic ten Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	nperature - correction on ty of solid ype = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm De 5.5 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0.	nm.) 0364 0231 0133 0094 0067 0033	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.4		
tomatic ten Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	nperature - correction on ty of solid ype = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 050 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m F m De 5.5 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 4.5 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0.	nm.) 0364 0231 0133 0094 0067 0033	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.4	Fines	
tomatic ten Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	nperature - correction on ty of solid ype = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 050 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0047	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional	m Fm De 5.5 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 4.5 1 Component	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0.	nm.) 0364 0231 0133 0094 0067 0033	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.4	Fines Clay	Total
tomatic ten Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	nperature correction rection on ty of solid ype = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid dens ly = 0.0 s = 2.65 depth equa b. Act 1.00 1	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 050 1 050 1 050 1 050 1 050 1	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F al Coa	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me	m Rm De 5.5 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0.	nm.) 0364 0231 0133 0094 0067 0033 0014	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.1		<u>Total</u> 14.7
comatic ten Composite niscus cor ecific gravi frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles	nperature correction rection on ty of solid pe = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 0	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F al Coa	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me	m Rm De 5.5 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0. The	nm.) 0364 0231 0133 0094 0067 0033 0014 Total	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.1 Silt	Clay	
tomatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles	nperature correction rection on ty of solid pe = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 0	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F al Coa	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me	m Rm De 5.5 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0. The	nm.) 0364 0231 0133 0094 0067 0033 0014 Total	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.1 Silt	Clay	
tomatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature correction rection on ty of solid ype = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 0	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F al Coa	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me 1	m Rm De 5.5 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 3.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0. HS	nm.) 0364 0231 0133 0094 0067 0033 0014 Total 85.3	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.1 Silt 11.3	Clay 3.4	14.7
Composite niscus cor peific gravi drometer ty Hydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 0.0 D5 0.0417 ineness	nperature correction rection on ty of solid (pe = 151F r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid dens ly = 0.0 s = 2.65 depth equa b. Act 1.00 1	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 0	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F al Coa 0 0.	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 reactional reactional 1	m Rm De 5.5 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0. vits	nm.) 0364 0231 0133 0094 0067 0033 0014 Total 85.3	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.1 Silt 11.3 D ₈₅	Clay 3.4 D ₉₀	14.7
tomatic ten Composite niscus cor ecific gravi drometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature correction rection on ty of solid rpe = 151H r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.	sity and me ation: L = 1 ual Cc ding R 055 1 050 1 0	6.294964 - (prrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F al Coa 0 0.	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 reactional reactional 1	m Rm De 5.5 1 5.0 1	epth (r 4.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.1 0. vits	nm.) 0364 0231 0133 0094 0067 0033 0014 Total 85.3	Finer 3.7 3.4 3.4 3.4 3.4 3.4 3.1 Silt 11.3 D ₈₅	Clay 3.4 D ₉₀	14.7

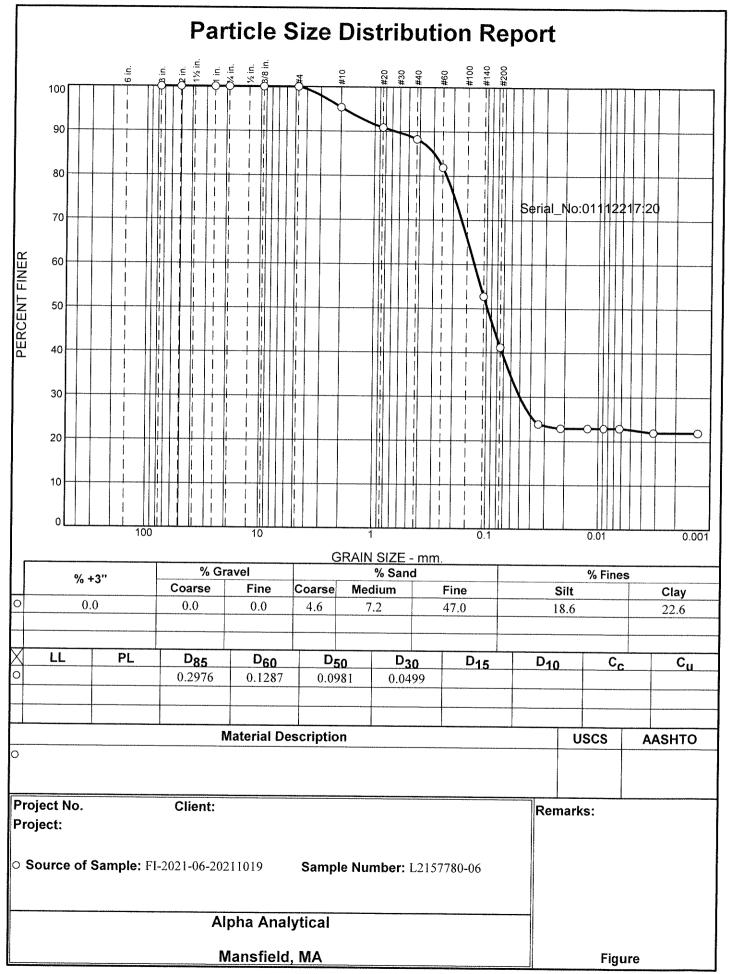
Location: FI-2021-03-20211019

Sample Number: L2157780-03


ost #200 W	ash Test W	eights (gra	Tare	Sample and Wt. = 0.00 Is #200 from			no na manana kao kao kao kao kao kao kao kao kao ka		er on de la construction de la cons	an a	
Dry Sample and Tare (grams)	Tare (grams		Sieve Opening Size	Weight Retained (grams)	Siev Weigl (gram	ht Per	cent ier	S	erial_No:0)1112217	:20
94.85	0.0	0	3	0.00	0.	00 10	0.0				
			2	0.00	0.	00 10).0				
			1	0.00	0.	00 100).0				
			.75	0.00	0.	00 100	0.0				
			.375	0.00	0.	00 100).0				
			#4	0.18	0.	00 99	9.8				
			#10	3.08	0.	00 96	5.6				
			#20	4.31	0.	00 92	2.0				
			#40	2.08	0.	00 89	9.8				
			#60	5.32	0.	00 84	.2				
			#140	21.37	0.	00 61	.7				
		A statistic and statistic activity of	#200	12.24	0.	00 48	.8				
Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	correction rection onl ty of solids ype = 151H r effective of (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equal . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00	ation: L = 1 ual Co ding R 060 1 060 1 060 1 055 1 050 1	6.294964 - (rrected ading .0062 .0062 .0062 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m D 6.0 6.0 5.5 5.0 5.0	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 5.0 0.	nm.) 0362 0229 0132 0094 0067 0033	Percent Finer 13.6 13.6 13.6 12.5 11.4 11.4		
Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00	correction rection onl ty of solids /pe = 151H r effective of (deg. C 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00	ation: L = 1 ual Co ding R 060 1 060 1 060 1 055 1 050 1	6.294964 - (rrected eading .0062 .0062 .0062 .0057 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm 6.0 6.0 5.5 5.0	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.8 0.4 5.0 0.4 5.0 0.4	nm.) 0362 0229 0132 0094 0067	Finer 13.6 13.6 13.6 12.5 11.4		
Composite niscus cor ecific gravi drometer ty lydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	correction rection onl ty of solids ype = 151H r effective of (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00	ation: L = 1 ual Co ding Ru 060 1 060 1 055 1 055 1 050 1 050 1	6.294964 - (rrected eading .0062 .0062 .0062 .0057 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m D 6.0 6.0 5.5 5.0 5.0	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.8 0.4 5.0 0.4 5.0 0.4	nm.) 0362 0229 0132 0094 0067 0033	Finer 13.6 13.6 13.6 12.5 11.4 11.4		
Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	correction rection onl ty of solids (pe = 151H r effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00	ation: L = 1 ual Co ding R 060 1 060 1 055 1 050 1 050 1 050 1	6.294964 - (rrected eading .0062 .0062 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional	m Rm D 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.8 0. 15.0 0. 5.0 0. 5.0 0.	nm.) 0362 0229 0132 0094 0067 0033 0014	Finer 13.6 13.6 13.6 12.5 11.4 11.4 11.4	Fines	
Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles	correction rection onl ty of solids (pe = 151H r effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ation: L = 1 ual Co ding R 060 1 060 1 060 1 055 1 050 1 050 1 050 1 1 Tota	6.294964 - (rrected sading .0062 .0062 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me	m Rm D 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. mis	nm.) 0362 0229 0132 0094 0067 0033 0014 Total	Finer 13.6 13.6 13.6 12.5 11.4 11.4 11.4 Silt	Fines	Total
Composite niscus cor ecific gravi frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	correction rection onl ty of solids (pe = 151H r effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00	ation: L = 1 ual Co ding R 060 1 060 1 055 1 050 1 050 1 050 1	6.294964 - (rrected sading .0062 .0062 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me	m Rm D 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.8 0. 15.0 0. 5.0 0. 5.0 0.	nm.) 0362 0229 0132 0094 0067 0033 0014	Finer 13.6 13.6 13.6 12.5 11.4 11.4 11.4		Total 48.8
Composite niscus cor ecific gravi frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	correction rection onl ty of solids (pe = 151H r effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ation: L = 1 ual Co ding R 060 1 060 1 060 1 055 1 050 1 050 1 050 1 1 Tota	6.294964 - (rrected sading .0062 .0062 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me	m Rm D 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. mis	nm.) 0362 0229 0132 0094 0067 0033 0014 Total	Finer 13.6 13.6 13.6 12.5 11.4 11.4 11.4 Silt	Clay	
Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles	correction onl rection onl ty of solids (pe = 151H r effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ation: L = 1 ual Co ding Ru 060 1 060 1 060 1 055 1 050 1 050 1 050 1 1 1 1 0.2 D ₂₀	6.294964 - (rrected sading .0062 .0062 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectioned rse Me 2 D40	m Rm D 6.0 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.8 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. mis	nm.) 0362 0229 0132 0094 0067 0033 0014 Total	Finer 13.6 13.6 13.6 12.5 11.4 11.4 11.4 Silt	Clay	
Composite niscus cor ecific gravi drometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	correction onl rection onl ty of solids (pe = 151H r effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ation: L = 1 ual Co ding R 060 1 060 1 055 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 050 1 0.2 0.2	6.294964 - (rrected eading .0062 .0062 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional rse Me 2	m Rm 6.0 6.0 5.5 5.0 5.0 5.0 Compone Sand dium 5.8	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. This	nm.) 0362 0229 0132 0094 0067 0033 0014 Total 51.0	Finer 13.6 13.6 13.6 12.5 11.4 11.4 11.4 Silt 37.4	Clay 11.4	48.8
Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	correction onl rection onl ty of solids (pe = 151H r effective of 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid den: y = 0.0 s = 2.65 depth equa . Act 2.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ation: L = 1 ual Co ding Ru 060 1 060 1 060 1 055 1 050 1 050 1 050 1 1 1 1 0.2 D ₂₀	6.294964 - (rrected sading .0062 .0062 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectioned rse Me 2 D40	m Rm 6.0 6.0 6.0 5.5 5.0 5.0 5.0 Compone Sand dium 6.8 D50	epth (r 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 14.7 0. 5.0 0. 5.0 0. 5.0 0. 5.0 0. ruts	nm.) 0362 0229 0132 0094 0067 0033 0014 Total 51.0	Finer 13.6 13.6 13.6 12.5 11.4 11.4 11.4 Silt 37.4 D ₈₅	Clay 11.4 D90	48.8

Location: FI-2021-04-20211019

Sample Number: L2157780-04


Post #200 W	ash Test W	/eights (gra	Tare	Sample and Wt. = 0.00 Is #200 from								
Dry Sample and Tare (grams)	Tare (grams		Sieve Dpening Size	Weight Retained (grams)	Siev Weig (gram	ht Pe	ercent		S	Serial_No:0)1112217:	20
93.24	0.0	0	3	0.00	0.	00 1	00.0					
			2	0.00	0.		00.0					
			1	0.00	0.	00 1	00.0					
			.75	0.00	0.	00 1	00.0					
			.375	0.00	0.	00 1	00.0					
			#4	0.00	0.	00 1	00.0					
			#10	1.25	0.	00	98.7					
			#20	1.93	0.	00	96.6					
			#40	2.47	0.	00	93.9					
			#60	7.69	0.	00	85.7					
			#140	21.86	0.	00	62.2					
			#200	17.53	0.	0C	43.4					
tomatic ter Composite eniscus cor ecific gravi drometer ty	nperature e correction rection on ity of solids ype = 151H	(fluid dens ly = 0.0 s = 2.65	sity and me	eniscus heig)					
tomatic ter Composite eniscus cor ecific gravi drometer ty Hydrometer Elapsed	nperature correction rection on ity of solids ype = 151H r effective Temp	correction (fluid density = 0.0 s = 2.65 (depth equate) (depth equate)	sity and me tion: L = 10 ual Co	5.294964 - (rrected).2645 x R		Eff.	Dia	neter	Percent		
tomatic ter Composite eniscus cor ecific gravi drometer ty Hydrometer Elapsed Fime (min.)	nperature correction rection on ity of solids ype = 151H r effective Temp (deg. 0	correction (fluid dens ly = 0.0 s = 2.65 depth equa b. Act C.) Read	sity and me tion: L = 1 ual Co ding Re	5.294964 - (rrected eading).2645 x R K				neter ım.)	Percent Finer		
tomatic ter Composite eniscus cor ecific gravi drometer ty Hydrometer Elapsed Fime (min.) 2.00	nperature a correction on rection on ity of solida ype = 151E r effective Temp (deg. 0 21.7	correction (fluid density = 0.0 s = 2.65 (depth equal c). Act C.) Reac 1.00	sity and me tion: L ≃ 14 ual Co ding Ra 055 1	5.294964 - (rrected eading .0057	0.2645 x R K 0.0134	m Rm 5.5	Eff. Depth 14.8	(m 0.0	im.))364			
tomatic ter Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00	nperature a correction rection on ity of solid ype = 151H r effective (deg. 0 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c. Act 1.00 1.00	sity and me tion: L = 10 ual Co ding Ro 055 1 050 1	5.294964 - (rrected eading .0057 .0052	0.2645 x R K 0.0134 0.0134	m Rm 5.5 5.0	Eff. Depth 14.8 15.0	(m 0.0 0.0	i m.) 0364 0231	Finer 11.4 10.4		
tomatic ter Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00	nperature a correction on rection on ity of solid- ype = 151H r effective (deg. 0 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) React 1.00 1.00 1.00	sity and me tion: L = 1 ual Co ding Re 055 1 050 1 050 1	6.294964 - (rrected eading .0057 .0052 .0052).2645 x R K 0.0134 0.0134 0.0134	m Rm 5.5 5.0 5.0	Eff. Depth 14.8 15.0 15.0	(m 0.0 0.0 0.0	9364 9231 9133	Finer 11.4 10.4 10.4		
tomatic ter Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Fime (min.) 2.00 5.00 15.00 30.00	nperature a correction on rection on ity of solida ype = 151H r effective (deg. 0 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c. Act 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 1 ual Co ling Re 055 1 050 1 050 1	5.294964 - (rrected eading .0057 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134	m 5.5 5.0 5.0 5.0	Eff. Depth 14.8 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0	im.) 0364 0231 0133 0094	Finer 11.4 10.4 10.4 10.4		
tomatic ter Composite eniscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00	nperature a correction rection on ity of solid ype = 151E r effective (deg. 0 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) React 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 14 ual Co ling Re 055 1 050 1 050 1 050 1	5.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm 5.5 5.0 5.0 5.0 5.0 5.0	Eff. Depth 14.8 15.0 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0	im.) 0364 0231 0133 0094 0067	Finer 11.4 10.4 10.4 10.4 10.4		
tomatic ter Composite eniscus cor becific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	nperature a correction on rection on ity of solid- ype = 151H r effective (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 10 ual Co ding Ro 055 1 050 1 050 1 050 1 050 1	6.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0	(m 0.0 0.0 0.0 0.0 0.0	nm.) 0364 0231 0133 0094 0067 033	Finer 11.4 10.4 10.4 10.4 10.4 10.4		
Itomatic ter Composite eniscus cor becific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00	nperature a correction rection on ity of solid ype = 151E r effective (deg. 0 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 10 ual Co ding Ro 055 1 050 1 050 1 050 1 050 1	5.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0052	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134	m 5.5 5.0 5.0 5.0 5.0 5.0 5.0 4.5	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0 15.1	(m 0.0 0.0 0.0 0.0 0.0	im.) 0364 0231 0133 0094 0067	Finer 11.4 10.4 10.4 10.4 10.4		
Itomatic ter Composite eniscus cor becific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	nperature (correction on rection on ity of solida ype = 151H r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid dens y = 0.0 s = 2.65 depth equa b. Act 1.00 1.	sity and me tion: L = 1 ual Co ling Re 055 1 050 1 050 1 050 1 050 1 050 1 050 1	6.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0047).2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractiona)	m 5.5 5.0 5.0 5.0 5.0 5.0 4.5 Compon San	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0 15.1 19:015 d	(m 0.0 0.0 0.0 0.0 0.0 0.0	nm.) 0364 0231 0133 0094 0067 033 014	Finer 11.4 10.4 10.4 10.4 10.4 10.4 9.4	Fines	
Cobbles	nperature correction rection on ity of solida ype = 151H r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 (depth equation) c Act c A	sity and me tion: L = 10 ual Co Jing Ro 055 1 050 1 050 1 050 1 050 1 050 1 1 050 1 0 1 0 5 0 1 0 5 0 1 0 0 5 1 0 0 1 0 1	6.294964 - (rrected sading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional	m Rm 5.5 5.0 5.0 5.0 5.0 5.0 4.5 Compose San dium	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.1 15.1 15.1 15.1	(m 0.0 0.0 0.0 0.0 0.0 0.0	nm.) 0364 0231 0133 0094 0067 0033 014 Total	Finer 11.4 10.4 10.4 10.4 10.4 10.4 9.4 Silt	Fines Clay	Total
tomatic ter Composite eniscus cor ecific gravi drometer ty Hydrometer Elapsed Fime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	nperature (correction on rection on ity of solida ype = 151H r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid dens y = 0.0 s = 2.65 depth equa b. Act 1.00 1.	sity and me tion: L = 1 ual Co ling Re 055 1 050 1 050 1 050 1 050 1 050 1 050 1	6.294964 - (rrected sading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F .0047	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 rectional	m 5.5 5.0 5.0 5.0 5.0 5.0 4.5 Compon San	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0 15.1 19:015 d	(m 0.0 0.0 0.0 0.0 0.0 0.0	nm.) 0364 0231 0133 0094 0067 033 014	Finer 11.4 10.4 10.4 10.4 10.4 10.4 9.4		Total 43.4
tomatic ter Composite niscus cor ecific gravid drometer ty Hydrometer Elapsed Fime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles	nperature correction rection on ity of solida ype = 151H r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid dens y = 0.0 s = 2.65 depth equa . Act 1.00 1.0	sity and me tion: L = 1 ual Co Jing Re 055 1 050 1 0 050 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F .1 Coal 1.2	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractional rse Me 3	m Rm 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 Component of the second	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0 15.1 10:015 d Fine 50.5	(m 0.0 0.0 0.0 0.0 0.0 0.0	nm.))364)231)133)094)067)033 014 Total 56.6	Finer 11.4 10.4 10.4 10.4 10.4 10.4 9.4 Silt 33.0	Clay 10.4	43.4
tomatic ter Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Fime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature correction rection on ity of solids ype = 151H r effective (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 (depth equation) c Act c A	sity and me tion: L = 1 ual Co ding Re 055 1 050 1 0 050 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F .0047 .0047 .0047 .0052 .0047 .0052 .00	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractional rse Me 3	m Rm 5.5 5.0 5.0 5.0 5.0 5.0 4.5 Compose dium 4.8	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0 15.1 15.1 15.1	(m 0.0 0.0 0.0 0.0 0.0 0.0 0.0	nm.) 1364 1231 1133 1094 1067 033 014 Total 56.6 D 80	Finer 11.4 10.4 10.4 10.4 10.4 10.4 9.4 Silt 33.0 D ₈₅	Clay 10.4 D90	43.4 D ₉₅
tomatic ter Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature correction rection on ity of solida ype = 151H r effective 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	Correction (fluid density = 0.0 S = 2.65 (depth equation) (applied to the equation) (applied to t	sity and me tion: L = 1 ual Co Jing Re 055 1 050 1 0 050 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F .1 Coal 1.2	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractional rse Me 3	m Rm 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 Component of the second	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0 15.1 15.1 15.1	(m 0.0 0.0 0.0 0.0 0.0 0.0	nm.))364)231)133)094)067)033 014 Total 56.6	Finer 11.4 10.4 10.4 10.4 10.4 10.4 9.4 Silt 33.0	Clay 10.4	43.4
tomatic ter Composite niscus cor ecific gravi drometer ty Hydrometer Elapsed Fime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature correction rection on ity of solid- ype = 151H r effective (deg. C 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 s = 2.65 depth equation c.) Reaction 1.00	sity and me tion: L = 1 ual Co ding Re 055 1 050 1 0 050 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.294964 - (rrected eading .0057 .0052 .0052 .0052 .0052 .0052 .0047 F .0047 .0047 .0047 .0052 .0047 .0052 .00	0.2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 ractional rse Me 3	m Rm 5.5 5.0 5.0 5.0 5.0 5.0 4.5 Compose dium 4.8	Eff. Depth 14.8 15.0 15.0 15.0 15.0 15.0 15.1 15.1 15.1	(m 0.0 0.0 0.0 0.0 0.0 0.0 0.0	nm.) 1364 1231 1133 1094 1067 033 014 Total 56.6 D 80	Finer 11.4 10.4 10.4 10.4 10.4 10.4 9.4 Silt 33.0 D ₈₅	Clay 10.4 D90	43.4 D ₉₅

Location: FI-2021-05-20211019

Sample Number: L2157780-05

ost #200 Wa	ash Test W	eights (gra	Tare	Sample and Wt. = 0.00 Is #200 from	Tare = 118.						n s z no ne o ne o ne o ne provinsi je kon je sa je kon
Dry Sample and Tare (grams)	Tare (grams)		Sieve)pening Size	Weight Retained (grams)	Sieve Weight (grams)			S	Serial_No:	01112217	:20
118.18	0.0	0	3	0.00	0.0	0 100	.0				
			2	0.00	0.0						
			1	0.00	0.0	0 100	.0				
			.75	0.00	0.0) 100	.0				
			.375	0.00	0.0) 100	.0				
			#4	1.10	0.0) 99	.1				
			#10	3.82	0.0) 95	.8				
			#20	4.74	0.00) 91	.8				
			#40	9.01	0.00) 84	.2				
			#60	24.48	0.00	63	.5				
			#140	36.23	0.00	32	.8				
	nio dimensi interne vicente a	Admitiational and a second seco	#200	11.40	0.00	23.	.2				
tomatic ten Composite niscus con ecific gravit drometer ty	nperature c correction rection onl ty of solids /pe = 151H	for rection (fluid dens y = 0.0 z = 2.65	sity and me	eniscus heig 5.294964 - 0		-					
tomatic ten Composite niscus corr ecific gravit drometer ty lydrometer Elapsed	nperature c correction rection onl ty of solids /pe = 151H	orrection (fluid dens y = 0.0 = 2.65 depth equa	sity and me tion: L = 10 ual Co ling Ro 065 1 060 1 060 1	5.294964 - 0 rrected eading .0067 (.0062 (.0062 (.2645 x Rm	Rm Do 6.5 1 6.0 1 6.0 1	epth 4.6 4.7 4.7	Diameter (mm.) 0.0361 0.0229 0.0132 0.0094	Percent Finer 7.1 6.5 6.5 6.5		
tomatic ten Composite niscus com ecific gravit frometer ty lydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00	nperature c correction rection onl ty of solids ype = 151H • effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7	(fluid dens y = 0.0 = 2.65 depth equa . Actu .) Read 1.00 1.00 1.00	sity and me tion: L = 16 ual Co ling Re 065 1 060 1 060 1	5.294964 - 0 rrected ading .0067 (.0062 (.0062 (.0062 (.2645 x Rm K).0134).0134).0134	f Rm Di 6.5 1 6.0 1 6.0 1 6.0 1 6.0 1	epth 4.6 4.7 4.7 4.7	(mm.) 0.0361 0.0229 0.0132	Finer 7.1 6.5		
tomatic ten Composite niscus com ecific gravit drometer ty Hydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00	nperature c correction rection onl ty of solids pe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0) i = 2.65 i = 2.65 depth equation Actuality i = 0.0 Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 16 ual Co ling Re 165 1 160 1 160 1 160 1 155 1	5.294964 - 0 rrected ading .0067 (.0062 (.0062 (.0062 (.0062 (.0062 (.0062 (.0062 (.2645 x Rm K).0134).0134).0134).0134).0134).0134	E Rm Du 6.5 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1	epth 4.6 4.7 4.7 4.7 4.7	(mm.) 0.0361 0.0229 0.0132 0.0094	Finer 7.1 6.5 6.5 6.5		
tomatic ten Composite niscus com ecific gravit frometer ty lydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00	nperature c correction rection onl ty of solids ype = 151H • effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0 y = 0.0 = 2.65 depth equate Actual . Actual Read 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 16 ual Co ling Re 165 1 160 1 160 1 160 1 155 1	5.294964 - 0 rrected ading .0067 (.0062 (.0062 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134).0134	Image: Rm Display 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1	epth 4.6 4.7 4.7 4.7 4.7 4.8 4.8	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066	Finer 7.1 6.5 6.5 6.5 6.5		
comatic ten Composite niscus com ecific gravit frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	nperature c correction rection onl ty of solids pe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid density = 0.0) i = 2.65 i = 2.65 depth equation Actuality i = 0.0 Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 16 ual Co ling Re 165 1 160 1 160 1 160 1 155 1	5.294964 - 0 rrected ading .0067 (.0062 (.0062 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134	Image: Rm Display 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1	epth 4.6 4.7 4.7 4.7 4.7 4.8 4.8	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033	Finer 7.1 6.5 6.5 6.5 6.5 6.0		
comatic tem Composite niscus correctific gravit frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	nperature c correction rection onl ty of solids ppe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid dens y = 0.0 = 2.65 depth equa . Actu .) Read 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 16 ual Co ling Re 065 1 060 1 060 1 060 1 055 1 055 1	5.294964 - 0 rrected ading .0067 (.0062 (.0062 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134).0134 actional C	Image: Rm Display 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 5.5 1 5.5 1 ompone Sand	epth 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014	Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0	Fines	
tomatic tem Composite niscus correctific gravit drometer ty dydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles	nperature c correction rection onl ty of solids pe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	Former Section (fluid density = 0.0) = 2.65 depth equation . Acture . . Acture . <tr< td=""><td>sity and me tion: L = 10 ual Co ling Ro 165 1 160 1 160 1 160 1 155 1 155 1</td><td>5.294964 - 0 rrected sading .0067 (.0062 (.0062 (.0062 (.0062 (.0057 (</td><td>.2645 x Rm K).0134).0134).0134).0134).0134).0134).0134 y.0</td><td>Fraction Fraction 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 5.5 1 ompone Sand ium 1</td><td>epth 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 The Fine</td><td>(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014 Total</td><td>Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0 Silt</td><td>Clay</td><td>Total</td></tr<>	sity and me tion: L = 10 ual Co ling Ro 165 1 160 1 160 1 160 1 155 1 155 1	5.294964 - 0 rrected sading .0067 (.0062 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134).0134 y.0	Fraction Fraction 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 5.5 1 ompone Sand ium 1	epth 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 The Fine	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014 Total	Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0 Silt	Clay	Total
comatic tem Composite niscus correctific gravit frometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	nperature c correction rection onl ty of solids ppe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	correction (fluid dens y = 0.0 = 2.65 depth equa . Actu .) Read 1.00 1.00 1.00 1.00 1.00 1.00	sity and me tion: L = 16 ual Co ling Re 065 1 060 1 060 1 060 1 055 1 055 1	5.294964 - 0 rrected sading .0067 (.0062 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134).0134 actional C se Med	Fraction Fraction 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 5.5 1 ompone Sand ium 1	epth 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014	Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0		Total 23.2
comatic ten Composite niscus correction ecific gravit drometer ty Hydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature c correction rection onl ty of solids pe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	Correction (fluid dens y = 0.0 = 2.65 depth equa . Actu .) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	sity and me tion: L = 16 ual Co ling Re 065 1 060 1 060 1 060 1 060 1 055 1000 1000	5.294964 - 0 rrected ading .0067 (.0062 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134).0134 se Med 11	Image: Rm Display 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 5.5 1 0.0000000 1 Sand 1 .6 1	epth 4.6 4.7 4.7 4.7 4.7 4.7 4.8 4.8 nts Fine 61.0	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014 Total 75.9	Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0 Silt 16.8	Clay 6.4	23.2
tomatic tem Composite niscus correctific gravit drometer ty dydrometer Elapsed Time (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles	nperature c correction rection onl ty of solids pe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	Correction (fluid dens y = 0.0 = 2.65 depth equa 	sity and me tion: L = 10 ual Co ling Re 065 1 060 1 060 1 060 1 060 1 060 1 055 1 055 1 055 1 055 1 009 0.9	5.294964 - 0 rrected pading .0067 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134 actional C se Med 11 D40	Image: Rm Difference 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 0mponer Sand ium .6 D50 D	epth 4.6 4.7 4.7 4.7 4.7 4.7 4.8 4.8 5 5 6 1.0 0 0 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014 Total 75.9 D ₈₀	Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0 5ilt 16.8 D ₈₅	Clay 6.4 D90	23.2 D ₉₅
tomatic tem Composite niscus corrients ecific gravit drometer ty Hydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature c correction rection onl ty of solids pe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	Correction (fluid dens y = 0.0 = 2.65 depth equa . Actu .) Read 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	sity and me tion: L = 16 ual Co ling Re 065 1 060 1 060 1 060 1 060 1 055 1000 1000	5.294964 - 0 rrected ading .0067 (.0062 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134).0134 se Med 11	Image: Rm Display 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 5.5 1 0.0000000 1 Sand 1 .6 1	epth 4.6 4.7 4.7 4.7 4.7 4.7 4.8 4.8 nts Fine 61.0	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014 Total 75.9 D ₈₀	Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0 Silt 16.8	Clay 6.4	23.2
eniscus corr ecific gravii drometer ty Hydrometer Elapsed Fime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00 Cobbles 0.0	nperature c correction rection onl ty of solids pe = 151H effective c 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	Correction (fluid dens y = 0.0 = 2.65 depth equa 	sity and me tion: L = 10 ual Co ling Re 065 1 060 1 060 1 060 1 060 1 060 1 055 1 055 1 055 1 055 1 009 0.9	5.294964 - 0 rrected pading .0067 (.0062 (.0062 (.0062 (.0057 (.2645 x Rm K).0134).0134).0134).0134).0134).0134 actional C se Med 11 D40	Image: Rm Difference 6.5 1 6.0 1 6.0 1 6.0 1 5.5 1 0mponer Sand ium .6 D50 D	epth 4.6 4.7 4.7 4.7 4.7 4.7 4.8 4.8 5 5 6 1.0 0 0 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm.) 0.0361 0.0229 0.0132 0.0094 0.0066 0.0033 0.0014 Total 75.9 D ₈₀	Finer 7.1 6.5 6.5 6.5 6.5 6.0 6.0 5ilt 16.8 D ₈₅	Clay 6.4 D90	23.2 D ₉₅

12/21/2021

Location: FI-2021-06-20211019

Sample Number: L2157780-06

	ash Test Wei	ghts (grams):	Tare W	t. = 0.00								
Dry Sample and Tare (grams)	Tare (grams)	Siev Openi Size	ng F	Weight Retained (grams)	Siev Weig (gram	ht Pe	ercent Finer		S	Serial_No:0)1112217	:20
106.86	0.00		3	0.00	0	.00 1	0.00					
			2	0.00	0.		00.0					
			1	0.00	0	.00 1	00.0					
			75	0.00	0.	.00 1	00.0					
		.3	75	0.00	0.	.00 1	00.0					
			#4	0.00	0.	.00 1	00.0					
		#	10	4.91	0.	.00	95.4					
		#	20	4.87	0.	00	90.8					
		#.	40	2.79			88.2					
		#	60	6.79	0.		81.9					
		#14	40	31.14	0.	00	52.7					
collected ministration and a country was		#20	00	12.32	0.	00	41.2					
omposite	correction (f	luid density a	nd menis	scus heid	iht) at 20 d	dea C ≃ ()					
niscus con peific gravi Irometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	rection only a ty of solids = pe = 151H r effective de Temp. (deg. C.) 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	2.65 pth equation: Actual Reading 1.0125 1.0120 1.0120 1.0120 1.0120 1.0120 1.0120 1.0120 1.0121	L = 16.2 Corre Reac 1.01 1.01 1.01 1.01 1.01	94964 - 0 ected ling 227 (22 (22 (22 (22 (17 ().2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	Rm 12.5 12.0 12.0 12.0 12.0 12.0 11.5	Eff. Depth 13.0 13.1 13.1 13.1 13.1 13.1 13.3	(m 0.0 0.0 0.0 0.0 0.0	om.) 0341 0216 0125 0088 0062 0031	Percent Finer 23.8 22.9 22.9 22.9 22.9 22.9 22.9 21.9		
niscus con cific gravi prometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	rection only = ty of solids = pe = 151H r effective de Temp. (deg. C.) 21.7 21.7 21.7 21.7 21.7 21.7	= 0.0 = 2.65 pth equation: Actual Reading 1.0125 1.0120 1.0120 1.0120 1.0120 1.0120	L = 16.2 Corre Reac 1.01 1.01 1.01 1.01 1.01	94964 - 0 ected 127 (22 (22 (22 (22 (17 (17 ().2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	Rm 12.5 12.0 12.0 12.0 12.0 12.0 11.5 11.5	Eff. Depth 13.0 13.1 13.1 13.1 13.1 13.1 13.3 13.3	(m 0.0 0.0 0.0 0.0 0.0	1m.) 9341 9216 9125 9088 9062	Finer 23.8 22.9 22.9 22.9 22.9 22.9		
niscus con cific gravi prometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00	rection only a ty of solids = pe = 151H r effective de Temp. (deg. C.) 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	= 0.0 = 2.65 pth equation: Actual Reading 1.0125 1.0120 1.0120 1.0120 1.0120 1.0120 1.0120 1.0125	L = 16.2 Corre Reac 1.01 1.01 1.01 1.01 1.01	94964 - 0 ected 127 (22 (22 (22 (22 (17 (17 ().2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	Rm 12.5 12.0 12.0 12.0 12.0 12.0 11.5 11.5	Eff. Depth 13.0 13.1 13.1 13.1 13.1 13.1 13.3 13.3	(m 0.0 0.0 0.0 0.0 0.0	9341 9341 9216 9125 9088 9062 9031	Finer 23.8 22.9 22.9 22.9 22.9 22.9 21.9		
niscus con cific gravi irometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	rection only a ty of solids = pe = 151H r effective de Temp. (deg. C.) 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	= 0.0 = 2.65 pth equation: Actual Reading 1.0125 1.0120 1.0120 1.0120 1.0120 1.0120 1.0120 1.0125	L = 16.2 Corre Reac 1.01 1.01 1.01 1.01 1.01	94964 - 0 ected 127 (22 (22 (22 (22 (17 (17 ().2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	m Rm 12.5 12.0 12.0 12.0 12.0 12.0 11.5 11.5 Composition	Eff. Depth 13.0 13.1 13.1 13.1 13.1 13.3 13.3 Dents	(m 0.0 0.0 0.0 0.0 0.0	9341 9341 9216 9125 9088 9062 9031	Finer 23.8 22.9 22.9 22.9 22.9 22.9 21.9	Fines	
niscus con cific gravi irometer ty lydrometer Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00	rection only a ty of solids = pe = 151H r effective de Temp. (deg. C.) 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	= 0.0 = 2.65 pth equation: Actual Reading 1.0125 1.0120 1.0120 1.0120 1.0120 1.0120 1.0115 1.0115	L = 16.2 Corre Reac 1.01 1.01 1.01 1.01 1.01	94964 - 0 ected 127 (22 (22 (22 (22 (17 (17 ().2645 x R K 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134	Rm 12.5 12.0 12.0 12.0 12.0 12.0 11.5 11.5	Eff. Depth 13.0 13.1 13.1 13.1 13.1 13.3 13.3 Dents	(m 0.0 0.0 0.0 0.0 0.0 0.0	om.) 0341 0216 0125 0088 0062 031 013	Finer 23.8 22.9 22.9 22.9 22.9 21.9 21.9	Fines Clay	Total
niscus con cific gravi rometer ty ydrometer Elapsed me (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	rection only a ty of solids = ppe = 151H r effective de Temp. (deg. C.) 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	= 0.0 = 2.65 pth equation: Actual Reading 1.0125 1.0120 1.0120 1.0120 1.0120 1.0120 1.0115 1.0115 1.0115	L = 16.2 Corre Reac 1.01 1.01 1.01 1.01 1.01 1.01	94964 - 0 ected Jing 22 (22 (22 (22 (17 (17 (17 (0.2645 x R K 0.0134 0.014 0.01	m Rm 12.5 12.0 12.0 12.0 12.0 12.0 11.5 11.5 Composition San	Eff. Depth 13.0 13.1 13.1 13.1 13.1 13.3 13.3 13.3	(m 0.0 0.0 0.0 0.0 0.0 0.0	9341 9341 9216 9125 9088 9062 9031	Finer 23.8 22.9 22.9 22.9 22.9 22.9 21.9	Fines Clay 22.6	<u>Total</u> 41.2
niscus con icific gravi irometer t Elapsed ime (min.) 2.00 5.00 15.00 30.00 60.00 240.00 1440.00	rection only a ty of solids = pe = 151H r effective de 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	= 0.0 = 2.65 pth equation: Actual Reading 1.0125 1.0120 1.0120 1.0120 1.0120 1.0120 1.0115 1.0115 .0115 Gravel Fine 0.0	L = 16.2 Corre Reac 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0.0	94964 - 0 ected ling 22 (22 (22 (17 (17 (17 (F	0.2645 x R K 0.0134 0.014 0.01	Rm 12.5 12.0 12.0 12.0 12.0 12.0 11.5 11.5 Composition San	Eff. Depth 13.0 13.1 13.1 13.1 13.1 13.3 13.3 13.3	(m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	nm.) 0341 0216 0125 0088 0062 031 013 Total	Finer 23.8 22.9 22.9 22.9 22.9 21.9 21.9 21.9 Silt	Clay	

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane. Toxaphene. Aldrin. alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin. DDD, DDE, DDT, Endosulfan I. Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

											_						_	S	erial_No:01112217:20	
ALPHA	CHAIN OF	= CU	STO	ОҮ м	NGE	_of	Dat	e Rec	c'd in	Lab:	10	01:	21	21	-		AL	.PH/	A Job #: L2157780	
WESTBORO, MA	MANSFIELD, MA	Project	Informat	ion			Re	port	Info	rmati	ion -	Data	a Deli	ivera	ble	s	Bi	lling	g Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project N	Name: Lit	te Assawa	non Bay,	Fenwrek	ADEx Add'I Deliverables								Same as Client info PO #:					
Client Informatio	on Maria Contractor		ocation: L																	
Client: Ancho	r QEA, LLC	Project #	192069	-01.01		/	11000	ulato				ents/	Repo	ort L	imit	5		-		
Address: 755 B	DUSINGSS CONTE Prive Sule 200	Project N	lanager: ,		Counte	155	4.0000412	e /Fed	0.000032	20000		_	0	Criteri	a			_		
Harshow, PA	19044		Quote #:			10.00		Délav	way	0							aller.	10		
	67 751 4116	Turn-A	Around Tir	ne								- 15			-		-	1.		
Fax:														5	E			20		
Email: Shagnull	Danchorgericom	Standa	ard 🗆	RUSH (anity a	confirmed if pre-o	(donniedl)		1	- 7		/	5	7	5	-	7	10	7	7 7 7	Ţ
	ve been previously analyzed by Alpha	Date Du	ie:		Time:			Sis	al al	5/4	F/	8	1	150	M		15	1	SAMPLE HANDLING	TOTA
Other Project S	pecific Requirements/Comr	nents/De	etection Li	imits:			ANAL	ALL & TC O	EPARTEd DA	Wis-dot-w	sticides an	00 100	T. EPA RET	141 Mer 100 Sim 53	2. all of	the rice	3 Pillar		Filtration Done Not needed Lab to do Preservation Lab to do	# BOTT
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle Date	ection Time	Sample Matrix	Sampler's Initials	1/2	9	Aga	10	2/	10	11	7	15	1	/	/	(Please specify below) Sample Specific Comments	L E S
	FJ-2021-01		10/19/21	1000	Sed	SL		<u> </u>	γ	-	/	-			X		(\vdash	/ Sample Specific Comments	
57780-01	1 -02		101190	1040	1	SL	-		-		-			X			-			-
-02	-03			1115		1.000	-						-	X		_	+	-		
-03	- 04		+(-			SL	-	_					-	X	X	_	-	-		
-04				1152		SL									_		-	-		+
-05	-05			1230		52								X				_		
de	- 0.6			1255		SL								X	~					
-07	- North			1120		SL	\times	×	$^{\times}$	1	×	\mathbf{x}	×							_
-08			¥	1300	V	SL	\succ	\times	×	×	>	\geq	\times							_
					Cont	ainer Type													Please print clearly, legibly and	
					P	reservative													pletely. Samples can not be log in and turnaround time clock wi	ill not
1			ished By:		Da 10/20	te/Time		E.L.		eceive	ed By	:		_	1	Date	/Tim	e	start until any ambiguities are re All samples submitted are subject	
5		Sean Ly	Ynch		10/40		100	Fede Se	ñ.	1.	. /	4	(10/2	t	21	/(125	Alpha's Terms and Conditions.	
Page 100 of 101	CT-07)				-		6	- 6	n	and.	A /	1-1	-	VId	11	4		-		

SHPO Review Documentation

SHPO Phase 1 Investigation Review Letter

Phase 1 Site Investigation Results Report

Phase 1B Site Investigation Results Report

SHPO Phase 1 Investigation Review Letter

April 20, 2022

Ms. Lena DeSantis Anchor Qea 123 Tice Boulevard #205 Woodcliff Lake, NY 07677

RE: CENAP-OPR-2021-576-85, Fenwick Island Channel Dredging SX SHPO Project Review # 2021.10.27.02

Dear Ms. DeSantis,

This Office is in receipt of *Executive Summary Phase IB Underwater Archaeological Project Fenwick Island Channel Dredging Project*, completed by Dolan Research for Anchor QEA LLC. The management summary follows additional Phase IB testing completed within the Little Assawoman Bay prior to proposed dredging of the Fenwick Island Channel.

The initial Phase IB investigations identified a high-intensity limited duration magnetic signature (Target SM1) within the area of potential effect (APE) in Little Assawoman Bay. Additional Phase IB investigations were conducted at this location at the recommendation of Dolan Research. A combination of magnetic remote sensing data and probes were used to further delineate Target SM1. A single hard contact was recorded at one probe location approximately 7.1' below the water line. Additional probing was done in the immediate vicinity, but no additional contact was made. Target SM1 is likely a single object vertically oriented and is not indicative of an archaeological site. Dolan Research and Anchor QEA do not recommend further underwater investigations for the purposed of this undertaking.

We find that no further underwater survey is needed for the proposed work within the Fenwick Island Channel. It is our understanding from our meeting on October 29, 2021 that potential locations for dredged material placement are still being considered. We ask to be kept informed as plans develop, as terrestrial archaeological survey may be required. We look forward to receiving the finalized version of the report. If you have any questions I can be reached at (302) 736-7431 or <u>sarah.carr@delaware.gov</u>.

Sincerely,

Sarah Carr Cultural Preservation Specialist

cc: Gwen Davis, DE SHPO Nikki Minnichbach, USACE Michael D. Yost, USACE Steve Bagnull, Anchor QEA Bill Rymer, Town of Fenwick

Saving Delaware History

Phase 1 Site Investigation Results Report

PHASE I UNDERWATER ARCHAEOLOGICAL INVESTIGATIONS FENWICK ISLAND CHANNEL DREDGING PROJECT LITTLE ASSAWOMAN BAY, FENWICK ISLAND, SUSSEX COUNTY, DELAWARE

DRAFT REPORT

Submitted to: Anchor QEA, LLC Greater Philadelphia Office 755 Business Center Drive Horsham, PA 19044

Submitted by: J. Lee Cox, Jr. Dolan Research, Inc. 30 Paper Mill Road Newtown Square, PA 19073

January 2022

ABSTRACT

In conjunction with the Fenwick Island Channel Dredging Project, Phase I Underwater Archaeological Investigations were conducted to assess the potential presence or absence of potential submerged cultural resources within the Project's Area of Potential Effect (APE). The Town of Fenwick Island, Sussex County, Delaware is pursuing the completion of a hydraulic dredging project to address the navigational hazards in two navigational channels (North and South) in Little Assawoman Bay. The North and South Channel Survey areas combined extend for approximately 4,000 linear feet in the bay.

This Phase I underwater archaeological project was conducted to identify, through background research and magnetic and acoustic remote sensing field methods, the presence or absence of submerged cultural resource targets within the APE in Little Assawoman Bay that may represent significant archeological resources potentially eligible for the National Register of Historic Places.

One magnetic target (SM1) generated an intense dipolar signature that was identified on several overlapping survey lanes in the South Channel Survey Area and is suggestive of potential submerged cultural resource. Additional Phase IB-level underwater archaeological investigations or avoidance of that location is recommended.

TABLE OF CONTENTS

Abstract

List of Tables

List of Figures

1.0	Introduction
2.0	Project Location and Description
3.0	Historical Background23.1 Methodology23.2 Prehistoric Synopsis33.3 Maritime Historical Context of the Lower Delaware Bay Region53.3.1 Overview of Colonial Maritime History of Sussex County, Delaware73.3.2 Overview of Local Navigational Improvements – Canals and Inlets8
4.0	Potential Submerged Cultural Resource Types94.1 National Register of Historic Places Nomination Process94.2 Anticipated Property Types10
5.0	Fieldwork Investigations115.1 Summary of Equipment and Methods115.2 Data Products - Magnetometer115.3 Data Products - Side Scan Sonar125.4 Evaluation of Remote Sensing Targets125.5 Remote Sensing Findings13
6.0	Conclusions and Recommendations
7.0	References Consulted
Figı	1res
App	bendix : Qualifications of the Principal Investigator

LIST OF TABLES

Table 1.	Magnetic Targets in the Assawoman Bay North Channel Survey Area	15
Table 2.	Magnetic Targets in the Assawoman Bay South Channel Survey Area	15
Table 3.	Sonar Targets in the Assawoman Bay North Channel Survey Area	17
Table 4.	Sonar Targets in the Assawoman Bay South Channel Survey Area	18

LIST OF FIGURES

Figure 1.	Project Location Map – Little Assawoman Bay North and South Channel Survey Areas	26
Figure 2.	Project Site Map – Little Assawoman Bay North and South Channel Survey Areas	27
Figure 3.	Survey Track Plots – North Channel Survey Area	28
Figure 4.	Survey Track Plots – South Channel Survey Area	29
Figure 5.	North Channel Survey Area – Magnetic Contour and Target Map	30
Figure 6.	South Channel Survey Area – Magnetic Contour and Target Map	31
Figure 7.	Detail of West Side of South Channel Survey Area – Magnetic Contour and Target Map	32
Figure 8.	North Channel Survey Area – Sonar Mosaic and Target Map	33
Figure 9.	South Channel Survey Area – Sonar Mosaic and Target Map	34
Figure 10.	North Channel Survey Area – Magnetic Contours Overlaid on Sonar Mosaic	35
Figure 11.	South Channel Survey Area – Magnetic Contours Overlaid on Sonar Mosaic	36

1.0 INTRODUCTION

Phase I Underwater Archaeological Investigations were completed in Little Assawoman Bay, Sussex County, Delaware as part of the Fenwick Island Channel Dredging Project. Little Assawoman Bay is a popular recreational boating area in southern Delaware inland from the Atlantic Ocean. Over recent years, sediment has built-up in the vicinity of the Town of Fenwick Island, leading to areas of very shallow water that are causing navigational hazards to both motorized and non-motorized watercraft. The Town of Fenwick Island, Sussex County, Delaware is pursuing the completion of a hydraulic dredging project to address the navigational hazards. As part of the proposed Project, the Town of Fenwick would hydraulically dredge two channels (North and South Channels) of Little Assawoman Bay to a depth of -4 feet mean low water (MLW) with an allowable over-dredge tolerance to a depth of -5 feet MLW. The combined channel length is approximately 4,000 linear feet, and the channels cover a combined surface area of approximately 4.6 acres. Figures 1 and 2 depict the general project area and proposed channels, respectively.

The U.S. Army Corps of Engineers, Philadelphia District and the Delaware Historic Preservation Office has indicated that the proposed project has the potential to impact submerged cultural resources. A Phase I Underwater Archaeological Project was conducted to address requirements contained in Section 106 of the National Historic Preservation Act of 1966 (as amended PL 89-665), the Abandoned Shipwreck Act of 1987, and the Advisory Council of Historic Preservation revised 36 CFR 800 Regulations. The planned investigations were conducted in compliance with Delaware statues and regulations. The project will result in a professional report that details the results of the study and conforms to the Secretary of the Interior's Standards and Guidelines for Archaeology and Historic Preservation (Federal Register 1983) and Guidelines for Architectural and Archaeological Surveys in Delaware (1993).

Phase I underwater archaeological investigations were designed to identify, through background research and magnetic and acoustic remote sensing field methods, the presence or absence of submerged cultural resource targets within the Area of Potential Effect (APE) in Little Assawoman Bay that may represent significant archeological resources potentially eligible for the National Register of Historic Places (NRHP). The goal of this underwater project is to provide recommendations that will allow implementation of the project while minimizing the effect on significant cultural resources.

Previous to fieldwork activities, limited documentary research was undertaken to determine the likelihood and nature of potentially significant submerged archaeological and historical resources within the APE. Historical data were integrated with Delaware state preservation plans established in the <u>Delaware Comprehensive Historic Preservation Plan</u> (Ames, *et. al.* 1989). Of particular relevance to the current study is the recently developed historic archaeological context on the <u>Maritime Theme in Delaware with the Sub-Theme Shipwrecks, Coastal Zone</u> (Koski-Karell 1995).

Gathered documentary data were used to provide a framework for identifying historic and prehistoric archaeological resources that may have been deposited within the APE, and to determine the extent of subsequent activities that may have removed or disturbed such material. Background research on the historic period established a generalized context for ultimate evaluation of any historic submerged sites that might be identified.

Fieldwork investigations were completed in Little Assawoman Bay, on 11 November 2021. The project goal was to identify remote sensing targets of potential historical significance from gathered remote sensing data. After target signature analysis, recommendations were compiled for the need of additional archaeological investigation at each individual target location.

Analysis of fieldwork data confirmed the presence of numerous small magnetic anomalies typically associated with single source, debris-related objects. None of these single-source targets are suggestive of potentially significant submerged cultural resources. However, one magnetic target (SM1) generated an intense dipolar signature that was identified on several overlapping survey lanes and is suggestive of potential submerged cultural resource and additional underwater archaeological investigations or avoidance of that location is recommended.

2.0 PROJECT LOCATION AND DESCRIPTION

The APE was comprised of two navigational channels (North and South) in Little Assawoman Bay. Combined the two channel survey areas are approximately 4,000 linear feet long or 4.6 acres in size. Little Assawoman Bay is a tidal body of water approximately three miles long in Sussex County, Delaware and is a popular recreational boating area. It is connected from Assawoman Bay to the south by a narrow canal known locally as the Fenwick Island Cut and is connected to Indian River Bay and Indian River Inlet to the north by the 3.25-mile-long Assawoman Canal. It is separated from the Atlantic Ocean by the Fenwick Island barrier spit.

Both channel survey areas follow corridors this are 50 feet wide and extend from the southwest to the northeast. The North Channel Survey Area is approximately 2,200 feet long, while the South Channel Survey Area is approximately 1,800 feet long including a short extension channel to the south from the center portion of the survey area. Water depths in Little Assawoman Bay were very shallow across both channel survey areas; generally varying between two and five feet deep, mean low water.

The locations of the North and South Channel Survey Areas are presented in Figure 2.

3.0 HISTORICAL BACKGROUND

3.1 Methodology

A generalized historical overview of activity in and around lower Delaware waters in Sussex County was conducted. Both primary and secondary source material were consulted to provide data on local and regional historical developments. Research was conducted at national and local venues. Repositories in Washington D.C.; Alexandria, Virginia; Dover, Delaware; and Philadelphia, Pennsylvania, were visited by project personnel while compiling information for inclusion in the historical background.

Historical research was designed to determine the potential presence of submerged cultural resources in Little Assawoman Bay. The background research included a records check for known sites and National Register properties within the project vicinity, and review of state archaeological site files in Delaware, as well as an examination of prior technical reports and preservation planning tools. Additionally, the background research portion of the project includes the development of generalized prehistoric overview for the region.

A prehistoric overview was included to supplement the historical background research and to evaluate the potential presence and corresponding significance of unrecorded inundated terrestrial sites near the two channel survey areas. Environmental parameters affecting settlement patterns in the project vicinity were identified and used to establish a probability for locating inundated terrestrial archaeological resources.

Background research on the historic period established a generalized context for ultimate evaluation of historic submerged sites identified. Submerged historic resources were considered with reference to the <u>Delaware Comprehensive Historic Preservation Plan</u> (Ames et. al. 1989) and the ongoing state preservation planning process.

3.2 Prehistoric Synopsis

For the purposes of completing a prehistoric overview of the project areas, various publications by Jay Custer of the University of Delaware's Center for Archaeological Research (1984, 1989) have provided a suitable general context.

The prehistory of the Delaware River Valley is divided into chronological time periods. Each period groups similar sets of cultural adaptations to environmental, and inferred social stresses as interpreted from archaeological data. Cultural adaptations including, settlement/subsistence patterns, resource utilization and exchange/trade networks, change through time and often by region. Symptoms of cultural adaptations are manifest as artifacts, food debris, burials, and features. Periods, therefore, are further divided into complexes that specifically describe adaptations through time or between physiographic zones.

Several specific historical Maritime themes of Delaware Bay are discussed in detail in the following sections. There are four cultural periods generally recognized by Custer (1984) for the Delaware River Valley; Paleo-Indian (c. 14,000 B.P. - 8,500 B.P.), Archaic (c. 8,500 B.P. - 5,000 B.P.), Woodland I (c. 5,000 B.P. - A.D. 1,000), and Woodland II (c. A.D. 1,000 - A.D 1,600). Each period corresponds to environmental episodes that were marked by broad climatic changes, thereby affecting the productivity and distribution of environmental resources available to people over time.

The Paleo-Indian Period corresponds to three environmental episodes. The Late Glacial Episode (c. 17,000 B.P. - 8,000 B.P.) marks the end of the Pleistocene. Glacial waters melting from the Laurentinde Ice Sheet poured into the Delaware River Valley creating a rive channel that extended 50 kilometers beyond the present mouth of the Delaware River Bay (Custer 1984). Changing salinity levels caused by rapid sea level rises made unstable conditions for estuary species. Fluctuations in precipitation and air temperature encouraged a mosaic development of plant and animal communities ranging from tundra to grassland to deciduous forest. The transition between the ends of the PreBoreal/Boreal Episode (8,000 B.P. - 6,500 B.P.) is noted for the growth of closed Boreal forests and a decline in grasslands. The spread of coniferous forests at this time would have forced browsing game to fresh water sources. Rapid sea level rise continued, meaning impoverished estuarine resources (Custer 1984).

Paleo-Indians were hunter/gatherers who traveled in flexible small bands. As a highly mobile people focused primarily on hunting, their technology is characterized by large fluted bifaces, knives, and projectile points. Few if any plant processing tools are associated with Paleo-Indian sites. Given the importance of high quality crystalline for the manufacturing of multipurpose biface tools, Paleo-Indian settlement systems often were centered on quarry sites. Types of sites associated with Paleo-Indian settlement/subsistence systems include: quarry, quarry reduction, base camp, base camp maintenance stations, outlying hunting stations, and isolated point finds. Except for quarry sites, Paleo-Indian sites are typically found near poorly drained sinkholes, swampy settings, headlands overlooking ancestral confluences of major drainages, and within the mid-peninsular divide (Custer 1984).

The Archaic Period (c. 8,500 B.P. - 5,000 B.P.) is associated with the Atlantic Environmental Episode. Mesil forest growth responded to general warming trends and increased precipitation. Rapid sea level rise caused poor estuary stability. Increased seasonality led to the development of a variety of resources exploited during the Archaic Period. There is an associated decrease in the importance of high quality lithic material and an increase in tool types including plant-processing tools. The settlement system was serial as people moved from area to area as resources were needed or depleted. Archaic sites include macroband base camps, microband base camps, and procurement sites. It is probable that fusion and fission of social groups occurred as resources were exploited. Macroband base camps could reach 20 - 30 nuclear families at one time. Interior swamps, floodplains of major drainages, and medium range terraces were the most likely archaic site locations. Custer speculates that, "from the town of New Castle south, similar sites probably existed but are now inundated by sea level rise and are now buried below fairly recent sediments or have been destroyed by dredging" (Custer 1984, 71). Paleo-Indian and Archaic Sites often coincide in the same areas.

The Woodland I Period (c. 5,000 B.P. - A.D. 1,000) is associated with two environmental episodes; Sub-Boreal and Sub-Atlantic. Early in the Sub-Boreal Episode a marked dry and warm period occurred that eventually was ameliorated by wetter and cooler conditions during the Sub-Atlantic Episode. The mid-post glacial xerothermic caused shrinkage in available standing water sources. Coincidentally, sea level rises slowed causing stable environments for shellfish bed development. Hydrological fluctuations allowed anadromous fish greater inland penetration. Cultural adaptations vary widely throughout the Woodland I period, but in general people adopted a semisedentary lifestyle characterized by extensive trade networks, mortuary practices, and population growth. Ceramics, storage features, and caches were developed indicating periodic surplus. Pithouse features reflect longer site usage compared to archaic site use. Tool kits show an increase in the variety of ground stone tools reflecting the increased importance of plant food processing. Adzes, celts, gouges, and axes may have been used for canoe manufacturing. Exotic material used in the manufacturing of tools added to graves infers the possibility of ranked society (Custer 1984).

Woodland I sites include macroband base camps, microband base, procurement sites, and cemeteries. Macroband base camps were marked by a decrease in the variety of site locations. They were generally located near interior swamps and stream confluences along interior drainages. Woodland I sites tend to follow the interface between freshwater and saltwater up major drainages. By the end of the Woodland I Period environments were less circumscribed. Plant and animal communities expanded as the climate became more wet and cool. Sea level rises dramatically slowed allowing the expansion of productive estuaries. Large groups seemed to have fissioned, extensive trade networks collapsed and cemetery use was abandoned (Custer 1984).

The Woodland II Period (c. A.D. 1,000 - A.D. 1,600) is associated with historic environments. This period is characterized by a breakdown in extensive trade networks but increased sedentism. Use of grave goods made from exotic material ends but a development of ossuaries, or secondary reburial sites, grows. Some agriculture as a secondary subsistence strategy to hunting and gathering is noted. Shell beds, near Woodland I period shell beds, are located on the outer coast. Ceramics, storage features, and pithouse features are regularly associated with macroband base camps. Triangular projectile points are exclusively manufactured, possible due to the development of the bow and arrow. Large sites are often located in marginally productive environmental zones, including the floodplains of major drainages. A noticeable divergence in adaptations occurs between the upper and lower Delaware River Valley. While people on the lower Delaware River Valley became more sedentary, people from the upper portions of the valley adopted a semi-sedentary lifestyle. The people from the upper valley reverted to settlement systems used during

the Woodland I period. When Europeans arrived in the Delaware Valley in the 17th century, they encountered Native Americans who for the most part were semi-sedentary.

Features characteristic of the inception of the Woodland Period include: the introduction of ceramic technology, the onset of elaborate burial mound construction, the participation in exchange networks that transport materials, as well as artifacts, across large areas, and evidence indicating the domestication of plant foods. In contrast to the mobile lifestyle of the Paleo and Archaic, Woodland lifestyles were more sedentary and focused on productive estuaries. Custer mentioned that Early Woodland people in the region often established their base camps along brackish rivers. Small bands would then seasonally migrate from these basecamps to bayside marshes. By the late Woodland period, there is evidence of a further sedentary lifestyle with an increasing reliance on agriculture. Woodland sites have been identified on both the coastal marshes and in the middrainage areas in the region.

3.3 Maritime Historical Context of the Lower Delaware Bay Region

Historic activity in Delaware Bay dates to 1609 when Henry Hudson first discovered the bay while surveying the northeast coast of North America for the Dutch East India Company. Hudson noted the entrance of Delaware Bay, but did not explore up into the upper bay and river. His observations of Delaware Bay were recorded and eventually stimulated a significant interest in additional exploration, trade, and colonization of the region. In 1614 the State General of Holland granted the merchants of Amsterdam and Hoorn exclusive privileges to trade between 40 and 45 degrees of latitude in an area identified as the territory "New Netherland." The first Dutch explorers came to Delaware Bay from New Amsterdam (New York City) in October 1614. By decree from The Hague, October 11, 1614, the owners of five Dutch ships were authorized to establish the United Company of Merchants with the exclusive rights to explore the area between New France in the north and Virginia to the south. Captain Cornelius Hendrickson then became one of the first to explore the bay aboard the Onrust (Restless). Captain Hendrickson produced the first chart of Delaware Bay and River in 1615. Included in a brief report submitted to the Dutch merchants, Hendrickson claimed to have found "certain lands, a bay and three rivers situated between 38 degrees and 40 degrees" (Weslager 1961, 45). Soon the Dutch merchants set up trading stations and settlements at various locations along the banks of Delaware Bay and River. In 1623, the Dutch East India Company constructed the first of several fortifications on the east shore of the bay.

Swedish explorers were also active in the Delaware Bay region. In 1629 the Swedish West Indian Company purchased from the Indians a two-mile wide tract of land on the west side of the bay which extended 32 miles from Cape Henlopen north to a location above present Bowers Beach, Delaware. Although the purchase was ratified in 1630, it was not until Peter Minuit arrived with an expedition in 1638 that the Swedish attempted to settle the region (Hazard 1850). The Swedes eventually settled further upriver at a more suitable landing site on the west shore, near present Wilmington, Delaware.

For the next three decades the Swedes and Dutch co-existed in the Delaware Valley until 1664 when the British, under the command of Sir Robert Carr, assumed command of the region. When King Charles II made a grant of lands in the Delaware Valley to his brother James, Duke of York, the Duke sent a flotilla of warships under Carr's direction to subjugate the Dutch and Swedes and institute British control in the area. After several years of limited interest on the part of the Duke of York, King Charles II deeded a substantial portion of the territory to William Penn in 1682. Penn subsequently established an English colony, Pennsylvania, on the Delaware River with Philadelphia as its capital (Weslager 1961).

In 1684, Penn also acquired the "three lower counties" (present-day Delaware) from the Duke of York to add to his Pennsylvania holdings. With Penn's involvement the colonization process and economic growth in Delaware became tied more closely to Philadelphia and Pennsylvania. Throughout the colonial period, settlement in the lower Delaware Valley consolidated in regions where solid banks came to the Delaware's edge; for most of the waterfront was marshland and unhealthy for habitation. New Castle, and Wilmington, Delaware, Burlington, and Bordentown, New Jersey, and Philadelphia, Pennsylvania developed at locations of this type. In the lower portion of the Delaware Valley, population centers were, again, on high land. The high land was often some distance up a creek navigable only by shallow-draft vessels. Dover, Delaware, and Salem, New Jersey, were examples of this. Some towns, which appeared during the colonial period, developed because they were stopping points along the 60-mile stretch of river on the much-traveled route from New York to Baltimore. This applies to Trenton and Bordentown, New Jersey, near the northeast bend of the river, and to New Castle and Wilmington, Delaware, near the southwest bend. Philadelphia, in the middle of this line of travel, was not merely a stop on the line but developed into a trade and travel center itself (Tyler 1955).

Wheat, rye, barley and tobacco were the principle colonial products of Delaware Valley inhabitants. After being hauled by wagon to mills established along the banks of the Schuylkill River, Brandywine Creek, and other swift-water tributaries of the Delaware, the flour was placed aboard shallops and taken up the Delaware River to Philadelphia for consumption or further shipment. For the duration of the colonial period, the Delaware Valley region remained predominantly agricultural. The agricultural landscape that developed in response emphasized the importance of river and coastal transportation routes over roads. The system of agricultural production and transportation routes facilitated the rise of Philadelphia as one of the most important ports in the British Empire at the onset of the Revolutionary War.

The Revolutionary War disrupted the economic development of the region, as the British blockaded shipping and conducted raids along the shores of Delaware Bay (DeCunzo and Catts 1990). Following the conclusion of the war, Delaware Valley merchants, now freed from the restrictions of the Navigation Acts, again prospered. Philadelphia became the most active port in North America, with its ships reaching new markets in the East Indies and across the world. By 1800 there were 40 Philadelphia vessels in the China trade, about as many more trading in South America, and a considerable number still trading in Europe. The War of 1812 caused a second disruption to the social and economic life of Delaware Valley residents, but shortly thereafter, local inhabitants began to focus again on industry and agriculture.

A water link between Delaware Bay and Chesapeake Bay was forged when the Chesapeake and Delaware Canal was opened in 1829. Traffic across the peninsula between the two bays was so heavy that it supported the canal, a previously constructed turnpike, and within a few years, the New Castle and Frenchtown Railroad, one of the first railroads in America (Tyler 1955). Manufacturing came to the upper Delaware Valley in the first half of the 19th century. By 1850 Wilmington had became a leading manufacturer of railroad cars, heavy machinery, gunpowder, textiles, flour, and iron ships (Weslager and Heite 1988).

There was little or no industrial development along the shores of lower Delaware Bay. The slowmoving tidal tributaries lacked the force to power a large industrial plant. The tidal rivers themselves were too shallow for most sea-going vessels to navigate. In addition to farming, fishing and oystering became major industries of lower Delaware Bay during the 19th century. For nearly a century after the Civil War, oystering was the primary industry in many towns along the lower estuary in both New Jersey and Delaware (Weslager and Heite 1988). Fishing industries processing sturgeon and menhaden caught in Delaware Bay also peaked during the second half of the 19th century.

The introduction of steam technology had a dramatic effect on industries throughout the Delaware Valley. Regional companies became leaders in the production of steam engines for railroad locomotives and steamships. Several local companies also made railroad cars and car wheels, before expanding into the production of iron-hulled steamships. Delaware River shipyards gained an international reputation for producing quality iron-hulled steam vessels. Coal fuel was needed to power steam engines. Extensive anthracite coal reserves along the Lehigh and Schuylkill rivers were developed. Coal became a leading export for Delaware River ports during the 19th and 20th centuries. Related industries of iron and steel, initially founded in the Delaware Valley since the colonial period, expanded after the 19th century.

The large chemical industry of the Delaware Estuary began with the development of several small tanneries in and around New Castle County, Delaware, during the 19th century. Native black oak trees provided tanbark and local livestock production provided skins for the tanners. By the middle of the 19th century, Wilmington became a major producer of leather merchandise. Experiments were conducted in the tanning process that would revolutionize the leather making process. Prosperity gained from gunpowder production during the Civil War, allowed the local DuPont Company to expand over the next 30 years into one of the world's largest producer of chemicals and munitions. Petroleum-related industries and refineries were also established shortly after the discovery of oil in central and northwestern Pennsylvania in the 19th century. Philadelphia refineries are among the oldest in the world still producing refined oil products (Weslager and Heite 1988).

3.3.1 Overview of the Colonial Maritime History of Sussex County, Delaware

While the initial colonization of the Sussex County was a short-lived whale-fishing camp established by the West India Company at Zwaanenael, now Lewes in 1631, the origins of presentday Lewes (historically known as Lewestown) as a merchant port date to the late 17th century. At this time the territory of present-day Delaware then known as the "three lower counties" was part of Pennsylvania and under the control of William Penn. Penn acquired these lands from the Duke of York in 1684. By the turn of the 17th century, shipbuilding had become a small, but growing industry in Lewestown (Pusey 1903:20-21; Brittingham 1998:12; Cohen 2004:116).

After Penn's arrival a number of immigrants from Scotland and Ireland, who belonged to the religious sect known as the "Independents" settled in Lewestown. The first courthouse was built in 1682. In 1725, the community consisted of 58 families. The first church (Presbyterian) was erected in 1728 and around 1740, Lewestown had a formal courthouse erected, being the seat of government for Sussex County until 1791. By virtue of the King's authority and later by express grant by the heirs of William Penn the tract of sandy level land and marsh lying between Lewestown and the Delaware Bay was established as a public commons for the people's benefit (Pusey 1903:21-23; Lewes Historical Society 1985:122-123; Brittingham 1998:12; Cohen 2004:115).

Historically, Delaware Bay afforded the most ideal place of refuge within the 300 hundred miles extending from New York to the Chesapeake. It is of local tradition that the earliest lighthouse on Cape Henlopen was a crude whale oil light first erected around 1725. It was built to warn incoming mariners of their approach to the Hen and Chickens Shoals, located just off the Cape, and to guide their way into the shelter of the Bay. A more formal lighthouse was constructed in 1765, by the British government on the Atlantic side of the Cape (Pusey 1903:30-31; Cohen 2004:118). The 87-foot-tall Fenwick Island Lighthouse was opened in 1858 to assist mariners entering Delaware Bay to avoid the treacherous Fenwick Shoals which are located six miles off the coast of Fenwick

Island. The lighthouse remained in continuous operation for nearly 120 years until 1978 when it was decommissioned by the U.S. Coast Guard. It was listed in the NRHP in 1979 (Delaware Historical and Cultural Affairs, 2014).

During the Colonial period and into the 19th century, Lewestown was home to the pilots that shipmasters relied upon to assist with navigating around the hazards of the Delaware Bay and River. Many of these Pilots lived within Lewestown, but as early as 1756, it appears as though some families associated with this trade established their own community, "Pilot-Town," located immediately to the south of Lewestown. Being the first port upon entering the Bay, sailing ships regularly stopped at Lewestown for pilots and provisions (Lewes Historical Society 1985:123; Knopp 1996:1-2).

The earliest Lewestown pilots made use of two-masted schooners owned by small groups or clans and consisting of about eight pilots each. There was strong competition between the groups each trying to be the first to reach an incoming ship in hopes to land the job of piloting the vessel up the Delaware to northern ports. Some started apprenticeship as early as 15 years of age learning the navigation of the Delaware Bay and River from other experienced Pilots. An apprentice was required to have six years of training before he was issued a license. A formal Pilots Association, established to better regulate the trade, was not formed until 1896 (Cullen 1956:37; Knopp 1996:5; Cohen 2004:129).

The first detailed chart of the Delaware Bay and River was drafted in 1756 by Joshua Fisher, a native of Lewestown. The documentary evidence is conflicting as to Fisher's occupation, but it is more than likely that he was associated with the pilot industry to have had the knowledge to create the chart (Lewes Historical Society 1981:61; 1985:176). The chart was published by an Act of Parliament and was signed by 22 licensed Pilots and 20 Masters, vouching for its authenticity. Fisher's chart indicates that the area today known as Lewes Beach was an ideal spot for anchoring vessels. Soundings were taken throughout the Bay at low tide and indicated on the map in fathoms. The water depth near Lewes Beach at this time was 18 feet. The chart shows that the main ship channel was located roughly four miles off the coast of Lewestown. The westernmost channel, indicated as being "used only by Shallops," is shown as commencing at the mouth of Lewes Creek. Historically Lewes Creek and the Broad Kill River came to a confluence before emptying into the Bay near the northwestern terminus of present-day Beach Plum Island. Present-day Cape Henlopen is labeled "Cape James" (Fisher 1756).

Throughout the remainder of the Colonial period, Lewestown's economy appears to have been closely tied to its maritime industries. The town remained the seat of county government beyond the Revolutionary War and shipbuilding appears to have continued on a small scale. The town was undoubtedly an important port throughout this period for supplying ships with pilots and other provisions. The port was also likely of local importance to the colonists of Sussex County for trading and shipping agricultural and other goods overseas and to the Wilmington and Philadelphia regions.

Over the years, the mouth of Lewes Creek became filled with sandbars and was virtually impassable at low tide. This is likely to have been a re-occurring problem throughout the 19th century and into the 20th century. In 1937, present-day Roosevelt Inlet was constructed to assist with alleviating this issue. The new inlet was constructed roughly two miles to the southeast of the original inlet. Shortly thereafter, Lewes Creek was deepened through dredging and the waterway became known as the Lewes-Rehoboth Canal (Cullen 1956:38).

3.3.2 Overview of Local Navigational Improvements - Canals and Inlets

Little Assawoman Bay is located approximately midway between Indian River Inlet to the north (via the Assawoman Canal and Indian River) and Ocean City Inlet to the south (via Assawoman Bay). The Assawoman Canal links Indian River Bay with the Little Assawoman Bay to the south. The canal is bordered by Bethany Beach and South Bethany to the east and Ocean View to the west. Because of the canal, Fenwick Island is detached from the Delaware mainland.

First proposed in 1884, the Assawoman Canal was constructed by the U.S. Army Corps of Engineers in 1891 for the purpose of transporting local goods by boat without having to travel into the Atlantic Ocean. The canal initially was part of the federal Inter Coastal Waterway (ICW). System. However, the canal fell into disrepair and was not dredged from the 1950s until 2006. By the early 2000s, reportedly it was not deep enough to accommodate the boat traffic (typically small fishing boats and recreation vessels) that once passed through the waterway when it was part of the ICW. From 2006 to 2010, the state undertook a dredging project that restored the canal to navigability for small boats, with a channel width of 35 feet and a depth of three feet. Presently, Assawoman Canal is part of Holts Landing State Park, Millville Delaware (Delaware Department of Natural Resources and Environmental Control, 2016).

Indian River empties into the Atlantic Ocean via the Indian River Inlet, located in Delaware Seashore State Park. Historically, the inlet has opened and closed naturally following coastal storms and migrated north over the years. During the late 19th and early 20th centuries, the federal government studied various options to stabilize the inlet. The present inlet was not opened until November 1928. The first bridge over the canal was opened in 1933 and eventually jetties were built on either side of the inlet to prevent shoaling and protect the bridges (Horowitz, 2020).

The south end of Little Assawoman Bay ends at Fenwick Island Cut which provides nautical access for mariners to Assawoman Bay and the Ocean City Inlet at the south. The inlet was initially opened in the aftermath of a devastating hurricane that hit the Mid-Atlantic Region on 18 August 1933. Shortly thereafter, U.S. Army Engineers took steps to make the new inlet permanent along with creating a new harbor for the town of Ocean City, Maryland. The inlet eventually helped to establish Ocean City as an important Mid-Atlantic fishing port that allows a large network and commercial and recreational vessels to access the fishing grounds of the Atlantic Ocean (The Dispatch, 2013).

4.0 POTENTIAL SUBMERGED CULTURAL RESOURCE TYPES

This chapter addresses in board terms the potential for submerged cultural resources within the APE.

4.1 National Register of Historic Places Nomination Process

The information generated by these investigations was considered in terms of the criteria for evaluation outlined by the U.S. Department of the Interior, National Register Program. Nautical vessels and shipwreck sites, generally excepting reconstructions and reproductions, are considered historic if they are eligible for listing in the NRHP at a local, regional, national, or international level of significance. To be eligible for the NRHP, a vessel or site "must be significant in American history, architecture, archaeology, engineering, or culture, and possess integrity of location, design, setting, materials, workmanship, feeling, and association." To be considered significant the vessel or site must meet one or more of four National Register criteria:

- **A.** Association with events that have made a significant contribution to the broad patterns of our history;
- **B.** Association with the lives of persons significant in our past;
- **C.** Embodiment of the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction;
- **D.** Sites that have yielded, or may be likely to yield, information important in prehistory or history.

<u>National Register of Historic Places Bulletin 20</u> clarifies the National Register process for shipwrecks and other submerged cultural resources. Shipwrecks must meet at least one of the above criteria and retain integrity of location, design, settings, materials, workmanship, feelings and association. Determining the significance of a historic vessel depends on establishing whether the vessel is:

- 1. the sole, best, or a good representative of a specific vessel type; or
- 2. is associated with a significant designer or builder; or
- **3.** was involved in important maritime trade, naval recreational, government, or commercial activities.

Properties which qualify for the National Register, must have significance in one or more "Areas of Significance" that are listed in <u>National Register Bulletin 16A</u>. Although 29 specific categories are listed, only some are relevant to the submerged cultural resources in Little Assawoman Bay. Architecture, commerce, engineering, industry, invention, maritime history, and transportation are potentially applicable data categories for the type of submerged cultural resources that may be expected in the project areas.

Historic records indicate the presence of no documented shipwreck sites within the Little Assawoman Bay APE. In addition, there are no wreck sites listed in any of shipwreck and obstruction data bases maintained by the National Oceanic and Atmospheric Administration (NOAA), including their Automated Wreck and Obstruction Information System (AWOIS).

4.2 Anticipated Property Types

Since the waters of Little Assawoman Bay are extremely shallow and relatively isolated from deeper, more navigable channels, the type of potential submerged cultural resources is limited to very shallow draft vessels. Typically, shallow draft vessels being used in this waterway would include motorized and non-motorized vessels. Motorized vessels might include recreational craft, fishing boats, small work boats and construction barges. Non-motorized craft might include various types of canoes, kayaks, and row boats.

5.0 FIELDWORK INVESTIGATIONS

A comprehensive remote sensing survey was conducted in Little Assawoman Bay during the high tide cycle on the morning of 11 November 2021. The remote sensing survey simultaneously collected magnetic and acoustic (side-scan-sonar) data. The purpose of the survey was to locate, identify, and preliminarily assess the significance of potential submerged cultural resources that might be impacted by channel dredging activities. The underwater survey was designed to generate sufficient magnetic and acoustic remote sensing data to identify anomalies caused by submerged cultural resources. Analysis of the remote sensing data aimed to isolate targets of potential historical significance that might require further investigation or avoidance.

5.1 Summary of Equipment and Methods

Sonar and magnetic survey operations were conducted simultaneously from a 22-foot-long fiberglass survey vessel. Both sensors were towed from the survey vessel. Sonar data were gathered with a *Marine Sonic HDS* two channel digital side scan sonar unit with a dual frequency 600/1200kHz side scan sensor. The sonar sensor was towed just below the water surface from the bow of the survey vessel and operated at a range of 50 feet in either channel which provided significantly overlapping acoustic coverage of the two survey areas. *Marine Sonic* data acquisition software was used to merge the acoustic data with real-time positioning data.

Magnetic data were collected with a *Geometrics 881* cesium marine magnetometer, capable of +/-1/10 gamma resolution. A 10 Hz sampling rate by the magnetometer's towed sensor, coupled with a three-knot vessel speed generated a magnetic sample every 0.5 feet. The magnetometer sensor was towed with a float 40 feet aft of the port side of the survey vessel to provide optimal conditions for collecting magnetic data in a shallow water environment.

Hypack, a laptop PC-based software package in conjunction with a Differential Global Positioning System (DGPS) onboard the survey vessel provided positioning accuracy for the survey area of +/-1.97 feet. The computer converted positioning data from the DGPS to Delaware State Plane Coordinates (feet) in real time. These X,Y coordinates were used to guide the survey vessel precisely along predetermined survey lines that had been established at 25-foot offsets in the two channel project survey areas. All magnetometer and side scan sonar offsets were established in *Hypack*. While surveying, vessel positions were continually updated on the computer monitor to assist the vessel operator, and the processed X,Y data were continually logged on computer disk for post-processing and plotting (Figures 3 & 4).

All survey data and findings will be presented in Delaware State Plane coordinates, in feet.

5.2 Data Products - Magnetometer

The magnetometer collected data on the ambient magnetic field strength by measuring the variation in cesium electron energy states. As the sensor passed over objects containing ferrous metal, a fluctuation in the earth's magnetic field was recorded. The fluctuation was measured in gammas and is proportional to the amount of ferrous metal contained in the sensed object and the distance from the sensor.

Magnetic data were edited for detailed analysis of all anomalies. During the editing process background noise spikes were removed and a magnetic contour map was created with 5- gamma intervals for the two survey areas. Magnetic data editing consisted of using *Hypack's* single beam editing program to review raw data (of individual survey lines) and to delete any artificially induced

noise or data spikes. Once all survey lines for the project areas were edited, the edited data were converted to an XYZ file also using *Hypack* (easting, and northing coordinates, and magnetometer data – measured in gammas). Next, the XYZ files were imported into a Triangular Irregular Network (TIN) modeling program in *Hypack*, that was used to contour the data in 5-gamma intervals (Figures 5 - 7).

5.3 Data Products - Side Scan Sonar

The side scan sonar derives its information from reflected acoustic energy. Side looking sonar, which transmits and receives swept high frequency bandwidth signals from transducers mounted on a sensor that is towed from a survey vessel. Two sets of transducers mounted in an array along both sides of the tow fish generate the short duration acoustic pulses required for high resolution images. The pulses are emitted in a thin, fan-shaped pattern that spreads downward to either side of the tow fish in a plane perpendicular to its path. As the fish is towed along the survey track line this acoustic beam sequentially scans the bottom from a point beneath the fish outward to each side of the track line.

Acoustic energy reflected from any bottom discontinuities (exposed pipelines, rocks, or other obstructions) is received by the set of transducers, amplified and transmitted to the survey vessel via a tow cable. The digital output from state of the art units is essentially analogous to a high angle oblique photograph provided detailed representations of bottom features and characteristics. Sonar allows display of positive relief (features extending above the bottom) and negative relief (such as depressions) in either light or dark opposing contrast modes on a video monitor. Examination of the images thus allows a determination of significant features and objects present on the bottom within a survey area.

Raw sonar records were inspected for potential man-made features and obstructions present on the bottom surface. Sonar data were saved in separate files for each survey lane. Individual acoustic data files were initially examined using SeaScanTM acoustic data review software to identify any unnatural or man-made features in the records. Once identified, acoustic features were described using visible length, width, and height from the bottom surface. Acoustic targets are normally defined according to their spatial extent, configuration, location and environmental context. As a last step, edited acoustic data were merged into geo-referenced sonar mosaics that were overlaid onto aerial photographs of the project areas (Figures 8 & 9).

5.4 Evaluation of Remote Sensing Targets

Target signatures were evaluated using the NRHP criteria as a basis for the assessment. For example, although an historic object might produce a remote sensing target signature, it is unlikely that a single object (such as a historic anchor or cannon ball) has the potential to meet the criteria for nomination to the NRHP.

Target assessment was based primarily on the nature and characteristics of the acoustic and magnetic signatures. Shipwrecks – large or small – often have distinctive acoustic signatures, which are characterized by geometrical features typically found only in a floating craft. Most geometrical features identified on the bottom (in open water) are manmade objects. Often an acoustic signature will have an associated magnetic signature. Generally, if the acoustic signature demonstrates geometric forms or intersecting lines with some relief above the bottom surface and have a magnetic signature of any sort; it can be categorized as a potentially significant target. Often, modern debris near docks, bridges, or an anchorage is easily identified solely based on the characteristics of its acoustic signature. However, it is more common to find material partially exposed. Frequently, these objects produce a record that obviously indicates a man-made object,

but the object is impossible to identify or date. Also in making an archaeological assessment of any sonar target, the history and modern use of the waterway must be taken into consideration. Naturally, historically active areas tend to have greater potential for submerged cultural resources. The assessment process prioritizes targets for further underwater archaeological investigations.

Magnetic target signatures alone are more difficult to assess. Without any supporting acoustic records, the type of the bottom sediments and the water currents become more important to the assessment process. A small, single-source magnetic signature has the least potential to be a significant cultural resource. Although it might represent a single historic object, this type of signature has limited potential to meet NRHP criteria.

A more complex magnetic anomaly, represented by a broad monopolar or dipolar type signature, has a greater potential to be a significant cultural resource, depending on bottom type. Shipwrecks that occur in regions with hard bottoms, with little migrating sand, tend to remain exposed and are often visible on sonar records. A magnetic anomaly that is identified in a hard bottom area and has no associated acoustic signature frequently can be discounted as being a historic shipwreck. Most likely, such an anomaly is modern debris, such as wire rope, chain, or other ferrous material.

Soft migrating sand or mud can bury large wrecks, leaving little or no indication of their presence on the bottom surface (via sonar data). The types of magnetic signatures that a boat or ship might produce are infinite, because of the large number of variables including location, position, chemical environment, other metals, vessel type, cargo, sea state, etc. These variables are what determine the characteristics of every magnetic target signature. Since shipwrecks occur in a dynamic environment, many of the variables are subject to constant change. Thus, in making an assessment of a magnetic anomalies potential to represent a significant cultural resource, investigators must be circumspect in their predictions.

Broad, multi-component signatures (again, depending on bottom characteristics and other factors) often have the greatest potential to represent a shipwreck. On the other hand, high-intensity, multicomponent, magnetic signatures (without an accompanying acoustic signature) in areas of relatively high velocity currents can be discounted as a historic resource. Eddies created by the high-velocity currents almost always keep some portion of a wreck exposed. Generally, wire rope or some other low-profile ferrous debris produces this type of signature in these circumstances. Many types of magnetic anomalies display characteristics that are not easily interpreted. The only definitive method of determining the nature of the object creating these anomalies is by physical examination.

Typically, target locations with suspect cultural resource images on the sonar records coupled with associated and appropriate magnetic signatures will be classified as high probability targets.

5.5 Remote Sensing Findings

After all the remote sensing data sets were processed, reviewed, and cross-referenced a total of 20 remote sensing target locations (eight magnetic and 12 acoustic) were identified in the two channel survey areas. However, all but one of these targets were small, isolated, single-source objects that have no potential historical significance.

Magnetometer data featured numerous isolated anomalies that were likely generated by small ferrous source objects, likely suspect crab traps, and other miscellaneous discorded debris. These targets were identified on single lanes confirming the isolated nature of these signatures. These single-source targets were found in both the North Channel and South Channel Survey Areas and generally featured low- to moderate-intensity but very brief magnetic signatures with limited

signature duration. Three magnetic anomalies were identified in the North Channel Survey Area and five were identified in the South Channel Area. All but one of these magnetic targets were dismissed as debris related. See Tables 1 and 2 for a complete description of all magnetic anomalies.

Additionally, there were no potentially significant targets identified on the side scan sonar records in either survey area. Several small partially buried square features (suspect crab traps) were found in both survey areas; five in the North Channel Survey Area and two in the South Channel Survey Area. Otherwise, the bay bottom was generally featureless except for the presence of submerged aquatic vegetation across portions of both survey areas.

No additional archaeological investigations are recommended for these 19 target locations.

One magnetic target (SM1) identified in the South Channel Survey Area was distinctive due to the intensity of the anomaly's signature. Although limited in size/duration, this anomaly generated a dipolar signature that had a maximum intensity of over 2,400 gammas, despite only extending for approximately 20-22 feet. The signature from this target was identified on overlapping and perpendicular lanes that were completed to cover both the South Channel Survey Area and the small southern extension, near the middle of the South Channel Survey Area.

This target signature is suggestive of a relatively compact object that has significant and concentrated ferrous mass. While this signature is not typical of known submerged cultural resources, the size of the anomaly indicates the presence of an object with a significant ferrous component (Figure 7). Since the source of the target is buried (no associated sonar signature), the identification of the target source was not possible with remote sensing data. Additional investigations to identify this target or avoidance is recommended at this location.

In summary, inspection of the remote sensing data from the two channel survey areas identified one potentially significant target that is suggestive of an historically significant submerged cultural resource, Target SM1. Additional Phase IB-level underwater archaeological investigations are recommended to identify this magnetic anomaly if avoidance is not feasible. The other 19 remote sensing targets did not generate remote sensing signature types suggestive of potentially significant submerged cultural resources and no additional underwater archaeological investigations are recommended at those 19 locations.

Table 1 Magnetic Targets in the Assawoman Bay North Channel Survey Area (3)

Target	x	Y	Signature	Amplitude (nT)	Duration (ft)	Assoc. Sonar Targets	Identification	Recommendation
NM1	757983	168316	positive monopole	86	10		Small positive monopole signature near the southwestern end of survey area that extended over 10 feet; single source object, only identified in a single lane.	No additional investigations (NAI) are recommended
NM2	758052	168326	positive monopole	64	9		Small positive monopole signature near the southwestern end of survey area that extended over 9 feet; single source object, only identified in a single lane.	NAI
NM3	758551	168816	negative monopole	22	7		Small negative monopole signature in the middle portion of the survey area that extended over 7 feet; single source object, only identified in a single lane.	NAI

Coordinates (X,Y) are expressed in the Delaware State Plane Coordinate System, NAD83, feet.

Table 2 Magnetic Targets in the Assawoman Bay South Channel Survey Area (10)

Coordinates (X,Y) are expressed in the Delaware State Plane Coordinate System, NAD83, feet. The one (1) potentially significant magnetic target is shaded.

Target	x	Y	Signature	Amplitude (nT)	Duration (ft)	Assoc. Sonar Targets	Identification	Recommendation
SM1	758667	166154	dipole	2,480	28		A very high intensity dipole signature that was identified in several overlapping survey lanes in the approximate center of the survey area. The target was in waters adjacent to the small southern extension of the survey area. The intense signature extended over 28 feet, and water depth at this location was less than 4 feet. This target signature is suggestive of a relatively compact object that has significant and concentrated ferrous mass. While this signature is not typical of known submerged cultural resources, the size of the anomaly indicates the presence of an object with a significant ferrous component.	Additional investigations or avoidance are recommended.
SM2	758707	166107	dipole	48	12		Small dipole signature that was identified only in the outside survey lane of the short southern extension of the southern channel area, the signature extended over 12 feet; single source object, only identified in a single lane.	NAI

Target	x	Y	Signature	Amplitude (nT)	Duration (ft)	Assoc. Sonar Targets	Identification	Recommendation
SM3	758603	166125	negative monopole	28	9		Small negative monopole signature in the middle portion of the survey area that extended over 9 feet; single source object, only identified in a single lane.	NAI
SM4	758684	165942	positive monopole	24	7		Small positive monopole signature in the short southern extension of the southern channel area; signature extended for just 7 feet; single source object, only identified in a single lane.	NAI
SM5	758284	166088	negative monopole	33	9		Small negative monopole signature in the western portion of the survey area that extended over 9 feet; single source object, only identified in a single lane.	NAI
SM6	758205	166057	dipole	116	10		A dipole signature that was identified only in the outside survey lane in the western portion of the survey area; signature extended for only 10 feet; single source object, only identified in a single lane.	NAI
SM7	758073	165972	positive monopole	20	8		Small positive monopole signature near the west end of the survey area; the signature extended for only 8 feet; single source object, only identified in a single lane.	NAI
SM8	758046	165988	positive monopole	128	9		A positive monopole signature near the west end of the survey area; the signature extended for only 9 feet; single source object, only identified in a single lane.	NAI
SM9	758275	166009	negative monopole	10	7		Small negative monopole signature near the west end of the survey area; the signature extended for only 7 feet; single source object, only identified in a single lane.	NAI
SM10	759219	166559	negative monopole	64	13		A negative monopole signature near the east end of the survey area; the signature extended for 13 feet; single source object, only identified in a single lane.	NAI

Table 3 Sonar Targets in the Assawoman Bay North Channel Survey Area (5)

Target Image	Target Info	Characteristics
- 10 - 20 - 30 - 40 - 40 - 50 - 50	NS1 • Click Position 38° 27.77554' N 075° 03.56701' W (WGS84) (X) 758452.67 (Y) 168783.61 (Projected Coordinates) • Map Projection: DE83F • Acoustic Source File: F:\Sonar Data\Assawoman Bay\20211111\2021NOV11_0002.sds • Line Name: 2021NOV11_0002	Dimensions and attributes • Target Width: 2.26 US ft • Target Height: 0.68 US ft • Target Length: 2.36 US ft • Mag Anomaly: • Description: Small square object (suspect crab trap)
- 10	NS2 • Click Position 38° 27.73582' N 075° 03.61647' W (WGS84) (X) 758217.54 (Y) 168541.64 (Projected Coordinates) • Map Projection: DE83F • Acoustic Source File: F:\Sonar Data\Assawoman Bay\20211111\2021NOV11_0002.sds • Line Name: 2021NOV11_0002	 Dimensions and attributes Target Width: 2.25 US ft Target Height: 0.44 US ft Target Length: 2.69 US ft Mag Anomaly: Description: Small square object (suspect crab trap)
- 10 - 23 - 30 - 40	NS3 • Click Position 38° 27.71627' N 075° 03.64527' W (WGS84) (X) 758080.54 (Y) 168422.44 (Projected Coordinates) • Map Projection: DE83F • Acoustic Source File: F:\Sonar Data\Assawoman Bay\20211111\2021NOV11_0002.sds • Line Name: 2021NOV11_0002	 Dimensions and attributes Target Width: 1.66 US ft Target Height: 1.12 US ft Target Length: 3.12 US ft Mag Anomaly: Description: Small oblong feature
- 40	NS4 • Click Position 38° 27.70577' N 075° 03.64910' W (WGS84) (X) 758062.54 (Y) 168358.60 (Projected Coordinates) • Map Projection: DE83F • Acoustic Source File: F:\Sonar Data\Assawoman Bay\20211111\2021NOV11_0002.sds • Line Name: 2021NOV11_0002	Dimensions and attributes • Target Width: 2.53 US ft • Target Height: 1.39 US ft • Target Length: 2.62 US ft • Mag Anomaly: No • Description: Small square feature (suspect crab trap)

Coordinates (X,Y) are expressed in the Delaware State Plane Coordinate System, NAD83, feet.

Target Image	Target Info	Characteristics
	 Click Position 38° 27.74329' N 075° 03.57213' W (WGS84) (X) 758428.96 (Y) 168587.78 (Projected Coordinates) 	 Dimensions and attributes Target Width: 2.22 US ft Target Height: 0.75 US ft Target Length: 3.76 US ft Mag Anomaly: No Description: Small rectangular feature, partially buried

Table 4 Sonar Targets in the Assawoman Bay South Channel Survey Area (2)

Coordinates (X,Y) are expressed in the Delaware State Plane Coordinate System, NAD83, feet.

Target Image	Target Info	Characteristics
	SS1 • Click Position 38° 27.33466' N 075° 03.58251' W (WGS84) (X) 758389.05 (Y) 166107.29 (Projected Coordinates) • Map Projection: DE83F • Acoustic Source File: F:\Sonar Data\Assawoman Bay\20211111\2021NOV11_0014.sds • Line Name: 2021NOV11_0014	Dimensions and attributes • Target Width: 2.29 US ft • Target Height: 0.83 US ft • Target Length: 3.21 US ft • Mag Anomaly: No • Description: Small square feature (suspect crab trap)
	SS2 • Click Position 38° 27.34807' N 075° 03.55791' W (WGS84) (X) 758506.14 (Y) 166189.14 (Projected Coordinates) • Map Projection: DE83F • Acoustic Source File: F:\Sonar Data\Assawoman Bay\20211111\2021NOV11_0018.sds • Line Name: 2021NOV11_0018	 Dimensions and attributes Target Width: 1.37 US ft Target Height: 0.25 US ft Target Length: 3.30 US ft Mag Anomaly: No Description: Small oblong feature , partially buried.

6.0 CONCLUSIONS AND RECOMMENDATIONS

A Phase I Underwater Archaeological Project was completed in Little Assawoman Bay, Sussex County, Delaware as part of the Fenwick Island Channel Dredging Project. The Town of Fenwick Island, Delaware is pursuing the completion of a hydraulic dredging project to address the navigational hazards in the bay. As part of the proposed Project the Town of Fenwick would hydraulically dredge two channels (North and South Channels) of Little Assawoman Bay to a depth of -4 feet MLW with an allowable over-dredge tolerance to a depth of -5 feet MLW. The combined channel length is approximately 4,000 linear feet, and the channels cover a combined surface area of approximately 4.6 acres. The underwater APE includes all the locations in Little Assawoman Bay where bottom impacts associated with the dredging project are expected to occur.

The underwater archaeological investigations included limited background maritime historical research, magnetic, and acoustic, remote sensing, and report preparation. The goal of the underwater work was to determine the presence or absence of potential submerged cultural resource sites that might be affected by the proposed dredging activities. Magnetic and acoustic data were collected to identify and assess remote sensing targets that may have an association with submerged cultural resources.

The comprehensive remote sensing survey resulted in the identification of 20 remote sensing targets in the two channel survey areas. However, all but one of those targets were dismissed as small single source, debris-related anomalies. One magnetic target (SM1) generated an intense magnetic signature and was considered to a potentially significant target.

This target signature is suggestive of a relatively compact object that has significant and concentrated ferrous mass. While this signature is not typical of known submerged cultural resources, the size of the anomaly indicates the presence of an object with a significant ferrous component that is buried in the bottom sediment. Avoidance or additional Phase IB level underwater archaeological investigations to identify the exact location, depth, and nature of the target are recommended at Target SM1. A 75-foot diameter buffer around the center of the anomaly is recommended if avoidance is an option.

SM1 Target Information (coordinates are Delaware State Plane, feet):

Location X 758,667 Y 166,154 38° 27.342286' N 75° 03.524041' W

Characteristics

- Dipole signature with a maximum amplitude of 2,480 gammas; anomaly duration was approximately 20-22 feet.
- No associated sonar signature indicating the source of this anomaly is buried in bottom sediments

Additionally, remote sensing records did not reveal the presence of any potential inundated prehistoric archaeological sites within the two channel survey areas.

Remote sensing survey results completely fulfilled the project research design, and no problems were encountered with the fieldwork methodology. This project is also consistent with the stated goals and priorities of the <u>Delaware Plan</u>.

Note: All underwater survey field notes, magnetometer and sonar records, are stored at the offices of Dolan Research, 30 Paper Mill Road, Newtown Square, Pennsylvania, 19073.

7.0 REFERENCES CONSULTED

Ames, David, Mary Callahan, Bernard Herman and Rebecca Siders

1989 "Delaware Comprehensive Historic Preservation Plan." Center for Historic Architecture and Engineering, College of Urban Affairs and Public Policy, University of Delaware, Newark.

Baker, William,

1976 "Commercial Shipping and Shipbuilding in the Delaware Valley." Society of Naval Architects and Marine Engineers, Spring Meeting Papers. Philadelphia.

Brittingham, Hazel D.

1998Lantern on Lewes Where the Past is Present: Stories of Historic Lewes, Delaware.Lewestown Publishers, Lewes, Delaware.

Clausen. Carl

1976 "The Magnetometer and Underwater Archaeology: Magnetic Delineation of Individual Shipwreck Sites, A Control Technique." <u>International Journal of</u> <u>Nautical Archaeology and Underwater Exploration</u>, volume 5, number 2.

Cohen, William J.

2004 <u>Swanendael in New Netherland: The Early History of Delaware's Oldest</u> <u>Settlement at Lewes</u>. Cedar Tree Books, Wilmington, Delaware.

Cullen, Virginia

1956 <u>History of Lewes, Delaware</u>. Col. David Hall Chapter, NSDAR.

Cox, J. Lee

- 2005 "Phase I and Phase II Underwater Archaeological Investigations, Lewes Beach and Roosevelt Inlet Borrow Areas, Delaware Bay, Sussex County, Delaware. Sussex County, Delaware." Report submitted to Army Corps of Engineers, Philadelphia.
- 1995 "Submerged Cultural Resources Investigation, Delaware Atlantic Coast From Cape Henlopen To Fenwick Island." Report submitted to Army Corps of Engineers, Philadelphia.

Custer, Jay

- 1984 <u>Delaware Prehistoric Archaeology: An Ecological Approach</u>. University of Delaware Press, Newark.
- 1989 <u>Prehistoric Cultures of the Delmarva Peninsula: An Archaeological Study</u>. University of Delaware Press, Newark.

DeCunzo, LuAnn and Wade Catts

1990 "Management Plan for Delaware's Historical Archaeological Resources." University of Delaware Center for Archaeological Research. Newark. Delaware Historical and Cultural Affairs

2014 "History was made here: Fenwick Island Lighthouse" Online article accessed 11/5/22 .https://history.delaware.gov/2014/07/23/history-was-made-herefenwick-island-lighthouse/

Delaware Department of Natural Resources and Environmental Control

2016 "The Assawoman Canal", Delaware State Parks, Online article accessed 12/21/21. http://www.destateparks.com/park/holts-landing/assawoman-canal.asp

Elliott, Richard

1970 <u>The Saga of the Wilson Line, Last of the Steamboats</u>. Tidewater Publishers, Cambridge, Maryland.

Fisher, Joshua

1756 <u>Chart of the Delaware Bay from the Sea-Coast to Reedy-Island</u>. Published according to an Act of Parliament, February 28, 1756.

Gentile, Gary

1990 Shipwrecks of Delaware and New Jersey. Gary Gentile Productions, Philadelphia.

Hazard, Samuel, editor

- 1850 <u>Hazard's Annuals of Pennsylvania 1609 1682</u>. Hazard and Mitchell, Philadelphia.
- 1828 <u>The Register of Pennsylvania</u>. 16 Vols. (Vol. 1 January to July, 1828). Philadelphia.

Historic Sites Research

1982 "Cape May Project Study, Phase II Cultural Resources Survey Relocation, Testing and Evaluation of Submerged Magnetic Anomalies." Army Corps of Engineers, Philadelphia.

Horowitz, Kenneth

2020 "History of the Indian River Inlet at Delaware Seashore State Park". Accessed online 12/21/21. Delaware State Parks, Adventure Blog. https://destateparks.blog/2020/02/24/history-of-the-indian-river-inlet-atdelaware-seashore-state-park/

Knopp, Andrew

1996 <u>One Hundred Year History of the Pilots' Association Bay and River Delaware:</u> <u>1896-1996</u>. Delaware Heritage Press.

Koski-Karell, Daniel

- 1995 "Historic Archaeological Context on the Maritime Theme with the Sub-Theme Shipwrecks, Coastal Zone (1495-1940+/-). Volume I -- Historic Context." Delaware Division of Historical and Cultural Affairs, Bureau of Archaeology and Historical Preservation, Dover.
- 1984 "Underwater Cultural Resources Background Study and Field Survey of the Delaware Inner Continental Shelf." Delaware Division of Soil and Water Conservation, Dover.

Lewes Historical Society

- 1985 <u>A Pictorial History of Lewes, Delaware: 1609-1985</u>. The Lewes Historical Society, Lewes, Delaware.
- National Archives, Record Group 23 <u>Records of the Coast and Geodetic Survey</u>. Washington D.C.
- National Archives, Record Group 26 <u>Records of the United States Coast Guard; Records of the Lifesaving Service 1847-</u> <u>1915.</u> Washington D.C.
- National Archives, Record Group 77 <u>Records of the Office of the Chief of Engineers</u>. Cartographic Branch, Alexandria.
- Pennsylvania Colonial Records, Votes and Proceedings of the House of Representatives of the Province of Pennsylvania, 1682-1776. (16 Vols.) Harrisburg.

Pusey, Pennock

1903 <u>History of Lewes, Delaware</u>. The Historical Society of Delaware, Wilmington, Delaware.

Ruppe, Reynold

1979 "The Archaeology of Drowned Terrestrial Sites: A Preliminary Report." Bureau of Historic Sites and Properties, Bulletin No. 6, Tallahassee.

Slaski, Eugene

1979 <u>Poorly Marked and Worse Lighted: Being a History of the Port Wardens of</u> <u>Philadelphia, 1766-1907</u>. Pennsylvania Department of Commerce, Harrisburg.

Snyder, Frank and Brian Guss

1974The District, A History of the Philadelphia District U. S. Army Corps of Engineers,
1866 - 1971. Army Corps of Engineers, Philadelphia.

Steamboat Inspection Service

1852-1937 Wreck File, National Archives, Record Group 41, Washington D.C.

The Dispatch

2013 "80 Years Ago, Storm Created Ocean City Inlet". <u>The Ocean City Dispatch</u>. https://mdcoastdispatch.com/2013/08/13/80-years-ago-storm-created-ocean-city-inlet/

Tyler, David

1955 <u>The Bay and River Delaware, A Pictorial History</u>. Cornell Maritime Press, Cambridge.

U.S. Department of Commerce

<u>Automated Wreck and Obstruction Information System (AWOIS)</u>. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring.

U.S. Department of the Interior

National Register Bulletin 16: Guidelines for Completing National Register of <u>Historic Places Forms</u>. Part A. National Register Branch, Interagency Resources Division, National Park Service, U.S. Department of the Interior, Washington, D.C.

U.S. Department of the Interior

National Register Bulletin 20: Nominating Historic Vessels and Shipwrecks to the National Register of Historic Places. National Register Branch, Interagency Resources Division, National Park Service, U.S. Department of the Interior, Washington, D.C.

Vokes, Harold

1957 "Geography and Geology of Maryland." Department of Geology, Mines and Water Resources. Bulletin No. 19, Baltimore.

Weslager, Charles

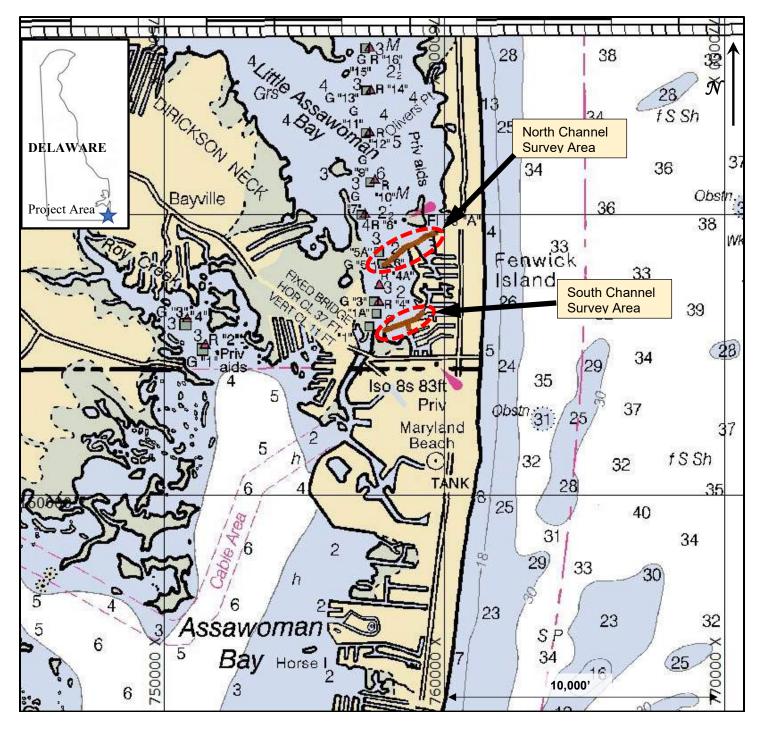
1961 <u>Dutch Explorers, Traders and Settlers in the Delaware Valley, 1609 - 1664</u>. Philadelphia.

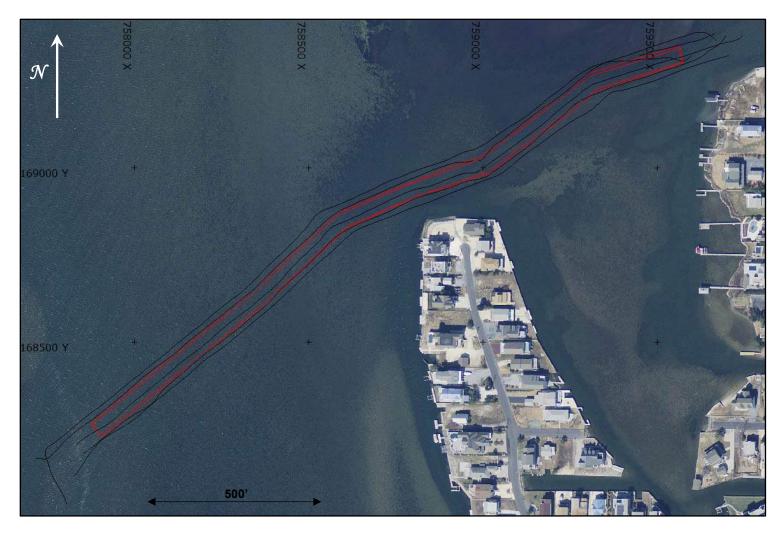
Weslager, Charles and Louise Heite

- 1988 "History of the Delaware Estuary." In <u>The Delaware Estuary: Rediscovering a</u> <u>Forgotten Resource</u>. University of Delaware Seagrant Program, Newark.
- 36 CFR 800

<u>National Register of Historic Places, Criteria of Evaluation</u>. Code of Federal Regulations, Title 36, Chapter I, Part 60.4. National Park Service, Department of the Interior, Washington, D.C.

FIGURES




Figure 1. Project Location Map – Little Assawoman Bay North and South Channel Survey Areas

Notes: 1) Background Map is NOAA Chart #122112) Background Grid = Delaware State Plane System, NAD83

Figure 2. Project Site Map - Little Assawoman Bay North and South Channel Survey Areas

- Notes: 1) North Channel and South Channel Survey Areas are outlined. South Channel Area has a short southern extension
 - 2) Background Grid = Delaware State Plane System, NAD83

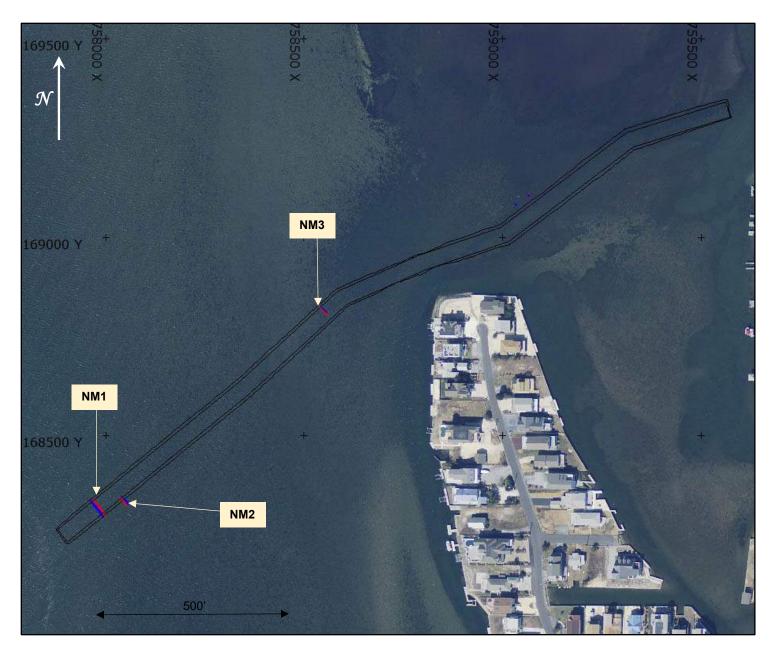
Figure 3. Survey Track Plots – North Channel Survey Area

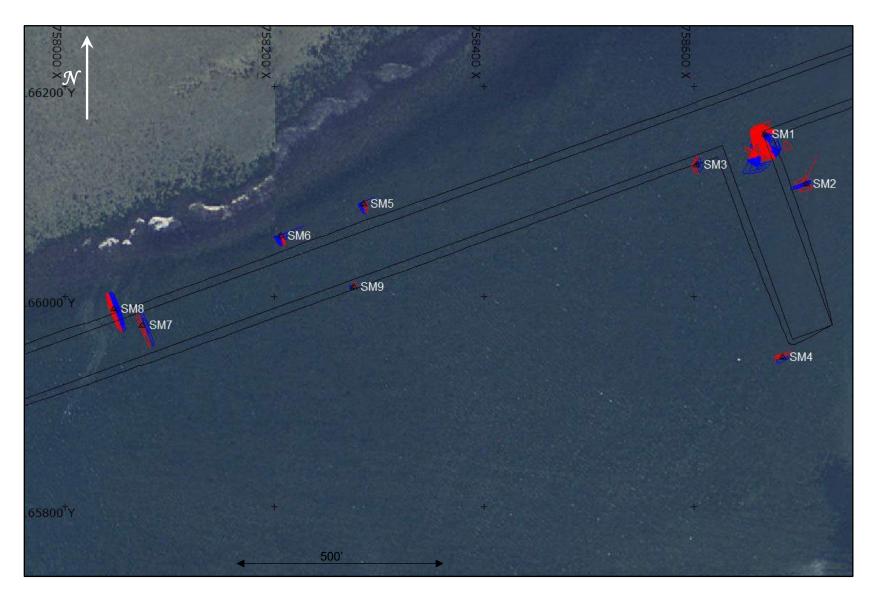
- Track lines are black 1)
- Lane spacing was 25 feet APE is depicted in red 2)
- 3)
- 4) Background Grid = Delaware State Plane System, NAD83

Figure 4. Survey Track Plots – South Channel Survey Area

- 1) 2) 3) 4)

- Track lines are black Lane spacing was 25 feet APE is depicted in red Background Grid = Delaware State Plane System, NAD83




Figure 5. North Channel Survey Area - Magnetic Contour and Target Map

- 1) Contour Interval is 5 gammas
- 2) Magnetic data are reduced to pole: all positive readings are depicted as red and negative
 - readings as blue
- 3) Three (3) magnetic anomalies were identified listed in Table 1.
 4) Background Grid = Delaware State Plane System, NAD83

Figure 6. South Channel Survey Area - Magnetic Contour and Target Map

- 1) Contour Interval is 5 gammas
- 2) Magnetic data are reduced to pole: all positive readings are depicted as red and negative readings as blue
- 3) Ten (10) magnetic anomalies were identified listed in Table 2
- 4) Background Grid = Delaware State Plane System, NAD83

Figure 7. Detail of West Side of South Channel Survey Area - Magnetic Contour and Target Map

Notes:

1) Contour Interval is 5 gammas

2) Magnetic data are reduced to pole: all positive readings are depicted as red and negative readings as blue
 3) Nine (9) magnetic anomalies were identified at the west side of this survey area
 4) Background Grid = Delaware State Plane System, NAD83

Figure 8. North Channel Survey Area – Sonar Mosaic and Target Map

Notes:

Sonar Data collected with a dual 600/1200 kHz sensor, using a range of 50' per channel
 Five (5) sonar feature was identified in North Channel Survey Area. Sonar features are listed in Table 3

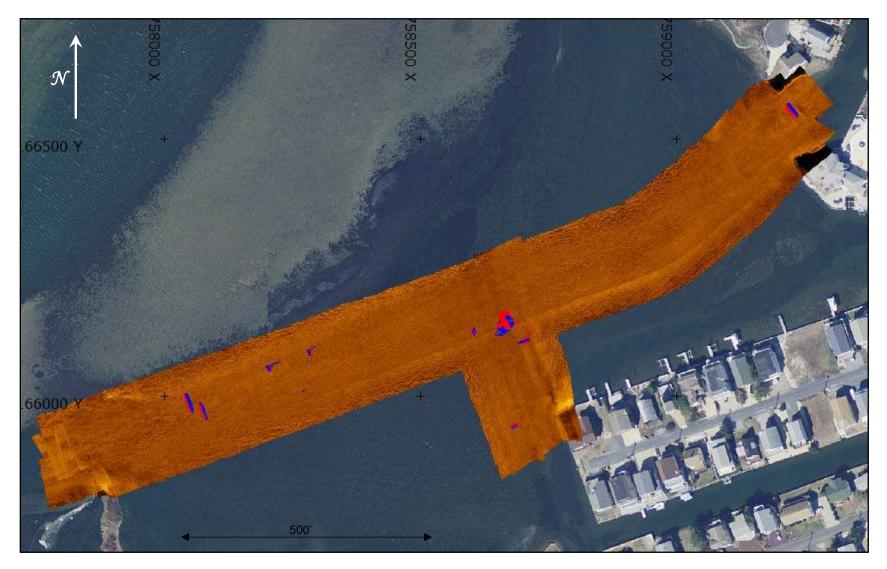
3) Background Grid = Delaware State Plane System, NAD83

Figure 9. South Channel Survey Area – Sonar Mosaic and Target Map

Notes:

1) Sonar Data collected with a dual 600/1200 kHz sensor, using a range of 50' per channel

2) Two (2) sonar feature was identified in South Channel Survey Area. Sonar features are listed in Table 4


3) Background Grid = Delaware State Plane System, NAD83

Notes:

Contour Interval is 5 gammas
 Sonar Data collected with a dual 600/1200 kHz sensor, using a range of 50' per channel
 Background Grid = Delaware State Plane System, NAD83

- Contour Interval is 5 gammas
 Sonar Data collected with a dual 600/1200 kHz sensor, using a range of 80' per channel
 Background Grid = Delaware State Plane System, NAD83

APPENDIX

QUALIFICATIONS OF THE PRINCIPAL INVESTIGATOR

J. Lee Cox, Jr., owner of Dolan Research, Inc. served as the Principal Investigator. He directed the underwater archaeological investigation. Mr. Cox received a MA from East Carolina University in Maritime Research/Underwater Archaeology and a BA from Duke University in Archaeology. He meets or exceeds the standards for a principal investigator in archaeology as set forth in the Secretary of the Interior's Professional Qualifications Standards (36 CRF Part 61). He has been involved with over 150 different underwater archaeological projects over the last 32 years in 22 different states, Bermuda, Puerto Rico, Trinidad and Tobago, and Canada. He has authored over 100 reports and published seven articles and one book in conjunction with professional experience. He is a member of the Register of Professional Archaeologists (RPA).

Phase 1B Site Investigation Results Report

Underwater Investigations & Archaeology DolanResearch.com

т 610-971-1073

30 Paper Mill Rd. Newtown Square PA, 19073

Steven Bagnull Anchor QEA, LLC Greater Philadelphia Office 755 Business Center Drive Horsham, PA 19044

February 21, 2022

Re: Executive Summary Phase IB Underwater Archaeological Project Fenwick Island Channel Dredging Project Little Assawoman Bay Fenwick Island, Sussex County, Delaware

Dear Mr. Bagnull:

This letter is to confirm the successful completion of all fieldwork for the Phase IB Underwater Archaeological Investigation of Magnetic Target SM1 that was identified in the South Channel Project Area during the Phase I remote sensing survey in Little Assawoman Bay that was conducted in November 2021. As described in the Executive Summary of the Phase I survey, Target SM1 generated a high-intensity (2,400 gamma), yet limited duration (less than 20 feet) magnetic signature that was identified at a location in Little Assawoman Bay that was approximately 2.8 feet deep at the time of the survey. Due to the intense nature of the signature, additional Phase IB investigations or avoidance were recommended at Target SM1. Since the target was located within the proposed dredge footprint and avoidance was not an option, these Phase IB investigations were conducted.

The goals of the investigation were to:

- 1) reacquire and redefine the extent of Target SM1
- 2) use hydraulic probes to locate and identify the configuration and depth of the target source
- 3) define the limits of the site with exact coordinates for the boundaries of the target source, if possible; and
- 4) provide an assessment of the potential significance, or lack thereof, for the target source.

The Phase IB fieldwork was completed by a three-man crew on 16 February 2022. The fieldwork operations were carried out from a 22-foot fiberglass survey vessel suitable for shoal water operations. A *Geometrics*, G-881, cesium magnetometer, capable of +/- 1/10 gamma resolution, was used to collect magnetic remote sensing data. All positioning data were obtained by using a laptop PC-based software *(Hypack)* package in conjunction with a *Hemisphere* Differential Global Positioning System (DGPS) onboard the survey vessel. Positioning data from the DGPS were converted by the computer to Delaware (NAD 83 X,Y) state plane coordinates in real time. Offsets from the DGPA antennae to the probe location(s) on the survey vessel were entered into *Hypack*.

After the target location was re-acquired a marker buoy was deployed and a series of systematic probes were conducted across a grid in the vicinity of the buoy. All testing of the sub-bottom at the location of Target SM1 was accomplished with a hydraulic pump outfitted with a 10-foot-long water induction probe and a 12-foot-long steel-tipped ferrous probe outfitted with a "T"-handle. All probe locations and results were then recorded and plotted out in *Hypack*.

Findings

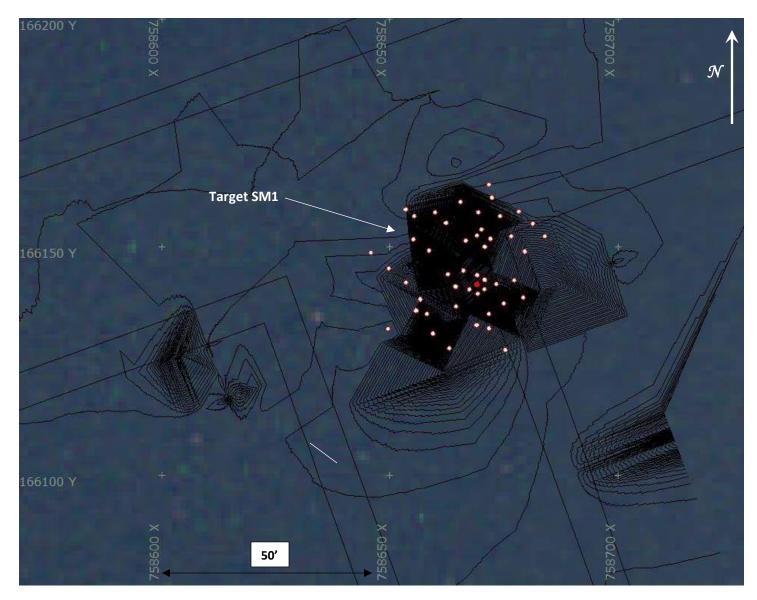
Magnetic Target SM1 generated an intense but very limited-duration magnetic signature. Detailed analysis of the magnetic data at this location site confirmed the presence of a 2,300+ gamma, monopolar signature with a maximum dispersion of less than 18 feet. One mitigating circumstance for the extreme amplitude of the signature was the very shallow water at the target location; ensuring that the magnetometer sensor passed within feet of the target source. All indications from the field data are that the anomaly was generated by a single-source, isolated object. Water depth at the target location at the time of our investigation was recorded at 2.8 feet.

After placing a marker buoy at the center of the anomaly, a systematic series of probes (both hydraulic and hand-held) were taken to locate and potentially identify the source of the magnetic anomaly. Probing at this location in Little Assawoman Bay confirmed the presence of a loosely packed sand/silt mix to a subbottom depth of approximately three (3) feet below the bottom surface. At that sub-bottom depth there was a layer of more consolidated mad/clay mix that appeared to be interspersed with shell. Below that lens was a softer mud layer that rested over another hard strata of consolidated mud/clay mix that was approximately seven feet below the bottom surface.

A single, hard contact was recorded at one probe location (marked with a red circle in Figure 1). This contact was determined to be 7.1' below the surface of the water (since water depth was 2.8', the contact was 4.3' below the existing bottom surface). After registering the contact with the object, the probe appeared to slip/slide past and below the object and proceeded down to the lower consolidated mud/clay strata, described previously. The contact was not re-acquired during subsequent probes in the vicinity of the original contact suggesting that the contact is linear in nature and likely oriented in a semi-vertical or upright direction in the sub bottom. A single object, possibly a section of discarded pipe or large section of rebar was the likely source of the magnetic anomaly at Target SM1.

The probing grid was expanded to comprehensively search the entire target area. All totaled, more than 48 probes were taken across an area that was 35 feet squared, in size. As stated previously, no additional sub-bottom contacts were recorded in the search area.

Location of the probing contact at Target SM1 (coordinates are Delaware State Plane, feet):


Location X 758,668 Y 166,146 38° 27.340557' N 75° 03.523853' W

The target source is not indicative of any known cultural resource types and no additional underwater archaeological investigations are recommended at Target SM1. A complete description of the Phase IB Investigations will be included as an Appendix in a revised edition of the Phase I Underwater Archaeological Report.

Sincerely,

goo eq

J. Lee Cox, Jr. Director

Notes: 1) Circles = Probe Locations

- 2) Red circle = contact.
- 3) Background Grid = Delaware State Plane Coordinates, feet.

Plate 1. Marker Buoy Deployed at Target Site Prior to Probing

Note: Cinder block anchor for buoy is visible on bottom behind the boat's stern - confirming the shallow water conditions on site.

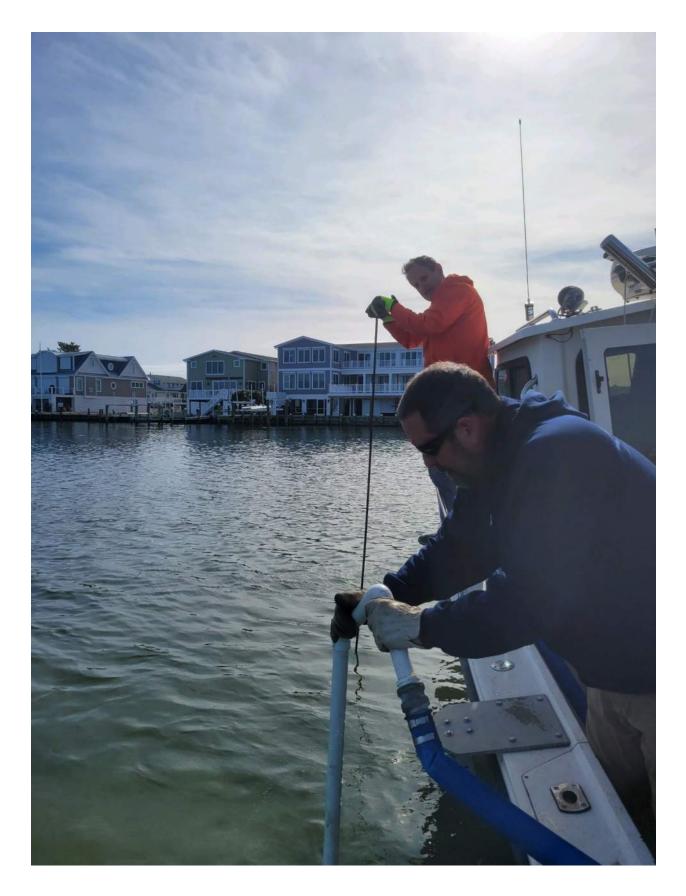


Plate 2. Hydraulic and Handheld Probing Operations