

Integrated Energy Resources

# Study of Potential for Energy Savings in Delaware

December 4, 2014

# Agenda

Overview of Potential Studies

- Definition
- Types of Potential
- OEI Potential Study
  - Characteristics
  - Results
  - Methodology
  - Conclusions

Comparison with CEEP Potential Study



#### What are Potential Studies?

- Quantify opportunities for energy savings
- Evaluate possible efficiency "measures" (actions taken to improve efficiency, such as changes in equipment)
- Are conducted in many jurisdictions to inform and support goalsetting and policy-making efforts







# **Types of Energy Efficiency Potential**

| Economic                                                                    | Maximum Achievable                                                                                   | Program Achievable                                                                                 |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Everything cost-<br>effective, assuming no<br>or limited market<br>barriers | Maximum level of<br>program activity and<br>savings that is possible<br>given the market<br>barriers | Level of possible<br>savings given a specific<br>set of programs<br>targeting specific<br>markets. |



#### Characteristics of Optimal's 2013 DE Potential Study

- Includes building sector electricity, natural gas and petroleum fuel usage
- 12-year study period (2014-2025)
- Collaborative effort between the Optimal Team, DNREC, Delaware utilities, and other stakeholders
- Includes "proxy" set of programs to achieve potential savings and the associated costs





### **Cost-Effectiveness Assessed with TRC Test**

- TRC used to determine both measure and program cost-effectiveness
- Estimates costs and benefits of efficiency measures from the perspective of society as a whole
- Costs for market-driven measures are incremental costs of high-efficiency equipment
- Full cost of equipment and labor used for retrofit measures
- Measure benefits primarily derived from energy savings over measure lifetime, but include other nonenergy benefits.



# Substantial Savings Exist in all Fuels

#### **Cumulative Annual Energy Savings Potential Relative to Sales Forecast, 2025**

|                          | Electric |    | Natural Gas |    | Petroleum Fuels |    |
|--------------------------|----------|----|-------------|----|-----------------|----|
|                          | GWh      | %  | BBtu        | %  | BBtu            | %  |
| Program Potential        | 2,708    | 19 | 4,319       | 9  | 1,203           | 12 |
| Max Achievable Potential | 3,620    | 23 | 5,904       | 13 | 1,913           | 20 |
| Economic Potential       | 4,670    | 30 | 8,561       | 18 | 2,391           | 25 |

#### **Example: Electric Energy Savings Relative to Sales Forecast**



## Program Potential is Highly Cost-Effective

#### **Program Potential TRC Economics by Fuel, through 2025**

| Source Fuel     | NPV Costs<br>(Million 2013 \$) | NPV Benefits<br>(Million 2013 \$) | NPV Net Benefits<br>(Million 2013 \$) | Benefit-Cost<br>Ratio |
|-----------------|--------------------------------|-----------------------------------|---------------------------------------|-----------------------|
| Electric        | 1,438                          | 3,424                             | 1,987                                 | 2.4                   |
| Natural Gas     | 148                            | 324                               | 177                                   | 2.2                   |
| Petroleum Fuels | 89                             | 280                               | 191                                   | 3.2                   |
| Total           | 1,674                          | 4,029                             | 2,355                                 | 2.4                   |

For every dollar invested in EE, the return is \$2.40 for electric and even higher benefits for other fuels



# GHG and Other Emissions Reductions Equivalent to:

- Taking a 170 MW power plant offline (i.e. the Indian River Unit 3 coal plant in DE)
- Having 36,000 fewer cars on the road each year







# Average Ratepayer sees Reduced Energy Bill



Installing three CFLs would overcome the typical residential customer bill impact



#### **Efficiency Investment Creates Jobs**

- Shifts spending to more local and labor intensive industries like construction
- Energy bill savings are invested in other areas of the economy
- EE at levels forecasted in the potential study will support between 3,000 and 4,800 net job-years

annually





# Modeled Efficiency Program Portfolio

| Customer Sector           | Market Segments                                                                                                                                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residential               | <ul> <li>New Construction</li> <li>Retrofit/Home Energy Services</li> <li>Multifamily</li> <li>Efficient Products</li> <li>Income-Eligible Services</li> <li>Behavior</li> </ul> |
| Commercial and Industrial | <ul><li>Lost Opportunity</li><li>Small Business Retrofit</li><li>Large Business Retrofit</li></ul>                                                                               |



#### **Program Development Over Time**



- Large Business Retrofit
- Small Business Retrofit
- C&I Lost Opportunity
- Residential Behavior
- Income-Eligible Single Family
- Residential Products
- Multi-Family
- Home Energy Services
- Residential New Construction



#### Methodology

- General approach is "top-down"
  - Starts with the energy sales forecast and disaggregation
  - Disaggregate forecast by end use, building type, and market
  - Map efficiency measures to applicable end use energy to determine savings potential
- Measures are then screened for cost-effectiveness (TRC test)
- Cost-effective measures are then assigned an adoption rate
- Savings are aggregated into programs
  - Program non-incentive costs based on leading programs
- Programs are aggregated into sectors to report full potential



# Methodology and Sources of Information





#### Conclusions

- Substantial savings exist in all fuels in DE
- Program potential is highly cost-effective
- Investments in efficiency will benefit the environment and economy in the form of emissions reductions and job creation
- In the long-term energy savings will reduce the average customer bill
- Well designed programs will help to maximize customer participation across all sectors
- Savings levels identified in this study are already being achieved in other jurisdictions



### Comparison Metrics Between OEI and CEEP Potential Studies

- General characteristics
- Source data vintage
- Level of analytical detail provided
- Program design assumptions
- Cost-effectiveness criteria
- Program potential assessment methodology



#### **Potential Study Results Comparison**

CEEP (2011) Optimal (2013) Years 5 12 2709 Electric Potential (GWh)/ 797-1190 % Savings (6.8-10.1%)(18.7%) Gas Potential (MMBtu)/ 1021-1794 4319 Program (2.9-5.1%)(9.1%) % Savings Potential (Full Study Petroleum Potential 1203 N/A (MMBtu)/ % Savings (12.4%) Period) Program Cost (\$million) 198-362 839 **Emissions Savings** 786-1177 2102 (Thousand MTCO2) Electric Potential (GWh)/ 159-238 226 % Savings (1.4 - 2.0%)(1.6%) Gas Potential (MMBtu)/ 204-359 360 Program % Savings (0.6 - 1.0%)(0.8%) Potential Petroleum Potential 100 (Annual (MMBtu)/ N/A (1.0%)% Savings Average) Program Cost (\$million) 40-72 70 **Emissions Savings** 157-235 175 (Thousand MTCO2)

On an annual basis, results fall in a similar range





Integrated Energy Resources

#### **Questions?**

Optimal Energy, Inc. 10600 Route 116, Suite 3 Hinesburg, VT 05461

802-482-5600

#### Appendix A: Cost-Effectiveness Test Matrix

| Implications of | the Five Princi | pal Cost-Effectiveness | <b>Tests</b> |
|-----------------|-----------------|------------------------|--------------|
|-----------------|-----------------|------------------------|--------------|

| Test                             | Key Question Answered                                              | Summary Approach                                                                                                                                     | Implications                                                                                                                                                                  |
|----------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Societal Cost                    | Will total costs to society decrease?                              | Includes the costs and benefits<br>experienced by all members of<br>society                                                                          | Most comprehensive comparison                                                                                                                                                 |
| Total Resource<br>Cost           | Will utility costs and<br>program participants'<br>costs decrease? | Includes the costs and benefits<br>experienced by all utility customers,<br>including energy efficiency program<br>participants and non-participants | Includes the full incremental costs<br>and benefits of the efficiency measure,<br>including participant and utility costs<br>and benefits                                     |
| Program<br>Administrator<br>Cost | Will utility costs decrease?                                       | Includes the costs and benefits<br>experienced by the energy<br>efficiency program administrator                                                     | Limited to impacts on utility revenue<br>requirements; indicates net impact on<br>utility costs and utility bills                                                             |
| Participant                      | Will program<br>participants' costs<br>decrease?                   | Includes the costs and benefits<br>experienced by the customer<br>who participates in the efficiency<br>program                                      | Provides distributional information;<br>useful in program design to improve<br>participation; of limited use for cost-<br>effectiveness screening                             |
| Rate Impact<br>Measure           | Will utility rates decrease?                                       | Includes the costs and benefits that<br>will affect utility rates, including<br>program administrator costs and<br>benefits as well as lost revenues | Provides distributional information;<br>useful in program design to find<br>opportunities for broadening<br>programs; should not be used for cost-<br>effectiveness screening |

Adapted from NAPEE, 2008, p. 2-2, with modifications.

